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Assessment of the size of VaR backtests for small samples 
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Abstract. The market risk management process includes the quantification of the risk connect-
ed with defined portfolios of assets and the diagnostics of the risk model. Value at Risk (VaR) 
is one of the most common market risk measures. Since the distributions of the daily P&L 
of financial instruments are unobservable, literature presents a broad range of backtests for 
VaR diagnostics. In this paper, we propose a new methodological approach to the assessment 
of the size of VaR backtests, and use it to evaluate the size of the most distinctive and popular 
backtests. The focus of the paper is directed towards the evaluation of the size of the backtests 
for small-sample cases – a typical situation faced during VaR backtesting in banking practice. 
The results indicate significant differences between tests in terms of the p-value distribution. 
In particular, frequency-based tests exhibit significantly greater discretisation effects than 
duration-based tests. This difference is especially apparent in the case of small samples. Our 
findings prove that from among the considered tests, the Kupiec TUFF and the Haas Discrete 
Weibull have the best properties. On the other hand, backtests which are very popular in bank-
ing practice, that is the Kupiec POF and Christoffersen’s Conditional Coverage, show significant 
discretisation, hence deviations from the theoretical size. 
Keywords: Value at Risk, market risk management, backtesting, empirical size assessment. 
JEL: C00, C12, C15, D81, G32 

1. Introduction 

In 2009, the Basel Committee on Banking Supervision has introduced the Basel II 
Accord, which includes recommendations for banks as well as for regulators operat-
ing in the EU (Basle Committee on Banking Supervision [BCBS], 2009). Within the 
Basel II framework, financial institutions, in particular, are recommended to ensure 
capital buffers against market risks – this recommendation is also sustained in Basel 
III, which will be implemented (and come into force) in January 2022. The market 
risk management process carried out by financial institutions includes the quantifi-
cation of the risk connected with defined portfolios of assets. One of the most com-
monly used risk measures that has gained significant attention is Value at Risk 
(VaR). Among the consequences of implementing the Basel Accord is that banks are 
required to perform proper diagnostics, i.e. backtests of their VaR models. 
 

 
a SGH Warsaw School of Economics, Institute of Econometrics, Decision Analysis and Support Unit, e-mail: 

dkaszy@sgh.waw.pl (corresponding author), ORCID: https://orcid.org/0000-0002-0865-0732. 
b SGH Warsaw School of Economics, Institute of Econometrics, Decision Analysis and Support Unit, e-mail: 

bkamins@sgh.waw.pl, ORCID: https://orcid.org/0000-0002-0678-282X. 
c SGH Warsaw School of Economics, Institute of Econometrics, Decision Analysis and Support Unit, e-mail: 

bpankra@sgh.waw.pl, ORCID: https://orcid.org/0000-0001-7618-9119. 

https://orcid.org/0000-0002-0865-0732
https://orcid.org/0000-0002-0678-282X
https://orcid.org/0000-0001-7618-9119


D. KASZYŃSKI, B. KAMIŃSKI, B. PANKRATZ    Assessment of the size of VaR backtests for small samples 115 

 

 

 A standard approach to backtesting a predictive model involves the comparison of 
ex-post realisations with the ex-ante forecasts of interest values (Hurlin & Tokpavi, 
2006). This process is straightforward if the ex-post realisations (observations) of the 
forecasted values are measurable (i.e. observable). In the case of VaR backtesting, 
this approach is not applicable since the VaR is a quantile of the distribution of  
a random variable. It means that one can only observe the realisation of this random 
variable (Jorion, 2010), and not its distribution. Therefore, VaR backtesting is a non-
trivial task, and significant research has been devoted to the development of appro-
priate test procedures, c.f. Berkowitz et al. (2011), Hurlin (2013) or Nieto and Ruiz 
(2016). 
 A natural approach to the assessment of ex-ante VaR forecast is to base it on ex- 
post observed series of times when the VaR is violated. Such a series should possess 
two essential properties (Hurlin & Tokpavi, 2006): 
• unconditional coverage, i.e. the probability of a violation in a given period should 

be equal to the VaR level; 
• independence of violations, i.e. the probability of violation in a given period should 

not depend on the occurrence of violations in the past. 
 Based on these two properties, a broad range of statistical tests for the VaR model 
evaluation have been proposed in literature. Hurlin (2013) classifies the VaR back- 
tests into one of the following types: 
• Frequency-based tests, which are based on the number of observed VaR violations, 

i.e. observations for which the daily P&L is below the calculated VaR, and the ex-
pected number of violations. 

• Independence-based tests, which measure the dependency of VaR violations be-
tween consecutive days; these tests validate whether the probability of VaR viola-
tions depends on the occurrence of previous VaR violations. 

• Duration-based tests that use the fact that, assuming the correctness of the VaR 
model, the periods between consecutive violations should follow the geometric 
distribution. Duration-based tests validate the latter. 

• Magnitude-based tests, which are based not only on the number of VaR viola-
tions, but also on the severity of the violation: the bigger the difference between 
the P&L and the corresponding forecasted VaR during the occurrence of a viola-
tion, the more severe the violation. 

• Multivariate-based tests, which evaluate the risk model based on more than one 
level of the VaR; these tests measure the correctness of VaR predictions based on 
joint tests for multiple VaR levels, e.g. 1% and 5% jointly. 
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 In this paper, we argue that during the application of VaR backtesting procedures 
in practice, the samples of ex-post data are small (i.e. involve short time series) rela-
tive to the VaR level, i.e. the number of observations of VaR violations is scarce. 
 Within this perspective, we review the current approaches to VaR backtesting. 
Due to a large body of literature on this subject, we focus on backtests which consid-
er series of violations for a fixed VaR level, further denoted by 𝛼𝛼. Technically, this 
class of tests is designed to check if a sequence of 0 and 1 values (non-violation and 
violation observations, respectively) is generated as IID Bernoulli variables with the 
probability of success equal to 𝛼𝛼. We have presented VaR backtesting results based 
on an independently developed library containing a set of the most popular back- 
tests, allowing an efficient, intuitive simulation and straightness to benchmark.  
Given the typology of VaR backtests mentioned earlier, we focus on frequency-
based, independence-based and duration-based tests. 
 Several reviews of backtesting procedures have been recently presented in literature. 
One of the first texts that compare different VaR backtesting procedures is Campbell 
(2006). This article describes the Kupiec (1995) proportion of failures test, the  
Christoffersen (1998) independence and joint tests, tests based on multi-level VaR, 
the Lopez (1998) loss function-based test and the Pearson Q test for goodness of fit. 
 Nieto and Ruiz (2016) provide a recent review of methodological and empirical 
achievements in VaR estimation and backtesting. In terms of VaR backtests, this 
2016 study describes the most popular tests which are based on the binary hit 
variable for single and multiple α levels. The authors also present an approach based 
on the loss function proposed by Lopez (1998). 
 Zhang and Nadarajah’s (2017) paper focuses solely on VaR backtesting. The authors 
provide descriptions of different procedures, referring to source papers for further 
details on power and size evaluations. The research presents the most popular 
backtest approaches and 28 different tests. 
 The above-mentioned studies provide mainly qualitative descriptions of back- 
testing procedures and refer readers to source articles for an evaluation of their statis- 
tical properties. Evers and Rohde’s (2014) article additionally presents the results of 
a quantitative size evaluation of selected backtesting procedures. The scope of the 
analysed tests covers the Kupiec (1995) proportion of failures test, the Christoffersen 
(1998) conditional coverage (with a division into independence and joint tests), the 
Escanciano and Olmo (2011) test, the Christoffersen and Pelletier (2004) duration 
test, and Candelon et al. (2011). As pointed out by the authors, most of the evaluated 
tests present problems relating to heavy-size distortions for small samples. This 
finding is consistent with conclusions presented in some other research papers 
(e.g. Escanciano and Olmo (2011), and indicates that the proposed univariate 
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backtests display size-related issues in small samples. It needs to be pointed out that 
some research (Małecka, 2014) shows that the empirical size for large samples 
is greater than for small samples (which is also presented in our research – see 
Fig. 7). Nevertheless, the current studies on the subject do not present a coherent 
approach comparing different VaR backtests – moreover, the cited papers consider 
only the most popular backtests. Therefore, in our opinion, there is a need for the 
unification of the backtests’ size evaluation methodology. 
 There are two criteria that can be used to assess a backtest procedure (and, in fact, 
any statistical test), namely size and power of the test (Everitt, 2006). 
 The size of the test is defined as the probability of rejecting the 𝐻𝐻0 when it is met. 
The size of the test is also called Type I error. The power of the test is defined as the 
probability of rejecting the null hypothesis 𝐻𝐻0 when the alternative 𝐻𝐻1 is true. The 
power of the test strictly corresponds to Type II error (i.e. not rejecting the null 
hypothesis when it is false). The power of the test is one minus the probability 
of Type II error (Altman, 1991). In this text, we propose a new methodology for 
the assessment of the test size in the case of small ex-post sample size and apply it to 
the VaR backtesting procedures proposed in literature. The motivation for this work 
is threefold. 
 Firstly, the VaR backtesting literature mostly refers the readers to source papers 
(i.e. papers introducing particular backtests) when discussing test sizes. In the study 
presented in this paper, we develop a unified framework consistently applied to all 
considered tests, which enabled us to obtain results of test size analysis which are 
directly comparable. 
 Secondly, when the ex-post sample size is small, many VaR tests exhibit high 
discretisation of test statistics (i.e. they take only a small number of possible values 
with significant probabilities). This means that the evaluation of the size of a given 
test for a fixed 𝑝𝑝-value can be misleading, as one cannot easily assess if the distribu-
tion of the test statistics has a large jump near the 𝑝𝑝-value threshold or not. There-
fore we adopted a test-size visualisation and assessment procedure that enables us to 
check by how much the distribution of 𝑝𝑝-values of the test diverges from the uni-
form distribution over a [0,1] interval (a 𝑝𝑝-value of an ideal test should have such  
a distribution), after Murdoch et al. (2008). 
 Thirdly, the recent literature regarding backtesting has expanded, but our study 
focuses on tests whose size has not been analysed in earlier publications. An addition- 
al benefit of this unified approach is that for the purpose of the analyses presented 
in the article, we have implemented backtesting procedures reviewed within 
one software package. The library is available free of charge to everyone at  
https://github.com/dkaszynski/VVaR. One particular feature of the implemented 

https://github.com/dkaszynski/VVaR
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procedures is that corner cases of all the considered statistical tests are carefully 
managed, which is often not the case, even in source papers introducing them. For 
instance, in relation to small samples and low values of 𝛼𝛼, an important issue to be 
appropriately dealt with is the case of no violations of VaR in an ex-post data set. 
 To sum up, the study presented in this paper contributes to VaR backtesting re-
search in the following ways: 1) it provides a systematic evaluation and comparison 
of a wide range of VaR backtest procedures, including the ones most recently pro-
posed in literature, that has been carried out for the first time; 2) it proposes a new 
method of analysing the size of VaR backtests evaluated on small samples; 3) it  
carefully reviews the specifications of all the analysed tests in order to properly 
manage corner cases, and offers a software package implementing them.  
 The paper has the following structure: Section 2 provides a formal definition 
of VaR and the proposed methodology for the procedure of verifying the VaR 
backtest sizes. Section 3 presents a comprehensive review of VaR backtesting pro- 
cedures. In Section 4 the results of numerical simulations of the considered back- 
testing procedures are discussed. The fifth section consists of conclusions and re-
marks for future studies. 

2. Methodology 

In this section, formal definitions of Value at Risk (VaR) and the backtesting pro- 
cedure (also referred to as backtest) are provided. 

2.1. Value at risk notation 

Let 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑋𝑋) be a VaR of a random variable 𝑋𝑋 with a tolerance level of 𝛼𝛼. The  
formal notation is as follows: 
 

 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑋𝑋) = −𝑖𝑖𝑖𝑖𝑖𝑖{𝑥𝑥 ∈ 𝑹𝑹: 𝑃𝑃𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) > 𝛼𝛼}. (1) 
 
 Therefore, if 𝑋𝑋 is a continuous random variable, we receive the following: 
 

 𝑃𝑃𝑃𝑃(𝑋𝑋 ≤ − 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑋𝑋)) = 𝛼𝛼. (2) 
 
 If X is not assumed to be continuous, we have in general: 
 

 𝑃𝑃𝑃𝑃(𝑋𝑋 ≤ − 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑋𝑋)) ≥ 𝛼𝛼 (3) 
 
and lim

𝑥𝑥→𝑉𝑉𝑉𝑉𝑅𝑅α(𝑋𝑋)+
𝑃𝑃𝑃𝑃(𝑋𝑋 ≤ −𝑥𝑥 ) ≤ 𝛼𝛼. In the further parts of this paper we assume  

that 𝑋𝑋 is continuous, unless explicitly stated otherwise. 
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 Given those definitions, we will consider VaR forecasts in discrete time 𝑡𝑡 ∈ 𝑵𝑵. In 
this article, time units are assumed to be days. 
 Let us consider an asset whose daily returns are denoted as 𝑃𝑃𝑡𝑡. By 𝑅𝑅𝑡𝑡|𝑡𝑡′, we denote 
a random variable describing the rt distribution, which takes into account all the 
information available at time 𝑡𝑡′. Clearly when 𝑡𝑡′ ≥ 𝑡𝑡, then 𝑅𝑅𝑡𝑡|𝑡𝑡′ is constant with 
Pr (𝑅𝑅𝑡𝑡|𝑡𝑡′ = 𝑃𝑃𝑡𝑡) = 1. Most of the time we will assume that 𝑡𝑡′ = 𝑡𝑡 − 1 and, therefore, 
we will use the notation 𝑅𝑅𝑡𝑡 ≔ 𝑅𝑅𝑡𝑡|𝑡𝑡−1. 
 Having assumed the above, we receive a formally defined value 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑅𝑅𝑡𝑡|𝑡𝑡′), 
where 𝑡𝑡′ < 𝑡𝑡, which is a true and unknown value of Value at Risk at time 𝑡𝑡 assessed 
at time 𝑡𝑡′ with an 𝛼𝛼 tolerance level. 

2.2. Backtesting – definition 

Now consider that we are given a forecast for 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑅𝑅𝑡𝑡|𝑡𝑡′) in time 𝑡𝑡′, which we will 

denote as 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼
𝑡𝑡|𝑡𝑡′. As in the case of the definition of 𝑅𝑅𝑡𝑡, we write 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼𝑡𝑡  when  

𝑡𝑡0 = 𝑡𝑡 − 1. 
 Since 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑅𝑅𝑡𝑡) is not observable if we want to assess the quality of 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼𝑡𝑡 , we can 
only test it against the observed values of 𝑃𝑃𝑡𝑡. Let us denote a random function, which 
indicates if value 𝑥𝑥 was less than or equal to 𝑣𝑣, by 𝑆𝑆(𝑣𝑣, 𝑥𝑥) = 1[−𝑖𝑖𝑖𝑖𝑓𝑓,𝑣𝑣](𝑥𝑥). Using this 
notation, 𝑆𝑆(𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼𝑡𝑡 , 𝑃𝑃𝑡𝑡) takes the value of 1 if the observed 𝑃𝑃𝑡𝑡  was less than or equal to 
the value of the prediction of a VaR, or otherwise 0. Additionally, 𝑆𝑆𝛼𝛼𝑡𝑡 = 𝑆𝑆(𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼𝑡𝑡 ,𝑅𝑅𝑡𝑡) 
is a sequence of random variables and 𝑠𝑠𝛼𝛼𝑡𝑡 = 𝑆𝑆(𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼𝑡𝑡 , 𝑃𝑃𝑡𝑡) is a sequence of their real-
isations. We will call the sequence of forecasts 𝑉𝑉𝑉𝑉𝑅𝑅α𝑡𝑡  unbiased if 𝑉𝑉𝑉𝑉𝑅𝑅α𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑅𝑅α(𝑅𝑅𝑡𝑡). 
 Since it is not possible to directly verify this condition, we will check the implied 
properties of 𝑆𝑆𝛼𝛼𝑡𝑡 . Formally, if a sequence of forecasts is unbiased, then we have 
𝑃𝑃𝑟𝑟(𝑆𝑆𝛼𝛼𝑡𝑡 = 1) = 𝐸𝐸(𝑆𝑆𝛼𝛼𝑡𝑡) = 𝛼𝛼. This is a condition that can be verified. Observe that 𝑆𝑆𝛼𝛼𝑡𝑡  
is defined as subject to information available until time 𝑡𝑡 − 1. In particular, this 
means that 𝑆𝑆𝛼𝛼𝑡𝑡  is a sequence of independent Bernoulli random variables with an 𝛼𝛼 
probability of success. On the other hand, if 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼𝑡𝑡 ≠ 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑅𝑅𝑡𝑡) for at least time 
moment 𝑡𝑡, then the sequence 𝑆𝑆𝛼𝛼𝑡𝑡  does not display this property. 
 In order to validate the assumption that VaR forecasts are unbiased at tolerance 
level 𝛼𝛼, we can use tests which check if the sequence 𝑠𝑠𝛼𝛼𝑡𝑡  was sampled from a process 
generating independent Bernoulli random values with an 𝛼𝛼 probability of success. 
 Less formally, backtesting, also referred to as reality check (Jorion, 2007), is a statis-
tical framework of techniques for verifying the accuracy of risk models (including 
VaR models) and a part of a broader model validation process (Jorion, 2007). In es-
sence, VaR backtesting refers to the comparison of P&L results with risk measures 
generated by the Value at Risk model. As stated by BCBS (1996), a backtest 
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consists of a periodic comparison of daily Value at Risk measures to the subsequent 
daily P&L. The Value at Risk measures are intended to be under 1− 𝛼𝛼% trading 
outcomes. 

2.3. Notation 

Now let us assume that we have a sequence 𝑠𝑠𝛼𝛼𝑡𝑡  sampled for time points from 1 to 𝑖𝑖. 
In order to simplify the notation, we add two virtual values 𝑠𝑠𝛼𝛼0 and 𝑠𝑠𝛼𝛼𝑖𝑖+1, both equal 
to 1. We denote an increasing sequence of time points for which 𝑠𝑠𝛼𝛼

𝑣𝑣𝑖𝑖 equals 1 by 𝑣𝑣𝑖𝑖. 
Note that the length l of this sequence is at least two and at most 𝑖𝑖 + 2 elements. 
Based on this sequence, we can define inter-event times 𝑑𝑑𝑖𝑖 = 𝑣𝑣𝑖𝑖+1 − 𝑣𝑣𝑖𝑖 − 1 for 
𝑖𝑖 ∈ {1, … , 𝑙𝑙 − 1}. Now observe that if we sample the sequence 𝑠𝑠𝛼𝛼𝑡𝑡  as independent 
Bernoulli random values with a probability of success 𝛼𝛼, then the random variable 𝐷𝐷 
representing the value of 𝑑𝑑𝑖𝑖  uniformly selected from the set {𝑑𝑑1, … ,𝑑𝑑𝑙𝑙−1} has censor- 
ed the geometric distribution (let us stress here that we consider the distribution 
of 𝐷𝐷 before sampling 𝑠𝑠𝛼𝛼𝑡𝑡 ). Formally, the notation is as follows: 
 

 𝑃𝑃𝑃𝑃(𝐷𝐷 = 𝑖𝑖) = �
𝛼𝛼(1− 𝛼𝛼)𝑖𝑖,
(1− 𝛼𝛼)𝑖𝑖,

0,
    
𝑖𝑖𝑖𝑖 0 ≤ 𝑖𝑖 ≤ 𝑖𝑖 − 1
𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑖𝑖 
𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑃𝑃𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒 

. (4) 

 
 Observe that if 𝑇𝑇 is a random variable with geometric distribution with success 
probability 𝛼𝛼 that is independent from the random variable 𝐷𝐷, then the variable 𝐷𝐷�  is 
defined as 
 

 𝐷𝐷� = � 𝐷𝐷,
𝐷𝐷 + 𝑇𝑇,    

𝑖𝑖𝑖𝑖 𝐷𝐷 < 𝑖𝑖
𝑖𝑖𝑖𝑖 𝐷𝐷 = 𝑖𝑖 (5) 

 
and displays a geometric distribution with success probability 𝛼𝛼. This fact is utilised 
in duration-based tests, i.e. tests evaluating whether the duration between VaR 
violations are drawn from a geometric distribution. 

2.4. Size evaluation methodology 

Consider a statistical test with significance level 𝑝𝑝. By 𝑞𝑞 we will denote the size of this 
test, i.e. the probability of the rejection of 𝐻𝐻0 under 𝐻𝐻0. We say that the test has  
a proper size at the significance level 𝑝𝑝 if 𝑝𝑝 = 𝑞𝑞. Additionally, we will say that it has  
a strictly proper size if it has a proper size for all 𝑝𝑝 ∈ [0,1]. 
 We can state that the test is oversized (rejects 𝐻𝐻0 too often) at the significance 
level 𝑝𝑝 if 𝑞𝑞 > 𝑝𝑝, and undersized (rejects 𝐻𝐻0 too rarely) if 𝑞𝑞 < 𝑝𝑝. 
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 We define oversize frequency as a measure of the set 𝑇𝑇𝑂𝑂 = {𝑝𝑝 ∈ [0,1]:𝑞𝑞 > 𝑝𝑝} and 
the average oversize as 𝐴𝐴𝑂𝑂 = ∫ (𝑞𝑞 − 𝑝𝑝)𝑑𝑑𝑝𝑝/∫ 𝑑𝑑𝑝𝑝 

𝑇𝑇𝑂𝑂
 
𝑇𝑇𝑂𝑂

. By the same token, we define 
the undersize frequency as a measure of the set 𝑇𝑇𝑈𝑈 = {𝑝𝑝 ∈ [0,1] ∶ 𝑞𝑞 < 𝑝𝑝} and the 
average undersize as 𝐴𝐴𝑈𝑈 = ∫ (𝑝𝑝 − 𝑞𝑞)𝑑𝑑𝑝𝑝/∫ 𝑑𝑑𝑝𝑝 

𝑇𝑇𝑈𝑈
 
𝑇𝑇𝑈𝑈

. 
 Observe that in finite samples it is impossible for a test to have a uniformly proper 
size, because typically the set of possible values of 𝑞𝑞 over all values of 𝑝𝑝 ∈ [0,1]  
is finite. We will denote this set by 𝑄𝑄. Therefore, we will say that the test has a weakly 
proper size if it has a proper size for all 𝑝𝑝 that belong to set 𝑄𝑄. In practice, this prop-
erty is realised when a function 𝑞𝑞(𝑝𝑝) has a property 𝑞𝑞(𝑝𝑝−) < 𝑝𝑝 ≤ 𝑞𝑞(𝑝𝑝) for all  
𝑝𝑝 ∈ 𝑄𝑄, or, equivalently, a function 𝑝𝑝(𝑞𝑞) has a property 𝑝𝑝 ∈ 𝑝𝑝({𝑞𝑞}).  
 For each analysed test, we will discuss the given VaR level α and sample size 𝑖𝑖 if it 
has a weakly proper size, and report: 
• 𝑇𝑇𝑂𝑂, i.e. oversize frequency (if for all 𝑝𝑝 ∈ [0,1] the test does not exhibit a proper 

size, then 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑈𝑈 = 1); 
• 𝑇𝑇𝑈𝑈, i.e. undersize frequency; 
• 𝐴𝐴𝑂𝑂, i.e. average oversize value; 
• 𝐴𝐴𝑈𝑈, i.e. average undersize value; 
• 𝐴𝐴, i.e. average deviation from the correct size. 

3. Evaluated backtests 

This section provides a detailed description of the tests that have been assessed  
in terms of size. For convenience, we define ℎ𝑖𝑖 = 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖 − 1 = 𝑑𝑑𝑖𝑖 + 1, where  
𝑖𝑖 ∈ 1, … , 𝑙𝑙 − 1, which may be interpreted, c.f. Małecka (2014), as the period of time 
between two consecutive VaR violations; in this manner, we denote the time until 
the first VaR violation by ℎ1, and the number of days after the last 1 in the hit se-
quence by ℎ𝑙𝑙−1. 

3.1. Kupiec 1995 – Proportion of failures 

The proportion of failures – POF, also referred to as the Unconditional coverage test, 
examines how many times a VaR is violated over a given time span (Kupiec, 1995). 
The null hypothesis assumes that the observed violation rate equals the expected 
number of VaR violations. This test belongs to the category of the frequency-based 
ones, as presented in Section 1. The statistic of the test takes the following form: 
 

 𝐿𝐿𝑅𝑅𝑃𝑃𝑂𝑂𝑃𝑃(𝛼𝛼,𝑖𝑖, 𝑠𝑠) = −2 𝑙𝑙𝑜𝑜𝑙𝑙 �
(1− 𝛼𝛼)𝑖𝑖−𝑠𝑠𝛼𝛼𝑠𝑠

(1− 𝛼𝛼�)𝑖𝑖−𝑠𝑠 𝛼𝛼�𝑠𝑠 
�

 𝑉𝑉𝑠𝑠𝑎𝑎  
  ̃ 𝜒𝜒

2 (1), (6) 

 
where 𝑠𝑠 = ∑ 𝑠𝑠𝑡𝑡α𝑖𝑖

𝑡𝑡=1 , and 𝛼𝛼� = 𝑠𝑠
𝑖𝑖

. 
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 Observe that when 𝑠𝑠 = 0 and 𝑠𝑠 = 𝑖𝑖, this formula is undefined. In those cases, the 
limit of the 𝐿𝐿𝑅𝑅𝑃𝑃𝑂𝑂𝑃𝑃  expression in 0+ and 𝑖𝑖−, respectively, can be used, because they 
exist and are finite, namely 𝐿𝐿𝑅𝑅𝑃𝑃𝑂𝑂𝑃𝑃(𝛼𝛼,𝑖𝑖, 0) = −2𝑖𝑖 log(1 –𝛼𝛼) and 𝐿𝐿𝑅𝑅𝑃𝑃𝑂𝑂𝑃𝑃(𝛼𝛼,𝑖𝑖,𝑖𝑖) = 
= −2𝑖𝑖𝑙𝑙𝑜𝑜𝑙𝑙(𝛼𝛼). 

3.2. Binomial test 

An alternative approach to Kupiec’s POF test is the one presented by Jorion (2007). 
Under the null hypothesis, the number of VaR violations follows the Bernoulli distri-
bution, and by assuming that 𝑖𝑖 is large, one can use the central limit theorem and 
approximate the binomial distribution with a normal distribution, i.e. Wald’s statistics: 
 

 𝑖𝑖(𝛼𝛼,𝑖𝑖, 𝑠𝑠) =
𝑠𝑠 − 𝛼𝛼𝑖𝑖

�𝛼𝛼(1− 𝛼𝛼)𝑖𝑖

 𝑉𝑉𝑠𝑠𝑎𝑎  
  ̃ 𝑁𝑁(0,1). (7) 

 
 In contrast to Kupiec’s POF test, the 𝑖𝑖(𝛼𝛼,𝑖𝑖, 𝑠𝑠) statistic is well-defined also when 
no violation is observed. The possibility that there was no violation of VaR in the 
case of small-sample time series (i.e. financial backtesting), especially for a small 𝛼𝛼, is 
not trivial (Campbell, 2006). The Binomial test is also a frequency-based test. 

3.3. Christoffersen 1998 tests 

The previously-mentioned unconditional coverage tests are based solely on the pro-
portion of VaR violations. Alternatively, Christoffersen (1998) proposed a very in-
fluential and popular conditional coverage test, where the null hypothesis assumes 
that 𝐸𝐸[𝑠𝑠𝑡𝑡𝛼𝛼|𝑠𝑠𝑡𝑡−1𝛼𝛼 ] = 𝛼𝛼. This test verifies the frequency of the VaR violation occurrence 
as well as its independence. In terms of the independence property, it is evaluated 
using the following: 
 

 𝐿𝐿𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼(𝑠𝑠) = −2 𝑙𝑙𝑜𝑜𝑙𝑙�
𝜋𝜋∙0
𝑖𝑖00+𝑖𝑖10𝜋𝜋∙1

𝑖𝑖01+𝑖𝑖11

𝜋𝜋00
𝑖𝑖00𝜋𝜋01

𝑖𝑖01𝜋𝜋10
𝑖𝑖10𝜋𝜋11

𝑖𝑖11�
 𝑉𝑉𝑠𝑠𝑎𝑎  

  ̃ 𝜒𝜒
2(1), (8) 

 
where 𝑖𝑖𝑖𝑖𝑖𝑖  is the number of observations, 𝑠𝑠𝑡𝑡𝛼𝛼 stands for 𝑖𝑖 and 𝑠𝑠𝑡𝑡+1𝛼𝛼  for 𝑗𝑗, 𝜋𝜋𝑖𝑖𝑖𝑖 = 
= 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖/∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , and 𝜋𝜋·𝑖𝑖 = ∑ 𝑖𝑖𝑖𝑖𝑖𝑖/∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 . 
 The likelihood ratio of conditional coverage test which takes into account 
Kupiec’s unconditional test likelihood and independence likelihood results is 
as follows: 
 

 𝐿𝐿𝑅𝑅𝐶𝐶𝐶𝐶(𝛼𝛼,𝑖𝑖, 𝑠𝑠) + 𝐿𝐿𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼(𝑠𝑠) + 𝐿𝐿𝑅𝑅𝑃𝑃𝑂𝑂𝑃𝑃(𝛼𝛼,𝑖𝑖, 𝑠𝑠)
 𝑉𝑉𝑠𝑠𝑎𝑎  

  ̃ 𝜒𝜒
2(2). (9) 
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 Note that the 𝐿𝐿𝑅𝑅𝐶𝐶𝐶𝐶  tests only the first order autocorrelation of the VaR violations 
– the process generating VaR violations in 𝐻𝐻0 of the independence test is assumed to 
be a first-order Markov chain with independence of violation / non-violation state 
transitions. 

3.4. Kupiec 1995 – Time until first failure 

Kupiec (1995) also presents an alternative approach to examining the proportion of 
VaR violations – the time until the first failure (TUFF) test. The null hypothesis 
assumes that the random variable denoting the number of days until the first VaR 
violation is geometrically distributed – note that the definition of geometric distribu-
tion may include two distinct cases: the series 1, 2, … and the series 0, 1, …; in the 
case of Kupiec’s TUFF test, we refer to the former. 
 

 𝐿𝐿𝑅𝑅𝑇𝑇𝑈𝑈𝑃𝑃𝑃𝑃(𝛼𝛼,𝑑𝑑1) = −2 𝑙𝑙𝑜𝑜𝑙𝑙

⎝

⎛ 
𝛼𝛼(1 − 𝛼𝛼)ℎ1−1

 1
ℎ1
�1 − 1

ℎ1
�
ℎ1−1

 ⎠

⎞
 𝑉𝑉𝑠𝑠𝑎𝑎  

  ̃ 𝜒𝜒
2 (1), (10) 

 
where ℎ1 denotes the time until the first failure occurs, as defined earlier. 
 As indicated by Dowd (1998), Evers and Rohde (2014) or Haas (2001), the TUFF 
test has a low power to discriminate among alternative hypotheses and, therefore, it 
may be difficult to observe whether the VaR model is biased or not. The TUFF test is 
best applied as a preliminary procedure for the frequency of excessive losses tests 
and may be utilised whenever the VaR violation is observed (Dowd, 1998), or there 
is not enough data available to perform more sophisticated tests. 

3.5. Haas 2001 – Time Between Failures 

Based on the intuition of the TUFF and independence tests, Haas (2001) extended 
the TUFF approach by including not only the time until the first failure but also an 
entire distribution of a time interval between VaR violations. Modelling the inde-
pendence of VaR violations in the framework of the time between failures (TBF) test 
has the following likelihood ratio: 
 

 𝐿𝐿𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑃𝑃(𝛼𝛼, 𝑠𝑠) = �

⎝

⎛−2 𝑙𝑙𝑜𝑜𝑙𝑙

⎝

⎛ 𝛼𝛼(1− 𝛼𝛼)ℎ1−1

1
ℎ1
�1 − 1

ℎ1
�
ℎ1−1

 ⎠

⎞

⎠

⎞
 𝑉𝑉𝑠𝑠𝑎𝑎  

  ̃ 𝜒𝜒
2 (𝑙𝑙 − 1),

𝑙𝑙−1

𝑖𝑖=1

 (11) 
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where ℎ𝑖𝑖  is defined as above. Note that the last duration time is being neglected, i.e. 
the TBF test does not take into account the time span after the last VaR violation. 
 When combining the likelihood ratio of Kupiec’s POF test with the likelihood 
ratio of the TBF test, we obtain the ‘Mixed Kupiec’s test’ with the following likeli-
hood ratio: 

 

 𝐿𝐿𝑅𝑅𝑀𝑀𝐼𝐼𝑋𝑋(𝛼𝛼,𝑖𝑖, 𝑠𝑠) + 𝐿𝐿𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑃𝑃(𝛼𝛼, 𝑠𝑠) + 𝐿𝐿𝑅𝑅𝑃𝑃𝑂𝑂𝑃𝑃(𝛼𝛼,𝑖𝑖, 𝑠𝑠)
 𝑉𝑉𝑠𝑠𝑎𝑎  

  ̃ 𝜒𝜒
2(𝑙𝑙). (12) 

 
 The TUFF and TBF tests are both duration-based tests, as the time interval 
between failures, i.e. the duration, is utilised. 

3.6. Christoffersen and Pelletier 2004 – Continuous Weibull 

Christoffersen and Pelletier (2004) present an alternative approach to the backtest 
VaR which is based on the analysis of the time between consecutive VaR violations. 
As defined earlier, let ℎ𝑖𝑖, 𝑖𝑖 = 1, … , 𝑙𝑙 represent time spans between all observable VaR 
violations which should be IID, because VaR violations should be independent from 
each other. Under the null hypothesis of the test, the VaR violation sequence process 
has no memory property and, thus, the no-hit distribution follows the formula: 

 
 𝑖𝑖𝐸𝐸𝑋𝑋𝑃𝑃(ℎ𝑖𝑖;𝜆𝜆) =  𝜆𝜆 𝑒𝑒𝑥𝑥𝑝𝑝(−𝜆𝜆ℎ𝑖𝑖). (13) 

 
 Alternatively, if the process contains the property of memory, the distribution of 
no-hit durations may follow the Continuous Weibull distribution: 

 
 𝑖𝑖𝐶𝐶𝐶𝐶(ℎ𝑖𝑖 ,𝑉𝑉, 𝑏𝑏) = 𝑉𝑉𝑏𝑏𝑏𝑏ℎ𝑖𝑖𝑏𝑏−1𝑒𝑒𝑥𝑥𝑝𝑝 (−(𝑉𝑉ℎ𝑖𝑖)𝑏𝑏. (14) 

 
 Note that 𝑖𝑖𝐶𝐶𝐶𝐶(ℎ𝑖𝑖,𝑉𝑉,𝑏𝑏)|𝑏𝑏=1,𝑉𝑉=𝑝𝑝 = 𝑖𝑖𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀𝐺𝐺(ℎ𝑖𝑖,𝑉𝑉,𝑏𝑏) = 𝑖𝑖𝐸𝐸𝑋𝑋𝑃𝑃(ℎ𝑖𝑖,𝑝𝑝). 
 The duration between VaR violations should be IID. The test is based on the fit-
ting of the continuous Weibull distribution (alternatively the Gamma distribution) 
to empirical data of durations between VaR violations. The null hypothesis of the 
test is 𝐻𝐻0:𝑏𝑏 =  1. 
 Because the {ℎ𝑖𝑖}𝑖𝑖=1𝑙𝑙  may be censored (𝑠𝑠1𝛼𝛼 ≠ 1 𝑜𝑜𝑃𝑃 𝑠𝑠𝑖𝑖𝛼𝛼 ≠ 1), along with creating  
a duration sequence ℎ𝑖𝑖, 𝑖𝑖 = 1, … , 𝑙𝑙, one has to also create a flag variable denoted as 
𝑐𝑐𝑖𝑖, 𝑖𝑖 = 1, … , 𝑙𝑙, which indicates whether ℎ𝑖𝑖  is censored. Except the first and the last 
duration (ℎ1and ℎ𝑙𝑙), all durations ℎ𝑖𝑖  are uncensored (𝑐𝑐𝑖𝑖 = 0, 𝑖𝑖 =  2, … , 𝑙𝑙 − 1). 
When 𝑠𝑠1𝛼𝛼 = 0 (𝑠𝑠𝑖𝑖𝛼𝛼 = 0), then 𝑐𝑐0 = 1 (𝑐𝑐𝑙𝑙 = 1). 
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 The log-likelihood is as follows: 
 

 

𝐿𝐿𝑅𝑅𝐶𝐶𝐶𝐶(𝛼𝛼, 𝑙𝑙, {ℎ𝑖𝑖}𝑖𝑖=1𝑙𝑙 , {𝑐𝑐𝑖𝑖}𝑖𝑖=1𝑙𝑙 𝑐𝑐1 log�1− 𝐹𝐹𝐶𝐶𝐶𝐶(ℎ1)�+ (1− 𝑐𝑐1) log�𝑖𝑖𝐶𝐶𝐶𝐶(ℎ1)�+ 
 

+𝑐𝑐𝑙𝑙 log�1− 𝐹𝐹𝐶𝐶𝐶𝐶(ℎ𝑙𝑙)�+ (1− 𝑐𝑐1) log�𝑖𝑖𝐶𝐶𝐶𝐶(ℎ𝑙𝑙)�+ � log�𝑖𝑖𝐶𝐶𝐶𝐶(ℎ𝑖𝑖)�,
𝑙𝑙−1

𝑖𝑖=2

 
(15) 

 
where 𝐹𝐹𝐶𝐶𝐶𝐶(∙) takes on the continuous Weibull cumulative distribution function. 

3.7. Haas 2005 – Discrete Weibull 

On the basis of the previous duration-based test, Haas (2005) suggests using the 
discrete Weibull distribution to backtest 𝑑𝑑𝑖𝑖, 𝑖𝑖 = 1, … , 𝑙𝑙 − 1 instead of applying the 
continuous one by Christoffersen and Pelletier (2004). Since the support of time 
between VaR violations are natural numbers, Haas (2005) argued that the duration 
between violations follows the discrete Weibull distribution 
 

 𝑖𝑖𝐼𝐼𝐶𝐶(𝑑𝑑𝑖𝑖 ,𝑉𝑉, 𝑏𝑏) = 𝑒𝑒𝑥𝑥𝑝𝑝[−𝑉𝑉𝑏𝑏 (𝑑𝑑𝑖𝑖 − 1)𝑏𝑏] − 𝑒𝑒𝑥𝑥 𝑝𝑝�−𝑉𝑉𝑏𝑏𝑑𝑑𝑖𝑖𝑏𝑏�, (16) 
 
where 𝑑𝑑𝑖𝑖 = 1 is the time between 𝑖𝑖 and 𝑖𝑖 + 1 VaR violation and 𝑏𝑏 > 0. The null 
hypothesis of the correct conditional probability α corresponds to 𝑏𝑏 = 1 and  
𝑉𝑉 = −𝑙𝑙𝑜𝑜𝑙𝑙(1− 𝛼𝛼). The null hypotheses of independence corresponds to 𝑏𝑏 = 1. 
These hypotheses can be tested by means of the likelihood ratio test. 
 As shown by Candelon et al. (2011), the discrete distribution test exhibits higher 
power than its continuous competitor test. Moreover, the discrete distribution has  
a more intuitive interpretation in the context of modelling integer time durations. 

3.8. Krämer and Wied 2015 – the Gini coefficient 

Another duration-type approach to the backtesting of Value at Risk, proposed by 
Krämer and Wied (2015), is based on the inequality measure of di (Gini-coefficient): 
 

 𝑙𝑙(𝑑𝑑1, … ,𝑑𝑑𝑙𝑙) = 𝑙𝑙−2
∑ (𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖)𝑙𝑙
𝑖𝑖,𝑖𝑖=1

2�̅�𝑑
, (17) 

 
where: �̅�𝑑 is the arithmetic average of {𝑑𝑑𝑖𝑖}𝑖𝑖=1𝑙𝑙 . For the geometrically distributed di, the 
Gini coefficient is 𝑙𝑙(𝑑𝑑) = 1−𝛼𝛼

2−𝛼𝛼
 ,where 0 ≤ 𝑙𝑙(𝑑𝑑) ≤ 1

2
. This test rejects the independ-

ence assumption, when 𝑙𝑙(𝑑𝑑1, … ,𝑑𝑑𝑙𝑙) becomes too large. The test statistic is as fol-
lows: 
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 𝑇𝑇 = √𝑖𝑖�𝑙𝑙−2
∑ �𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖�𝑙𝑙
𝑖𝑖,𝑖𝑖=1

2�̅�𝑑
−

1 − 1
𝑖𝑖

2 − 𝑙𝑙
𝑖𝑖
�. (18) 

 
 Critical values of the statistics can be obtained by a simulation, which is an ap-
proach preferred by the authors. This observation is also confirmed by our study. 

3.9. Engle and Manganelli 2004 – DQ 

Engle and Manganelli (2004) introduced a test that utilises the linear regression 
model and links the violation in t to all past violations. This test falls into the catego-
ry of independence-based tests. For the purpose of the test, the following term 
is constructed: 
 

𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡�(𝛼𝛼) = �1 − 𝛼𝛼,
−𝛼𝛼,

  𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡 < 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡|𝑡𝑡−1(𝛼𝛼)
  𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡 ≥ 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡|𝑡𝑡−1(𝛼𝛼)  �1 − 𝛼𝛼,

−𝛼𝛼,
  𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡 < 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡|𝑡𝑡−1(𝛼𝛼)
  𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡 ≥ 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡|𝑡𝑡−1(𝛼𝛼). (19) 

 
 Based on the above-defined 𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡(𝛼𝛼), Engle and Manganelli (2004) proposed the 
following linear regression model: 
 

 𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡(𝛼𝛼) = 𝜎𝜎 + �𝛽𝛽𝑘𝑘𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡−𝑘𝑘(𝛼𝛼) + 𝜖𝜖𝑡𝑡 .
𝐾𝐾

𝑘𝑘=1

 (20) 

 
 The test specification usually includes also other variables from the available in-
formation set (e.g. past returns, square of past returns, the values of VaR forecasts). 
Whatever the chosen specification, the null hypothesis test of conditional efficiency 
corresponds to testing joint nullity of coefficients 𝛽𝛽𝑘𝑘  and 𝜎𝜎: 
 

 𝐻𝐻0 ∶ 𝜎𝜎 = 𝛽𝛽𝑘𝑘 = 0,     ∀𝑘𝑘 = 1, … ,𝐾𝐾. (21) 
 
 The Wald statistic is used to test the nullity of these coefficients simultaneously. 
We denote the vector of the 𝐾𝐾 + 1 parameters in the model by 𝛹𝛹 = [𝜎𝜎,𝛽𝛽1, … ,𝛽𝛽𝐾𝐾]′. 
Let 𝑍𝑍 be a matrix of the explanatory variables of the model. The Wald statistic (noted 
as 𝐷𝐷𝑄𝑄𝐶𝐶𝐶𝐶) is as follows: 
 

 𝐷𝐷𝑄𝑄𝐶𝐶𝐶𝐶 =
𝛹𝛹�′𝑍𝑍′𝑍𝑍𝛹𝛹�
𝛼𝛼(1− 𝛼𝛼)

 
 𝑉𝑉𝑠𝑠𝑎𝑎  

  ̃ 𝜒𝜒
2(𝐾𝐾 + 1). (22) 
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3.10. Berkowitz 2005 – Ljung-Box 

The author of another approach points out that for a practical financial setup, i.e. 
short time series and low percentile (e.g. within one year of observations and  
𝛼𝛼 = 0.01), the duration test can be computed only in 6 out of 10 cases. 
 Berkowitz et al. (2011) proposed a test of spectral density of the 𝐻𝐻𝑖𝑖𝑡𝑡(𝛼𝛼) process 
and also on the univariate Ljung-Box test, which makes it possible to test the absence 
of autocorrelation in the 𝐻𝐻𝑖𝑖𝑡𝑡(𝛼𝛼) sequence: 

 

 𝐿𝐿𝐿𝐿(𝐾𝐾) = 𝑇𝑇(𝑇𝑇 + 2)�
𝜌𝜌�𝑘𝑘2

𝑇𝑇 − 𝑘𝑘
 𝑉𝑉𝑠𝑠𝑎𝑎  

  ̃ 𝜒𝜒
2(𝐾𝐾),

𝐾𝐾

𝑘𝑘=1

 (23) 

 
where 𝜌𝜌�𝑘𝑘2 is the empirical autocorrelation coefficient of order 𝑘𝑘 of the 𝐻𝐻𝑖𝑖𝑡𝑡(𝛼𝛼) pro-
cess. It should be recalled here, as the authors emphasise, that a test has good prop- 
erties when 𝐾𝐾 > 1; in their Monte Carlo simulations 𝐾𝐾 ∈ {1,5}. 

3.11. Candelon 2011 – GMM test 

The test introduced by Candelon et al. (Candelon et al., 2011) is the last one to be 
discussed in this study. The authors use the GMM test framework proposed by  
Bontemps (2008) to evaluate the assumptions of the geometric distributional in the 
case of the VaR forecasts backtesting. The method is based on the J-statistic utilising 
the moments defined by the orthonormal polynomials connected with the geometric 
distribution. From the practical point of view, this test is simple to implement, as it 
consists of a simple GMM moment condition test. The orthonormal polynomials of 
the geometric distribution are defined as follows: 

 

𝑀𝑀𝑖𝑖+1(ℎ,𝛽𝛽) =
(1− 𝛽𝛽)(2𝑗𝑗 + 1) + 𝛽𝛽(𝑗𝑗 − ℎ + 1)

(𝑗𝑗 + 1)�1− 𝛽𝛽
𝑀𝑀𝑖𝑖(ℎ,𝛽𝛽)−

𝑗𝑗
𝑗𝑗 + 1

𝑀𝑀𝑖𝑖−1(ℎ,𝛽𝛽), (24) 

 
where 𝑀𝑀−1(ℎ,𝛽𝛽)  =  0 and 𝑀𝑀0(ℎ,𝛽𝛽) = 1, and h is the vector representing times 
between consecutive VaR violations (i.e., ℎ𝑖𝑖 = 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖 − 1 defined as before). The 𝑝𝑝 
is the hyperparameter of this test and refers to the number of orthogonal conditions 
(i.e. 𝑀𝑀(ℎ𝑖𝑖 ,𝛽𝛽) is the (𝑝𝑝, 1) vector representing all of the 𝑀𝑀𝑖𝑖(ℎ𝑖𝑖 ,𝛽𝛽) orthogonal condi-
tions). 
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 The Unconditional Coverage test statistic is as follows: 
 

 𝐽𝐽𝑈𝑈𝐶𝐶(𝑝𝑝) = �
1
√𝑁𝑁

�𝑀𝑀(ℎ𝑖𝑖 ,𝛽𝛽)
𝐼𝐼

𝑖𝑖=1

�

2
 𝑉𝑉𝑠𝑠𝑎𝑎  

  ̃ 𝜒𝜒
2(1). (25) 

 
 The Conditional Coverage test statistic is as follows: 
 

 𝐽𝐽𝐶𝐶𝐶𝐶(𝑝𝑝) = �
1
√𝑁𝑁

�𝑀𝑀(ℎ𝑖𝑖 ,𝛽𝛽)
𝐼𝐼

𝑖𝑖=1

�

𝑇𝑇

�
1
√𝑁𝑁

�𝑀𝑀(ℎ𝑖𝑖 ,𝛽𝛽)
𝐼𝐼

𝑖𝑖=1

�

 
 𝑉𝑉𝑠𝑠𝑎𝑎  

  ̃ 𝜒𝜒
2(𝑝𝑝). (26) 

3.12. Other notable approaches 

Several authors argued that the final conclusions on the superiority of a particular 
VaR model over the others largely depend on the particular quantile that is being 
forecasted. Considering the VaR forecasts, some authors believe that VaR should be 
tested on several quantiles jointly. 
 The literature of VaR backtests is extensive and a number of the proposed tests 
are significant. The other notable approaches that were not described in this paper 
include: Berkowitz (2001); Clements and Taylor (2003); Dumitrescu et al. (2012); 
Escanciano and Olmo (2011); Pajhede (2015); Pelletier and Wei (2016), and Ziggel et 
al. (2014). 

4. Test size evaluation 

This section provides the results of the size assessment of backtests described in 
Section 3, using the simulation and methodological framework proposed in Subsec-
tion 2.4. 
 The simulation analyses were based on a simulation of 10,000 violation series, 
each of the length equal to either 250, 500 or 1000, i.e. corresponding to one year, 
two years and four years, respectively, of VaR violation observations. Each simula-
tion for a particular sample size is denoted as an instance of the problem and follows 
the Bernoulli distribution (as we simulated the series of violations that follow the 
true 𝐻𝐻0). For each of the tests described in Section 3, based on simulated instances of 
the problem, we have calculated test statistics and checked whether the 𝐻𝐻0 is reject-
ed, assuming that the Bernoulli distribution should be rejected with the 𝑝𝑝-value 
threshold probability. Having obtained the empirical rejection of 𝐻𝐻0 frequency and  
a theoretical rejection probability (the threshold of the 𝑝𝑝-value), we arrived at informa- 
tion that can be utilised in the proposed size evaluation framework described in 
Subsection 2.4. 
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 For each of the backtests, we present plots of empirical frequencies of 𝐻𝐻0 rejec-
tions vs. theoretical rejection probabilities. The plots present the entire distribution 
of the 𝑝𝑝-value of the test, i.e. from 0 to 1. Usually the 𝑝𝑝-value thresholds are set to be 
small, e.g. 0.01 or 0.05. Those plots are easy to obtain by means of the library pro- 
vided along with this article (see https://github.com/dkaszynski/VVaR). 
 The presented plots indicate the discrete feature of backtests for small samples. 
One of the findings of this study is that even though backtests may be of unbiased 
sizes, due to the fact that the tests’ statistics can take discrete values, the comparison 
of the size of VaR backtesting procedures should be based on the distribution of 
empirical p-values. 

4.1. Kupiec 1995 – Proportion of failures 

The Kupiec POF test exhibits high discretisation – since the test statistic takes only  
a few values, the empirical rejection frequencies resemble a step-chart. Due to the 
fact that the variance of the number of VaR violations depends on the number of 
observations, i.e. 𝑖𝑖𝛼𝛼(1− 𝛼𝛼), then as the number of observations grows, the discreti-
sation slowly decreases. Discretisation of the empirical rejection frequencies is  
a common issue relating to VaR backtests. 
 
Figure 1. Size analysis for the Kupiec POF test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left plot) and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (right 

plot). Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎, grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.  
The red line represents a correct-size test 

 

Source: authors’ calculation. 

 
 According to the method presented in Section 2, we have also calculated the test’s 
size statistics – see table below. 
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Table 1. Size evaluation statistics – the Kupiec POF test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Kupiec-POF  .................................  0.01 250 0.64 0.36 0.08 0.08 0.08 
Kupiec-POF  .................................  0.01 500 0.52 0.48 0.05 0.06 0.05 
Kupiec-POF  .................................  0.01 1000 0.53 0.47 0.04 0.04 0.04 
Kupiec-POF  .................................  0.05 250 0.55 0.45 0.03 0.03 0.03 
Kupiec-POF  .................................  0.05 500 0.51 0.49 0.02 0.03 0.02 
Kupiec-POF  .................................  0.05 1000 0.54 0.46 0.02 0.02 0.02 

Source: authors’ calculation. 

  
 The Kupiec POF test, as presented in the table above, exhibits small size-related 
issues (i.e., 𝐴𝐴 ≤ 0.05, which compared to other tests is relatively small), and along 
with the larger n and α, the average miss-size, measured with 𝐴𝐴, becomes smaller 
(see example of 𝛼𝛼 = 0.05 and 𝑖𝑖 = 1000). To sum up, the Kupiec’s POF test does 
not exhibit any significant size issues. In particular, it does not show any directional 
bias, i.e. over- or undersize features. 
 It is worth emphasising that the assumption relating to the number of simulations 
(i.e. 10,000) has been made according to the authors’ expert judgment and an addi-
tional analysis of the confidence intervals. We have also recalculated the backtest for 
the Kupiec POF test, based on 100,000 simulations (for details, see figure below). 
The results demonstrate a similar shape to the baseline simulations, indicating that 
the discretisation problem is related to the backtest specification. 

 
Figure 2. Additional size analysis for the Kupiec POF test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left plot) and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 

(right plot) of 100,000 simulations. Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎,  
grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The red line represents a correct-size test 

 
Source: authors’ calculation. 
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4.2. Binomial test 

The Binomial test, as presented in the figure below, exhibits similar or even higher 
discretisation issues, especially for small α and n, than the Kupiec POF test. As in the 
case of the test statistic taking only a few values, the empirical rejection frequencies 
resemble a step-chart. Also, due to the variance of the number of VaR, violation de-
pends on the number of observations – as the number of observations and 𝛼𝛼 grow, 
the discretisation gradually decreases. 
 
Figure 3. Size analysis for the Binomial POF test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left plot) and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎  

(right plot). Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎, grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.  
The red line represents a correct-size test 

 
Source: authors’ calculation. 
 
Table 2. Size evaluation statistics – the Binomial POF test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Binomial-POF  .............................  0.01 250 0.55 0.45 0.09 0.08 0.09 
Binomial-POF  .............................  0.01 500 0.45 0.55 0.06 0.06 0.06 
Binomial-POF  .............................  0.01 1000 0.46 0.54 0.05 0.04 0.04 
Binomial-POF  .............................  0.05 250 0.51 0.49 0.04 0.04 0.04 
Binomial-POF  .............................  0.05 500 0.47 0.53 0.03 0.03 0.03 
Binomial-POF  .............................  0.05 1000 0.50 0.50 0.02 0.02 0.02 

Source: authors’ calculation. 
 
 The Binomial POF test, as presented in the table above, demonstrates small size-
related issues (but still bigger than the Kupiec POF test), and along with the growth 
of 𝑖𝑖 and 𝛼𝛼, the average miss-size, measured with A, becomes smaller (see example of 
𝛼𝛼 = 0.05 and 𝑖𝑖 = 1000). The above indicates that the Binomial POF test does not 
exhibit any significant size issues. More specifically, there is no trace of a significant 
directional bias, i.e. over- or undersize features. 
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4.3. Christoffersen 1998 tests 

The Christoffersen Independence test – one of the most popular of all the backtests 
presented in this study – verifies whether the VaR violations tend to cluster. The  
𝑝𝑝-value of the test is highly discrete, as the number of possible outcomes is finite and 
small. In fact, this test measures the number of cases where one VaR violation is 
strictly followed by another violation, which is a very rare situation in the case of 
small samples. 

 
Figure 4. Size analysis for the Christoffersen Independence Coverage test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎  

(left plot) and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (right plot). Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎,  
grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The red line represents a correct-size test 

 
Source: authors’ calculation. 

 
Table 3. Size evaluation statistics – Christoffersen Independence Coverage test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Christoffersen-Ind.  ...................  0.01 250 0.07 0.93 0.04 0.31 0.29 
Christoffersen-Ind.  ...................  0.01 500 0.14 0.86 0.03 0.26 0.23 
Christoffersen-Ind.  ...................  0.01 1000 0.28 0.72 0.09 0.19 0.16 
Christoffersen-Ind.  ...................  0.05 250 0.77 0.23 0.12 0.03 0.10 
Christoffersen-Ind.  ...................  0.05 500 0.81 0.19 0.06 0.01 0.05 
Christoffersen-Ind.  ...................  0.05 1000 0.91 0.09 0.02 0.01 0.02 

Source: authors’ calculation. 

 
 The size of the test improves significantly with the increase of 𝛼𝛼. In this case, the 
backtest demonstrates a significantly improved distribution of the 𝑝𝑝-value. 
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 As regards the combined test, i.e. the conditional coverage, devised by  
Christoffersen (1998), the results are presented below. 

 
Figure 5. Size analysis for the Christoffersen Conditional Coverage test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left plot) 

and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (right plot). Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎,  
grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The red line represents a correct-size test 

 

Source: authors’ calculation. 

 
Table 4. Size evaluation statistics – the Christoffersen Conditional Coverage test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Christoffersen-CCoverage  .....  0.01 250 0.29 0.71 0.04 0.13 0.10 
Christoffersen-CCoverage  .....  0.01 500 0.50 0.50 0.04 0.09 0.07 
Christoffersen-CCoverage  .....  0.01 1000 0.67 0.33 0.05 0.05 0.05 
Christoffersen-CCoverage  .....  0.05 250 1.00 0.00 0.14 0.00 0.14 
Christoffersen-CCoverage  .....  0.05 500 0.99 0.01 0.12 0.00 0.12 
Christoffersen-CCoverage  .....  0.05 1000 1.00 0.00 0.11 0.00 0.11 

Source: authors’ calculation. 

4.4. Kupiec 1995 – Time until first failure 

The Kupiec TUFF test, which, due to a significantly higher number of possible out-
comes (i.e. the distribution of the possible outcome is much wider than in the POF 
test), exhibits less severe discretisation issues than the Kupiec POF test. Moreover, 
this test does not show any significant deviation, e.g. in terms of the maximal 
measure, from the uniform distribution, i.e. the black/grey lines lie close to the red 
line. This finding – a better size of the duration test – will be further discussed along 
with other examples of VaR backtests of this kind. 
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Figure 6. Size analysis for the Kupiec TUFF test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left plot) and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (right 
plot). Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎, grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.  
The red line represents a correct-size test 

 

Source: authors’ calculation. 

 
 According to the method presented in Section 2, the test’s size statistics have also 
been calculated (for details see the table below). 
 
Table 5. Size evaluation statistics – the Kupiec TUFF test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Kupiec-TUFF  ...............................  0.01 250 0.78 0.22 0.02 0.02 0.02 
Kupiec-TUFF  ...............................  0.01 500 0.98 0.02 0.02 0.00 0.02 
Kupiec-TUFF  ...............................  0.01 1000 0.99 0.01 0.02 0.00 0.02 
Kupiec-TUFF  ...............................  0.05 250 0.92 0.08 0.02 0.01 0.02 
Kupiec-TUFF  ...............................  0.05 500 0.93 0.07 0.03 0.01 0.03 
Kupiec-TUFF  ...............................  0.05 1000 0.94 0.06 0.03 0.01 0.03 

Source: authors’ calculation. 

 
 The Kupiec TUFF test (which is an example of a duration test), as presented in the 
table above, demonstrates small size-related issues. The size of the test shows small 
improvement along with the increase in 𝛼𝛼 and 𝑖𝑖. 

4.5. Haas 2001 – Time Between Failures 

The Haas’s TBF test is another example of a duration approach towards VaR evalu- 
ation. As in the Kupiec TUFF, the distribution of the 𝑝𝑝-value is less discrete than it 
was in the case of the POF tests. Although, intuitively, the observation of more VaR 
violations should improve the test specification, the results suggest oversize-related 
issues. This is not surprising, though, as the test statistic assumes the independence 
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of aggregated random variables, while – especially for small samples (as in our tests) 
– they are in fact dependent; e.g. if we observe that first-time failure is very extensive, 
then clearly in the subsequent instances it must be small, as we have a short test 
horizon. 
 
Figure 7. Size analysis for Haas’s TBF test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left plot) and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (right plot).  

Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎, grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.  
The red line represents a correct-size test 

 

Source: authors’ calculation. 
 
Table 6. Size evaluation statistics – Haas’s TBF test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Haas-TBF ......................................  0.01 250 0.86 0.14 0.05 0.01 0.05 
Haas-TBF ......................................  0.01 500 1.00 0.00 0.05 0.00 0.05 
Haas-TBF ......................................  0.01 1000 1.00 0.00 0.08 0.00 0.08 
Haas-TBF ......................................  0.05 250 1.00 0.00 0.09 0.00 0.09 
Haas-TBF ......................................  0.05 500 1.00 0.00 0.14 0.00 0.14 
Haas-TBF ......................................  0.05 1000 1.00 0.00 0.20 0.00 0.20 

Source: authors’ calculation. 

 
 As presented in the table above, the Haas TBF test exhibits relatively small size-
related issues. However, with the larger 𝛼𝛼 and 𝑖𝑖 the test exhibits significant oversize 
issues. 

4.6. Christoffersen and Pelletier 2004 – Continuous Weibull 

The Christoffersen Continuous Weibull test is yet another instance of a duration 
approach. Unlike the previous examples, however, this test assumes the distribution 
of a duration between VaR violations, thus it falls within the category of analytical-
based approaches. In terms of small VaR violation cases (e.g. 𝛼𝛼 = 0.01), the 𝑝𝑝-value 
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distribution of the tests indicated significant deviations from the uniform distribu-
tion. The distinctive jump on the right-hand side of the plots (in both 𝛼𝛼 = 0.01  
and 𝛼𝛼 = 0.05) is caused by problems with convergence of numerical optimisation 
methods – in this example, the Weibull distribution parameters were calibrated 
using only a few examples. 
 
Figure 8. Size analysis for the Christoffersen Continuous Weibull test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left plot)  

and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (right plot). Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎, grey dashed 
𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The red line represents a correct size-test 

 

Source: authors’ calculation. 
 
Table 7. Size evaluation statistics – the Christoffersen Continuous Weibull test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Christoffersen-CWeibull  .........  0.01 250 0.00 1.00 0.00 0.28 0.28 
Christoffersen-CWeibull  .........  0.01 500 0.00 1.00 0.00 0.18 0.18 
Christoffersen-CWeibull  .........  0.01 1000 0.00 1.00 0.00 0.11 0.11 
Christoffersen-CWeibull  .........  0.05 250 0.26 0.74 0.00 0.09 0.07 
Christoffersen-CWeibull  .........  0.05 500 0.60 0.40 0.03 0.06 0.04 
Christoffersen-CWeibull  .........  0.05 1000 0.78 0.22 0.06 0.04 0.05 

Source: authors’ calculation. 
 
 The Christoffersen Continuous Weibull test, as duration tests in general, size of 
the test improves as the number of VaR violations increases. 
 Even though the tests appear to depart from the perfect size (i.e. red line on the 
plot) throughout the entire range of rejection thresholds, as mentioned earlier, the 
thresholds of statistical tests are usually small. In the case of the Christoffersen 
Continuous Weibull, the figure on the smaller range, i.e. 0 − 0.1, is presented below. 
As regards the figure, the test on the threshold usually applied (for the 𝛼𝛼 = 0.05), 
appears to be more adequate. 
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Figure 9. Size analysis for the Christoffersen Continuous Weibull test (smaller range)  
for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left plot) and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (right plot). Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 
𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎, grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The red line represents a correct-size test 

 

Source: authors’ calculation. 

4.7. Haas 2005 – Discrete Weibull 

The discussion of duration approaches to the VaR evaluation concludes with the 
Haas Discrete Weibull test. As far as the low VaR violation cases (small 𝛼𝛼 and 𝑖𝑖) are 
concerned, the 𝑝𝑝-value of this test is highly discrete. For the larger VaR violation 
cases, this test demonstrates a small deviation from the correct size. 
 
Figure 10. Size analysis for the Haas Discrete Weibull test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left plot)  

and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (right plot). Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎,  
grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The red line represents a correct-size test  

 

Source: authors’ calculation.  
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Table 8. Size evaluation statistics – the Haas Discrete Weibull test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Haas-DWeibull  ..........................  0.01 250 0.17 0.83 0.00 0.04 0.03 
Haas-DWeibull  ..........................  0.01 500 0.02 0.98 0.00 0.04 0.04 
Haas-DWeibull  ..........................  0.01 1000 0.04 0.96 0.00 0.03 0.02 
Haas-DWeibull  ..........................  0.05 250 0.70 0.30 0.02 0.02 0.02 
Haas-DWeibull  ..........................  0.05 500 0.84 0.16 0.01 0.01 0.01 
Haas-DWeibull  ..........................  0.05 1000 0.92 0.08 0.01 0.00 0.01 

Source: authors’ calculation. 

 
 Due to the approach applied in the test, it is usually compared with its continuous 
version, i.e. the Christoffersen Continuous Weibull. Regarding those two specifica-
tions, the discrete version preserves better size properties taking into account the size 
evaluation statistics. 

4.8. Engle and Manganelli 2004 – DQ 

The Engle and Manganelli backtest verifies whether VaR violations can be explained 
by a linear regression of previous violations (in fact, this test can also take into ac-
count other exogenous variables). 
 
Figure 11. Size analysis for the Engle DQ test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left plot) and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (right plot). 

Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎, grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The red line  
represents a correct-size test 

 

Source: authors’ calculation. 
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Table 9. Size evaluation statistics – the Engle DQ test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Engle-DQ  .....................................  0.01 250 0.12 0.88 0.06 0.40 0.36 
Engle-DQ  .....................................  0.01 500 0.21 0.79 0.08 0.35 0.29 
Engle-DQ  .....................................  0.01 1000 0.38 0.62 0.04 0.25 0.17 
Engle-DQ  .....................................  0.05 250 0.26 0.74 0.03 0.09 0.08 
Engle-DQ  .....................................  0.05 500 0.25 0.75 0.01 0.05 0.04 
Engle-DQ  .....................................  0.05 1000 0.27 0.73 0.00 0.02 0.02 

Source: authors’ calculation. 

 
 The 𝑝𝑝-value of the test relating to low VaR violation cases is highly deviated from 
the uniform distribution. As far as the high VaR violation cases are concerned, the 
size of the tests significantly improves. 

4.9. Berkowitz 2005 – Ljung-Box 

Berkowitz’s Ljung-Box backtest verifies whether VaR violations are autocorrelated 
with the degree of 𝑘𝑘 (in this experiment, a 𝑘𝑘 = 5 set is implemented). 
 
Figure 12. Size analysis for Berkowitz’s Ljung-Box test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left plot) and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 

(right plot). Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎, grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.  
The red line represents a correct-size test 

 

Source: authors’ calculation. 

 
Table 10. Size evaluation statistics – Berkowitz’s Ljung-Box test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Berkowitz-BoxLjung  ................  0.01 250 0.06 0.94 0.02 0.44 0.42 
Berkowitz-BoxLjung  ................  0.01 500 0.11 0.89 0.03 0.39 0.36 
Berkowitz-BoxLjung  ................  0.01 1000 0.14 0.86 0.03 0.31 0.27 
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Table 11. Size evaluation statistics – Berkowitz’s Ljung-Box test (cont.) 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Berkowitz-BoxLjung  ................  0.05 250 0.03 0.97 0.01 0.16 0.15 
Berkowitz-BoxLjung  ................  0.05 500 0.02 0.98 0.00 0.13 0.13 
Berkowitz-BoxLjung  ................  0.05 1000 0.01 0.99 0.00 0.11 0.11 

Source: authors’ calculation. 

 
 The 𝑝𝑝-value of the test for the low VaR violation cases is highly deviated from the 
uniform distribution. Concerning the high VaR violation cases, the size of the tests 
improves, but, nevertheless, remains below the correct value. 

4.10. Krämer and Wied 2015 – Gini coefficient 

The Krämer and Wied backtest is a duration-type test, but contrary to the previous 
ones, it is based on the Gini coefficient. 
 
Figure 13. Size analysis of Krämer’s Gini coefficient test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left plot)  

and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (right plot). Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎,  
grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The red line represents a correct-size test 

 

Source: authors’ calculation. 

 
Table 12. Size evaluation statistics – Krämer’s Gini coefficient test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Kramer-GINI ................................  0.01 250 1.00 0.00 0.29 0.00 0.29 
Kramer-GINI ................................  0.01 500 1.00 0.00 0.30 0.00 0.30 
Kramer-GINI ................................  0.01 1000 1.00 0.00 0.30 0.00 0.30 
Kramer-GINI ................................  0.05 250 1.00 0.00 0.09 0.00 0.09 
Kramer-GINI ................................  0.05 500 1.00 0.00 0.09 0.00 0.09 
Kramer-GINI ................................  0.05 1000 1.00 0.00 0.07 0.00 0.07 

Source: authors’ calculation. 
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 As the authors emphasise in the article (Krämer and Wied 2015), simulation is the 
preferable approach to size evaluation. Based on our calculation (assuming asymp-
totic distribution of a test’s statistics), the test for low VaR violation instances proves 
strongly oversized. This problem is much smaller in the case of the high-volume 
VaR violations scenarios. 

4.11. Candelon 2011 – GMM test 

The Candelon backtest is a duration-type test based on the GMM approach, which 
assumes that the distribution of failures is geometric. The size-assessment results of 
the unconditional coverage variant of the GMM test is presented below. As Fig. 14 
and the results from Table 12 indicate, the test shows a low level of size-related prob-
lems in comparison to other approaches. 

 
Figure 14. Size analysis of the Candelon GMM Unconditional Coverage test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎  

(left plot) and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (right plot). Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎,  
grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The red line represents a correct-size test 

 

Source: authors’ calculation. 

 
Table 13. Size evaluation statistics – the Candelon GMM Unconditional Coverage test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Candelon-GMM-UC  .................  0.01 250 0.42 0.58 0.01 0.04 0.03 
Candelon-GMM-UC  .................  0.01 500 0.31 0.69 0.01 0.02 0.01 
Candelon-GMM-UC  .................  0.01 1000 0.24 0.76 0.00 0.01 0.01 
Candelon-GMM-UC  .................  0.05 250 0.20 0.79 0.00 0.01 0.01 
Candelon-GMM-UC  .................  0.05 500 0.09 0.91 0.00 0.01 0.01 
Candelon-GMM-UC  .................  0.05 1000 0.28 0.72 0.00 0.00 0.00 

Source: authors’ calculation. 
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 In terms of the Conditional Coverage variant of that test, the simulation results 
are shown in the figure / table below. 
 
Figure 15. Size analysis of the Candelon GMM Conditional Coverage test for 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (left 

plot) and 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (right plot). Key: black 𝒏𝒏 = 𝟐𝟐𝟎𝟎𝟎𝟎, black dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎,  
grey dashed 𝒏𝒏 = 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The red line represents a correct-size test 

 

Source: authors’ calculation. 
 
Table 14. Size evaluation statistics – the Candelon GMM Conditional Coverage test 

Test name 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 

Candelon-GMM-CC  .................  0.01 250 0.06 0.94 0.01 0.16 0.16 
Candelon-GMM-CC  .................  0.01 500 0.02 0.98 0.00 0.13 0.12 
Candelon-GMM-CC  .................  0.01 1000 0.05 0.95 0.00 0.09 0.09 
Candelon-GMM-CC  .................  0.05 250 0.04 0.96 0.01 0.08 0.08 
Candelon-GMM-CC  .................  0.05 500 0.05 0.95 0.01 0.05 0.05 
Candelon-GMM-CC  .................  0.05 1000 0.08 0.92 0.00 0.04 0.04 

Source: authors’ calculation. 

5. Conclusions 

The presented methodology and size plots indicate the discrete nature of backtests 
for small samples. One of the findings demonstrates that even though backtests may 
have unbiased sizes, the comparison of the size of VaR backtesting procedures 
should be based on the distribution of empirical 𝑝𝑝-values due to the fact that tests’ 
statistics can take discrete values. The authors’ intention was to strongly emphasise 
the relatively significant discretisation of POF tests, which is less severe in the case of 
duration-based tests. This effect results from the number of possible (and probable) 
values of the tests’ inputs. As regards frequency-based tests, for small samples the 
test statistic is usually limited to only a few values, and in effect a few test outcomes – 

0.0 0.2 0.4 0.6 0.8 1.0
H0 reject ion threshold

0.0

0.2

0.4

0.6

0.8

1.0

R
ej

ec
tio

n 
pr

ob
ab

ili
ty

0.0 0.2 0.4 0.6 0.8 1.0
H0 reject ion threshold

0.0

0.2

0.4

0.6

0.8

1.0

R
ej

ec
tio

n 
pr

ob
ab

ili
ty



D. KASZYŃSKI, B. KAMIŃSKI, B. PANKRATZ    Assessment of the size of VaR backtests for small samples 143 

 

 

the 𝑝𝑝-values. As far as duration-based tests are concerned, the numbers of possible 
test outcomes are much broader, which results in a less discrete 𝑝𝑝-value cumulative 
distribution. 
 Considering exclusively average-size deviation from the correct size in the case of 
small samples, duration-based tests appear to be superior, especially the Kupiec 
TUFF and the Haas DWeibull. On the other hand, the Christoffersen’s Conditional 
Coverage test demonstrates a significant deviation from the correct size – especially 
when considering a low, 𝛼𝛼 = 0.01 level. The Christoffersen’s Continuous Weibull is 
another example of a backtest which shows a significant deviation from the correct 
test size, in particular for the 𝛼𝛼 = 0.01 level. 
 In order to facilitate the comparison of all the analysed tests, a summary of the 
backtests’ size assessment is presented in Appendix A. In addition to the measures 
proposed in Section 2.4, i.e. measures for the assessment of the size of backtests,  
a comparative measure of discretisation levels of individual tests – a 𝐷𝐷 measure – is 
also included. The applied 𝐷𝐷 measure is the number of the unique 𝑝𝑝-values in the 
range of 0.01−0.1, i.e. in the range of 𝐻𝐻0 rejection threshold which is typically en-
countered in practice. The results indicate that the tests with the highest levels of 
discretisation (𝐷𝐷 ≥ 50), along with the smallest deviation from the correct size  
(𝐴𝐴 ≤ 0.05) for small samples, i.e. 𝑖𝑖 = 250 and 𝛼𝛼 = 0.01, are the Candelon GMM 
(Unconditional Coverage variant), the Haas Discrete Weibull, and the Haas TBF 
tests. In addition, the results confirm the intuitive observation that the level of dis-
cretisation (i.e. the number of unique 𝑝𝑝-values) decreases along with the increase  
of n, i.e. the length of the time window at which VaR models are validated. The 
authors would also like to point out that each of the backtests is designed to measure  
a particular type of a deviation/problem. Bearing that in mind, it is recommended 
that the results presented in this paper be used to compare backtests with their  
benchmarks. For instance, in terms of duration-based test, for small samples (i.e., 
𝑖𝑖 = 250 and 𝛼𝛼 = 0.01) the best backtest is Candelon-GM, even though the Kupiec 
TUFF tests have a lower 𝐴𝐴, they also have a small number of unique 𝑝𝑝-values de- 
noted by 𝐷𝐷. The summary table in Appendix A is sorted by the average deviation 𝐴𝐴. 
 We are aware that when selecting a test for VaR backtesting it is essential for it to 
be of a large power. However, the usage of an ill-sized test leads to unreliable results. 
As a consequence, a proper size of the test should be a screening criterion applied 
prior to using the test in practice. This issue is illustrated by, e.g., the fact that the 
Christoffersen Independence test remains a popular and widely-used test in VaR 
diagnostics, even though it significantly deviates from the correct size (as the results 
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of our analysis show). In practice, the analysis of the power of the considered tests 
should be performed along with the consideration of the proper size of the test.  
However, regarding VaR backtesting, it is challenging to provide a similar analysis to 
the one we presented for test sizes, as there are no equally-powerful VaR backtests 
(different tests are sensitive to different violations of the assumptions). Therefore, the 
choice of an appropriate backtest should depend on the kind of deviation the analyst 
strives most to detect (alternatively, using several tests in combination may be consid-
ered, provided that all of them are of an acceptable quality in terms of their size). 
 The practical suggestion resulting from this study is that instead of using theoretic- 
al formulas for 𝑝𝑝-values of the discussed tests (that are only asymptotic), which is 
common practice, it is advisable to produce a simulated distribution of the statistics 
for a given test (knowing 𝛼𝛼 and 𝑖𝑖), and compute the 𝑝𝑝-values against such a distri-
bution. This procedure makes it possible, at least to some extent, to mitigate the risk 
of applying over- or undersized tests in the case of the limited sample size 𝑖𝑖 and 
small 𝛼𝛼 level. Unfortunately, such a simulation does not remove the discretisation 
effect in tests which display such features. 
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Appendix A 

Table 15. Summary table – an assessment of size of VaR backtests (𝒑𝒑-values ranging from 0 to 1) 

Test 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 𝐷𝐷 

Kupiec-TUFF  ..................................... 0.01 250 0.78 0.22 0.02 0.02 0.02 10 
Candelon-GMM-UC  ....................... 0.01 250 0.42 0.58 0.01 0.04 0.03 187 
Haas-DWeibull  ................................ 0.01 250 0.17 0.83 0.00 0.04 0.03 69 
Haas-TBF ............................................ 0.01 250 0.86 0.14 0.05 0.01 0.05 834 
Kupiec-POF  ....................................... 0.01 250 0.64 0.36 0.08 0.08 0.08 3 

Binomial-POF  ................................... 0.01 250 0.55 0.45 0.09 0.08 0.09 1 
Christoffersen-CCoverage  ........... 0.01 250 0.29 0.71 0.04 0.13 0.10 11 
Candelon-GMM-CC  ....................... 0.01 250 0.06 0.94 0.01 0.16 0.16 135 
Christoffersen-CWeibull  ............... 0.01 250 0.00 1.00 0.00 0.28 0.28 357 
Christoffersen-Ind.  ......................... 0.01 250 0.07 0.93 0.04 0.31 0.29 9 
Kramer-GINI ...................................... 0.01 250 1.00 0.00 0.29 0.00 0.29 2,938 
Engle-DQ  ........................................... 0.01 250 0.12 0.88 0.06 0.40 0.36 27 
Berkowitz-BoxLjung  ...................... 0.01 250 0.06 0.94 0.02 0.44 0.42 77 

Candelon-GMM-UC  ....................... 0.01 500 0.31 0.69 0.01 0.02 0.01 428 
Kupiec-TUFF  ..................................... 0.01 500 0.98 0.02 0.02 0.00 0.02 104 
Haas-DWeibull  ................................ 0.01 500 0.02 0.98 0.00 0.04 0.04 123 
Haas-TBF ............................................ 0.01 500 1.00 0.00 0.05 0.00 0.05 1,328 
Kupiec-POF  ....................................... 0.01 500 0.52 0.48 0.05 0.06 0.05 3 
Binomial-POF  ................................... 0.01 500 0.45 0.55 0.06 0.06 0.06 4 
Christoffersen-CCoverage  ........... 0.01 500 0.50 0.50 0.04 0.09 0.07 20 
Candelon-GMM-CC  ....................... 0.01 500 0.02 0.98 0.00 0.13 0.12 285 

Christoffersen-CWeibull  ............... 0.01 500 0.00 1.00 0.00 0.18 0.18 637 
Christoffersen-Ind.  ......................... 0.01 500 0.14 0.86 0.03 0.26 0.23 11 
Engle-DQ  ........................................... 0.01 500 0.21 0.79 0.08 0.35 0.29 490 
Kramer-GINI ...................................... 0.01 500 1.00 0.00 0.30 0.00 0.30 3,355 
Berkowitz-BoxLjung  ...................... 0.01 500 0.11 0.89 0.03 0.39 0.36 148 

Candelon-GMM-UC  ....................... 0.01 1000 0.24 0.76 0.00 0.01 0.01 546 

Kupiec-TUFF  ..................................... 0.01 1000 0.99 0.01 0.02 0.00 0.02 149 
Haas-DWeibull  ................................ 0.01 1000 0.04 0.96 0.00 0.03 0.02 263 
Kupiec-POF  ....................................... 0.01 1000 0.53 0.47 0.04 0.04 0.04 6 
Binomial-POF  ................................... 0.01 1000 0.46 0.54 0.05 0.04 0.04 6 
Christoffersen-CCoverage  ........... 0.01 1000 0.67 0.33 0.05 0.05 0.05 29 
Haas-TBF ............................................ 0.01 1000 1.00 0.00 0.08 0.00 0.08 1,498 
Candelon-GMM-CC  ....................... 0.01 1000 0.05 0.95 0.00 0.09 0.09 440 
Christoffersen-CWeibull  ............... 0.01 1000 0.00 1.00 0.00 0.11 0.11 769 

Christoffersen-Ind.  ......................... 0.01 1000 0.28 0.72 0.09 0.19 0.16 20 
Engle-DQ  ........................................... 0.01 1000 0.38 0.62 0.04 0.25 0.17 719 
Berkowitz-BoxLjung  ...................... 0.01 1000 0.14 0.86 0.03 0.31 0.27 335 
Kramer-GINI ...................................... 0.01 1000 1.00 0.00 0.30 0.00 0.30 2518 
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Table 16. Summary table – an assessment of size of VaR backtests (𝒑𝒑-values ranging from 0 to 1) 
(cont.) 

Test 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 𝐷𝐷 

Candelon-GMM-UC  ....................... 0.05 250 0.20 0.79 0.00 0.01 0.01 362 
Haas-DWeibull  ................................  0.05 250 0.70 0.30 0.02 0.02 0.02 638 
Kupiec-TUFF  ..................................... 0.05 250 0.92 0.08 0.02 0.01 0.02 49 
Kupiec-POF  ....................................... 0.05 250 0.55 0.45 0.03 0.03 0.03 7 
Binomial-POF  ................................... 0.05 250 0.51 0.49 0.04 0.04 0.04 6 

Candelon-GMM-CC  ....................... 0.05 250 0.04 0.96 0.01 0.08 0.08 474 
Christoffersen-CWeibull  ............... 0.05 250 0.26 0.74 0.00 0.09 0.07 932 
Engle-DQ  ........................................... 0.05 250 0.26 0.74 0.03 0.09 0.08 752 
Haas-TBF ............................................ 0.05 250 1.00 0.00 0.09 0.00 0.09 1,643 
Kramer-GINI ...................................... 0.05 250 1.00 0.00 0.09 0.00 0.09 1,828 
Christoffersen-Ind.  ......................... 0.05 250 0.77 0.23 0.12 0.03 0.10 49 
Christoffersen-CCoverage  ........... 0.05 250 1.00 0.00 0.14 0.00 0.14 69 

Berkowitz-BoxLjung  ...................... 0.05 250 0.03 0.97 0.01 0.16 0.15 397 

Candelon-GMM-UC  ....................... 0.05 500 0.09 0.91 0.00 0.01 0.01 502 
Haas-DWeibull  ................................ 0.05 500 0.84 0.16 0.01 0.01 0.01 913 
Kupiec-POF  ....................................... 0.05 500 0.51 0.49 0.02 0.03 0.02 9 
Kupiec-TUFF  ..................................... 0.05 500 0.93 0.07 0.03 0.01 0.03 46 
Binomial-POF  ................................... 0.05 500 0.47 0.53 0.03 0.03 0.03 8 

Engle-DQ  ........................................... 0.05 500 0.25 0.75 0.01 0.05 0.04 745 
Christoffersen-CWeibull  ............... 0.05 500 0.60 0.40 0.03 0.06 0.04 1,161 
Christoffersen-Ind.  ......................... 0.05 500 0.81 0.19 0.06 0.01 0.05 89 
Candelon-GMM-CC  ....................... 0.05 500 0.05 0.95 0.01 0.05 0.05 600 
Kramer-GINI ...................................... 0.05 500 1.00 0.00 0.09 0.00 0.09 1,702 
Christoffersen-CCoverage  ........... 0.05 500 0.99 0.01 0.12 0.00 0.12 110 
Berkowitz-BoxLjung  ...................... 0.05 500 0.02 0.98 0.00 0.13 0.13 456 
Haas-TBF ............................................ 0.05 500 1.00 0.00 0.14 0.00 0.14 1,869 

Candelon-GMM-UC  ....................... 0.05 1000 0.28 0.72 0.00 0.00 0.00 588 
Haas-DWeibull  ................................ 0.05 1000 0.92 0.08 0.01 0.00 0.01 955 
Engle-DQ  ........................................... 0.05 1000 0.27 0.73 0.00 0.02 0.02 788 
Kupiec-POF  ....................................... 0.05 1000 0.54 0.46 0.02 0.02 0.02 13 
Binomial-POF  ................................... 0.05 1000 0.50 0.50 0.02 0.02 0.02 12 
Christoffersen-Ind.  ......................... 0.05 1000 0.91 0.09 0.02 0.01 0.02 162 

Kupiec-TUFF  ..................................... 0.05 1000 0.94 0.06 0.03 0.01 0.03 44 
Christoffersen-CWeibull  ............... 0.05 1000 0.78 0.22 0.06 0.04 0.05 1,375 
Candelon-GMM-CC  ....................... 0.05 1000 0.08 0.92 0.00 0.04 0.04 669 
Kramer-GINI ...................................... 0.05 1000 1.00 0.00 0.07 0.00 0.07 1,564 
Christoffersen-CCoverage  ........... 0.05 1000 1.00 0.00 0.11 0.00 0.11 208 
Berkowitz-BoxLjung  ...................... 0.05 1000 0.01 0.99 0.00 0.11 0.11 478 
Haas-TBF ............................................ 0.05 1000 1.00 0.00 0.20 0.00 0.20 2,389 

Source: authors’ calculation. 
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Appendix B 

Table 17. Summary table – an assessment of size of VaR backtests (𝒑𝒑-values ranging 
 from 0 to 0.1) 

Test 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 𝐷𝐷 

Kupiec-TUFF  ..................................... 0.01 250 0.95 0.05 0.01 0.00 0.01 10 
Christoffersen-CCoverage  ........... 0.01 250 0.46 0.54 0.01 0.01 0.01 11 
Haas-DWeibull  ................................ 0.01 250 0.00 1.00 0.00 0.01 0.01 82 
Binomial-POF  ................................... 0.01 250 0.27 0.73 0.01 0.03 0.02 1 
Berkowitz-BoxLjung  ...................... 0.01 250 0.62 0.38 0.02 0.02 0.02 90 
Christoffersen-CWeibull  ............... 0.01 250 0.00 1.00 0.00 0.02 0.02 412 

Candelon-GMM-UC  ....................... 0.01 250 0.00 1.00 0.00 0.04 0.04 169 
Kupiec-POF  ....................................... 0.01 250 0.75 0.25 0.05 0.01 0.04 3 
Christoffersen-ICoverage  ............ 0.01 250 0.00 1.00 0.00 0.04 0.04 8 
Candelon-GMM-CC  ....................... 0.01 250 0.00 1.00 0.00 0.04 0.04 137 
Haas-TBF ............................................ 0.01 250 1.00 0.00 0.05 0.00 0.05 791 
Engle-DQ  ........................................... 0.01 250 1.00 0.00 0.06 0.00 0.06 20 
Kramer-GINI ...................................... 0.01 250 0.97 0.03 0.30 0.00 0.29 3,059 

Kupiec-POF  ....................................... 0.01 500 0.52 0.48 0.01 0.01 0.01 3 

Binomial-POF  ................................... 0.01 500 0.56 0.44 0.01 0.01 0.01 4 
Christoffersen-CWeibull  ............... 0.01 500 0.00 1.00 0.00 0.01 0.01 624 
Kupiec-TUFF  ..................................... 0.01 500 0.96 0.04 0.02 0.00 0.02 108 
Haas-DWeibull  ................................ 0.01 500 0.00 1.00 0.00 0.02 0.02 151 
Candelon-GMM-UC  ....................... 0.01 500 0.12 0.88 0.00 0.02 0.02 394 
Candelon-GMM-CC  ....................... 0.01 500 0.07 0.93 0.00 0.03 0.03 321 
Christoffersen-ICoverage  ............ 0.01 500 0.00 1.00 0.00 0.03 0.03 13 
Berkowitz-BoxLjung  ...................... 0.01 500 0.96 0.04 0.04 0.00 0.03 160 

Christoffersen-CCoverage  ........... 0.01 500 1.00 0.00 0.04 0.00 0.04 21 
Haas-TBF ............................................ 0.01 500 1.00 0.00 0.04 0.00 0.04 1,253 
Engle-DQ  ........................................... 0.01 500 1.00 0.00 0.11 0.00 0.11 485 
Kramer-GINI ...................................... 0.01 500 1.00 0.00 0.38 0.00 0.38 3,394 

Binomial-POF  ................................... 0.01 1000 0.47 0.53 0.01 0.01 0.01 6 
Christoffersen-CWeibull  ............... 0.01 1000 0.00 1.00 0.00 0.01 0.01 736 

Candelon-GMM-UC  ....................... 0.01 1000 0.17 0.83 0.00 0.01 0.01 532 
Kupiec-POF  ....................................... 0.01 1000 0.64 0.36 0.01 0.01 0.01 6 
Kupiec-TUFF  ..................................... 0.01 1000 0.98 0.02 0.02 0.00 0.01 146 
Candelon-GMM-CC  ....................... 0.01 1000 0.31 0.69 0.01 0.02 0.01 447 
Haas-DWeibull  ................................ 0.01 1000 0.00 1.00 0.00 0.03 0.03 253 
Christoffersen-ICoverage  ............ 0.01 1000 0.00 1.00 0.00 0.03 0.03 17 
Berkowitz-BoxLjung  ...................... 0.01 1000 1.00 0.00 0.04 0.00 0.04 337 
Christoffersen-CCoverage  ........... 0.01 1000 1.00 0.00 0.05 0.00 0.05 24 

Haas-TBF ............................................ 0.01 1000 1.00 0.00 0.06 0.00 0.06 1,503 
Engle-DQ  ........................................... 0.01 1000 1.00 0.00 0.06 0.00 0.06 710 
Kramer-GINI ...................................... 0.01 1000 1.00 0.00 0.41 0.00 0.41 2,576 
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Table 18. Summary table – an assessment of size of VaR backtests (𝒑𝒑-values ranging  
 from 0 to 0.1) (cont.) 

Test 𝛼𝛼 𝑖𝑖 𝑇𝑇𝑂𝑂 𝑇𝑇𝑈𝑈 𝐴𝐴𝑂𝑂 𝐴𝐴𝑈𝑈 𝐴𝐴 𝐷𝐷 

Candelon-GMM-UC  ....................... 0.05 250 0.36 0.64 0.00 0.00 0.00 365 
Christoffersen-CWeibull  ............... 0.05 250 0.99 0.01 0.00 0.00 0.00 920 
Binomial-POF  ................................... 0.05 250 0.45 0.55 0.01 0.01 0.01 6 
Kupiec-POF  ....................................... 0.05 250 0.60 0.40 0.01 0.01 0.01 7 
Engle-DQ  ........................................... 0.05 250 1.00 0.00 0.01 0.00 0.01 768 

Candelon-GMM-CC  ....................... 0.05 250 0.34 0.66 0.01 0.02 0.01 469 
Berkowitz-BoxLjung  ...................... 0.05 250 0.32 0.68 0.01 0.02 0.01 399 
Kupiec-TUFF  ..................................... 0.05 250 0.80 0.20 0.02 0.00 0.02 46 
Haas-DWeibull  ................................ 0.05 250 0.00 1.00 0.00 0.03 0.03 685 
Christoffersen-ICoverage  ............ 0.05 250 0.00 1.00 0.00 0.03 0.03 50 
Haas-TBF ............................................ 0.05 250 1.00 0.00 0.05 0.00 0.05 1,636 
Kramer-GINI ...................................... 0.05 250 0.99 0.01 0.07 0.00 0.06 1,744 

Christoffersen-CCoverage  ........... 0.05 250 1.00 0.00 0.07 0.00 0.07 69 

Candelon-GMM-UC  ....................... 0.05 500 0.20 0.80 0.00 0.00 0.00 478 
Binomial-POF  ................................... 0.05 500 0.56 0.44 0.01 0.01 0.01 8 
Engle-DQ  ........................................... 0.05 500 0.88 0.12 0.01 0.00 0.01 799 
Kupiec-POF  ....................................... 0.05 500 0.76 0.24 0.01 0.00 0.01 9 
Candelon-GMM-CC  ....................... 0.05 500 0.50 0.50 0.01 0.01 0.01 554 

Haas-DWeibull  ................................ 0.05 500 0.00 1.00 0.00 0.01 0.01 889 
Christoffersen-ICoverage  ............ 0.05 500 0.21 0.79 0.01 0.01 0.01 86 
Berkowitz-BoxLjung  ...................... 0.05 500 0.14 0.86 0.00 0.02 0.02 444 
Kupiec-TUFF  ..................................... 0.05 500 0.78 0.22 0.02 0.00 0.02 43 
Christoffersen-CWeibull  ............... 0.05 500 1.00 0.00 0.02 0.00 0.02 1,179 
Kramer-GINI ...................................... 0.05 500 1.00 0.00 0.07 0.00 0.07 1,603 
Haas-TBF ............................................ 0.05 500 1.00 0.00 0.08 0.00 0.08 1,881 
Christoffersen-CCoverage  ........... 0.05 500 1.00 0.00 0.08 0.00 0.08 106 

Haas-DWeibull  ................................ 0.05 1000 0.56 0.44 0.00 0.00 0.00 948 
Engle-DQ  ........................................... 0.05 1000 0.83 0.17 0.00 0.00 0.00 806 
Candelon-GMM-UC  ....................... 0.05 1000 0.23 0.77 0.00 0.00 0.00 590 
Kupiec-POF  ....................................... 0.05 1000 0.73 0.27 0.00 0.00 0.00 13 
Binomial-POF  ................................... 0.05 1000 0.65 0.35 0.00 0.00 0.00 12 
Candelon-GMM-CC  ....................... 0.05 1000 0.58 0.42 0.01 0.01 0.01 641 

Berkowitz-BoxLjung  ...................... 0.05 1000 0.06 0.94 0.00 0.02 0.02 452 
Kupiec-TUFF  ..................................... 0.05 1000 0.82 0.18 0.02 0.00 0.02 48 
Christoffersen-ICoverage  ............ 0.05 1000 0.86 0.14 0.03 0.00 0.03 145 
Christoffersen-CWeibull  ............... 0.05 1000 1.00 0.00 0.04 0.00 0.04 1,370 
Kramer-GINI ...................................... 0.05 1000 1.00 0.00 0.06 0.00 0.06 1,490 
Christoffersen-CCoverage  ........... 0.05 1000 1.00 0.00 0.10 0.00 0.10 186 
Haas-TBF ............................................ 0.05 1000 1.00 0.00 0.12 0.00 0.12 2,404 

Source: authors’ calculation. 
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Table 19. Definitions of the utilised measures 

Measure Description 

𝛼𝛼  ....................................  VaR significance level 
𝑖𝑖  ....................................  length of the backtesting time-window 
𝑇𝑇𝑂𝑂  ..................................  oversize frequency 
𝑇𝑇𝑈𝑈  ..................................  undersize frequency 
𝐴𝐴0  ..................................  average oversize value 
𝐴𝐴𝑈𝑈  .................................  average undersize value 
𝐴𝐴  ....................................  Ill-size measure; average deviation from the correct size 
𝐷𝐷  ....................................  discretization measure; number of unique p-values in 0.01 − 0.1 

Source: authors’ work. 

 

 

 




