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Predicting in multivariate incomplete time series.  
Application of the expectation-maximisation algorithm  

supplemented by the Newton-Raphson method 

Adam Korczyńskia 
 
Abstract. Statistical practice requires various imperfections resulting from the nature of data to 
be addressed. Data containing different types of measurement errors and irregularities, such as 
missing observations, have to be modelled. The study presented in the paper concerns the 
application of the expectation-maximisation (EM) algorithm to calculate maximum likelihood 
estimates, using an autoregressive model as an example. The model allows describing a process 
observed only through measurements with certain level of precision and through more than 
one data series. The studied series are affected by a measurement error and interrupted in 
some time periods, which causes the information for parameters estimation and later for 
prediction to be less precise. The presented technique aims to compensate for missing data in 
time series. The missing data appear in the form of breaks in the source of the signal. The 
adjustment has been performed by the EM algorithm to a hybrid version, supplemented by the 
Newton-Raphson method. This technique allows the estimation of more complex models. The 
formulation of the substantive model of an autoregressive process affected by noise is outlined, 
as well as the adjustment introduced to overcome the issue of missing data. The extended 
version of the algorithm has been verified using sampled data from a model serving as an 
example for the examined process. The verification demonstrated that the joint EM and 
Newton-Raphson algorithms converged with a relatively small number of iterations and 
resulted in the restoration of the information lost due to missing data, providing more accurate 
predictions than the original algorithm. The study also features an example of the application 
of the supplemented algorithm to some empirical data (in the calculation of a forecasted 
demand for newspapers). 
Keywords: missing data, multivariate time series, expectation-maximisation algorithm, 
Newton-Raphson algorithm 
JEL: C13, C19, C61 

1. Introduction 

Data quality insight is one of the aspects of data science which supports data analysis 
by providing a framework that allows working with real data. Real data naturally 
tends to be erroneous, displaying measurement errors, incompleteness of data and 
other irregularities such as outliers. 
 The source of a measurement error can be different depending on the application. 
When analysing environmental and technical problems, it can result from 
instrument imprecision and differences in the locations of the assessments as shown 
in a pollution study by Butland et al. (2013). An example of a measurement error in 
economic analysis is provided by Fukuda (2005) in a study of a business cycle 
indicator affected by an error resulting from irregular sampling, which arose from 
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the need to produce business reports within a short period in order to evaluate the 
current business conditions. Ghassemi et al. (2015) discuss the issue of noisy data in 
medical studies where errors result from difficulties related to data collection. In 
effect, only irregularly sampled heterogeneous clinical records are available. 
 The problem of missing data has been extensively studied and described in 
statistical literature. A comprehensive overview of the topics related to the analysis 
of missing data is provided by Little & Rubin (2002). One of the recent works on 
missing data and other aspects of data quality and their implications from a survey 
perspective is by Laaksonen (2018). 
 The reason behind data incompleteness is twofold. It can be related to data 
collection issues, such as data entry delays or to the attitude of the respondents who 
may not be willing to provide certain information. While the former is usually less 
frequent and driven by completely random events, the latter can result in bias. 
Depending on the missing data mechanism, the missingness can lead to bias if the 
probability of observing an outcome would be determined by some subject 
characteristics or the outcome level itself. Naturally, a reduced amount of 
information causes the estimation of parameters to be imprecise. Various weighting 
adjustments and imputation techniques, including multiple imputation, have been 
implemented to address the above-mentioned problems in different data structures. 
 One other aspect in data quality assessment is the existence of outliers. Outlying 
observations can appear in univariate distribution, but when analysed from 
a multivariate perspective, they are likely to become a more complex problem. The 
analysis primarily focuses on influential observations, involving such values which 
affect the estimates or their standard errors. In some cases the outliers are simply 
erroneous data points and therefore one would expect a correction of such values to 
be made prior to the analysis. In practice, many erroneous data points can be 
detected directly by predefined edit checks. If an outlier turns to be a true value or it 
is not possible to clean the data for operational reasons, e.g. reporting time 
requirements, robust methods and models are designed to solve such problems. In 
univariate settings, the natural choice would be to utilise quantiles of the distribution 
and this concept can be extended to quantile regression models showing robustness 
against the observations that behave unlike most of the other ones (Koenker, 2005). 
 The aim of this paper is to assess the extension of the numeric technique for time 
series analysis outlined in Shumway & Stoffer (1982) in order to address the 
prediction problem, considering such aspects of data quality as measurement errors 
and data incompleteness. The model applied for smoothing and forecasting is the 
Kalman filter (Kalman, 1960), which is estimated through the expectation- 
maximisation (EM) algorithm. The standard EM algorithm requires closed-form 
solutions which are not readily available for more complex data structures. This in 
practice leads to the introduction of constraints imposed upon selected parameters 
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in order to simplify the numeric problem. The extension suggested in this paper 
involves incorporating the Newton-Raphson method within the regular EM 
algorithm in order to allow the estimation of parameters which are otherwise set to 
zero. This solution offers flexibility and reduces constraints when making 
assumptions for the analysed process, e.g. we can assume that there is a non-zero 
correlation between the measurement errors in a bivariate time series. The text 
provides a description of the studied process which uses an autoregressive model 
with random noise affecting the observed time series data. 

2. Model for noisy time series 

Kalman (1960) introduced a model for the description of processes with the aim of 
detecting signals in the presence of random noise. The detection process involves 
separating the signal from random noises, thereby providing basis for predicting the 
signals. The model finds its application when the observation is performed 
independently by two or more individuals or devices, with the goal to measure the same 
characteristic, although the data from each source are subject to measurement error. An 
example of such observation is described by Cajner et al. (2019). The purpose of the 
study was to combine two individual sources of data on the labour market (drawn from 
separate surveys) in order to reduce a measurement error which was in fact affecting 
both sources, and thus improve the accuracy of the estimates related to labour market 
characteristics, including the number of active and paid employees. 
 In multivariate time series settings, all data sources are utilised to predict the 
examined signal (e.g. the level of a specific characteristic), but in order to make that 
prediction, the data must first be cleaned from noise. In the notation, 𝑥𝑥𝑡𝑡 will be the 
underlying, true level of the analysed parameter over time 𝑡𝑡 = 1, 2, … ,𝑛𝑛. Only 𝑦𝑦𝑡𝑡 – 
the noisy data are observed. A process involving multiple data sources measuring the 
same characteristic with only limited precision can be expressed as follows 
(Shumway & Stoffer, 1982, p. 254): 
 
 𝐲𝐲𝑡𝑡 = 𝐌𝐌𝑡𝑡  𝐱𝐱𝑡𝑡 + 𝐯𝐯𝑡𝑡   for   t = 1, 2, ..., n, (1) 
 
where 
𝐲𝐲𝑡𝑡 – 𝑘𝑘 × 1 is the vector of the observed series at time 𝑡𝑡; 
𝐌𝐌𝑡𝑡 – 𝑘𝑘 × 𝑝𝑝 is the design matrix transforming the unobserved 𝑝𝑝 × 1 vector 𝐱𝐱𝑡𝑡 into 𝐲𝐲𝑡𝑡. 

If applied in incomplete data, 𝐌𝐌𝑡𝑡 would refer to the missing data indicator as 
defined in Little & Rubin (2002, Section 1.2), pointing to those elements of 
observation vector 𝐲𝐲𝑡𝑡 which are known and which are not; 

𝐯𝐯𝑡𝑡 – 𝑘𝑘 × 1 is the vector of the process error terms following normal distribution 
𝑁𝑁(𝛍𝛍,𝐑𝐑) with zero-mean vector and 𝑘𝑘 × 𝑘𝑘 covariance matrix 𝐑𝐑. 



20 Przegląd Statystyczny. Statistical Review 2021 | 1 

 

 

 Let us assume that we want to obtain the measurement of 𝐱𝐱𝑡𝑡, but in fact this 
variable is measured by two independent sources and we are not able to observe it 
directly. What we have is 2 × 1 vectors of measurements from each of the sources 
over time. Based on (1) the process is then as follows: 
 
 �

𝑦𝑦1𝑡𝑡
𝑦𝑦2𝑡𝑡� = �

𝑚𝑚1𝑡𝑡
𝑚𝑚2𝑡𝑡

� 𝑥𝑥𝑡𝑡 + �
𝑣𝑣1𝑡𝑡
𝑣𝑣2𝑡𝑡�   for   t = 1, 2, ..., n, (2) 

 
where 
 

 �
𝑣𝑣1𝑡𝑡
𝑣𝑣2𝑡𝑡�~𝑁𝑁��00� , �𝑟𝑟1

2 𝑟𝑟12
𝑟𝑟12 𝑟𝑟22

��. (3) 

 
 Vector 𝐯𝐯𝑡𝑡 can be considered as a component aiming to capture the measurement 
error. 
 For example, we can assume that there are two sources of data for the same series. 
In economics it could be demand assessed by two individual sources. In medical 
statistics the application of the above concept would relate to models for laboratory 
measurements based on different types of samples (e.g. serum and plasma). 
Assuming the existence of a correlation between the two specimens (see for example 
Carey et al., 2016), the two series can be combined in order to describe the changes 
in the laboratory parameters under study over time. 
 We further specify the process describing random series 𝒙𝒙𝒕𝒕 as a first-order 
autoregressive process, thereby introducing a correlation between the adjacent 
observations, i.e. the outcome at time 𝑡𝑡 would depend on its level at time 𝑡𝑡 − 1. As 
the model would simplify the true process, we include the term 𝒘𝒘𝒕𝒕 to reflect 
deviations of the actual outcome from the modelled series. The model specification 
is then as follows: 
 
 𝐱𝐱𝑡𝑡 = 𝚽𝚽t 𝐱𝐱𝑡𝑡−1 + 𝐰𝐰𝑡𝑡   for   t = 1, 2, ..., n,  (4) 
 
where 
𝚽𝚽t – 𝑝𝑝 × 𝑝𝑝 is the transition matrix expressing the relationship between the adjacent 

values of the series over time;  
𝐰𝐰𝑡𝑡 – 𝑝𝑝 × 1 is the vector of model error terms following a normal distribution, 

𝑁𝑁(𝛍𝛍,𝐐𝐐) is the zero-mean vector and 𝑝𝑝 × 𝑝𝑝 is covariance matrix 𝐐𝐐 for the 
uncorrelated process. The initial value of process 𝑥𝑥0 is assumed to be a normal 
random vector from 𝑁𝑁(𝛍𝛍0,𝚺𝚺0), where 𝚺𝚺0 is a 𝑝𝑝 × 𝑝𝑝 covariance matrix.  
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 In the simplest case with univariate series, the model would take the following form: 
 
 𝑥𝑥𝑡𝑡 = ϕ𝑥𝑥𝑡𝑡−1 + 𝑤𝑤𝑡𝑡   for   t = 1, 2, ..., n, (5) 
 
where ϕ represents the autocorrelation between the adjacent elements of the series 
and where the variance of 𝐰𝐰𝑡𝑡 is univariate and noted by 𝑞𝑞2. 
 
 Error 𝐰𝐰𝑡𝑡 captures the uncertainty displayed by the model, which reflects the 
ability to describe the process creating a series of observations. 
 In order to obtain the estimates of 𝑥𝑥1,  𝑥𝑥2 … ,  𝑥𝑥𝑛𝑛, observed series of vectors 
𝑦𝑦1, 𝑦𝑦2 … ,𝑦𝑦𝑛𝑛 are smoothed by using the model specified in (1) and (4). The same 
framework can be applied to calculate forecast 𝑋𝑋𝑛𝑛+1, 𝑋𝑋𝑛𝑛+2, … ,𝑋𝑋𝑛𝑛+𝑙𝑙 , with 𝑙𝑙 repre- 
senting the number of periods for which the prediction is produced. 
 The process applicable to bivariate series which begins with an observation, and then 
proceeds to the smoothing of the series, on to the prediction is depicted in Figure 1. 
 
Figure 1. Smoothing and predicting based on bivariate observed series 

𝑡𝑡 𝑌𝑌1𝑡𝑡 𝑌𝑌2𝑡𝑡  𝑋𝑋𝑡𝑡 

1 𝑦𝑦1𝑡𝑡 𝑦𝑦21  𝑥𝑥1 
2 𝑦𝑦12 𝑦𝑦22  𝑥𝑥2 
⋮ ⋮ ⋮  ⋮ 
𝑛𝑛 𝑦𝑦1𝑛𝑛 𝑦𝑦2𝑛𝑛 ⟶ 𝑥𝑥𝑛𝑛 

    𝑥𝑥𝑛𝑛+1 
    𝑥𝑥𝑛𝑛+2 
    ⋮ 
    𝑥𝑥𝑛𝑛+𝑙𝑙  

Source: author’s work. 

 
 In the formulation of the model above, there are two random terms capturing the 
specific parts of the overall variability occurring in the process. Random term 𝐰𝐰𝑡𝑡 in 
(4) captures the uncertainty related to the model specification in relation to the 
actual process, while 𝐯𝐯𝑡𝑡 in (1) is to express the measurement error or the noise 
introduced by the measurement technique or displayed by the nature of the observed 
data. 
 The model parameters from (1) and (4) are estimated based on an iterative 
version of the maximum likelihood approach. The usage of the EM algorithm 
supplemented by Newton-Raphson allows expanding the model complexity, also 
taking the practical perspective into account, including handling missing data. The 
following sections describe the application of the estimating algorithm to obtain the 
maximum likelihood estimates of the model for bivariate incomplete data. 
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3. Estimation of the model 

3.1. The likelihood function and the estimating algorithm 

Assuming that the sample is large and the observation units are selected 
independently, the model specified by (1) and (4) can be estimated using the 
maximum likelihood method. The method maximises the joint density expressed as 
a product of individual probabilities given the population distribution (for details on 
the method see for example Mittelhammer, 2013, Section 8.3; Little & Rubin, 2002, 
Chapter 6). For the model specified in Section 1 the likelihood is a product of three 
factors related to the initial condition for the process, the autoregressive part and the 
part explaining how underlying series 𝑥𝑥𝑡𝑡  (𝑡𝑡 =  1, 2, … ,𝑛𝑛) are transformed into 
actual observations (Shumway & Stoffer, 2017, p. 306): 
 
 𝑓𝑓(𝐲𝐲|𝜽𝜽) = 𝑓𝑓(𝐱𝐱0|𝛍𝛍0,𝚺𝚺0)∏ 𝑓𝑓(𝐱𝐱𝑡𝑡|𝐱𝐱𝑡𝑡−1,𝚽𝚽,𝐐𝐐)𝑛𝑛

𝑡𝑡=1 ∏ 𝑓𝑓(𝐲𝐲𝑡𝑡|𝐱𝐱𝑡𝑡 ,𝐑𝐑)𝑛𝑛
𝑡𝑡=1 , (6) 

 
where 𝜽𝜽 represents the set of parameters describing the population of interest and 
requiring estimation. 
 
 Given joint density (6), the log-likelihood assuming 𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑛𝑛, considering 
𝐲𝐲1,𝐲𝐲2, … , 𝐲𝐲𝑛𝑛, and ignoring the constants is as follows (Shumway & Stoffer, 1982, 
p. 256): 
 

ln𝐿𝐿 (𝜽𝜽|𝐱𝐱,𝐲𝐲) = −
1
2

ln|𝚺𝚺0|−
1
2

(𝐱𝐱0 − 𝛍𝛍0)′𝚺𝚺0−1(𝐱𝐱0 − 𝛍𝛍0) 

                                         −𝑛𝑛
2

ln|𝐐𝐐| − 1
2
∑ (𝐱𝐱𝑡𝑡 − 𝚽𝚽𝐱𝐱𝑡𝑡)′𝐐𝐐−1(𝐱𝐱𝑡𝑡 − 𝚽𝚽𝐱𝐱𝑡𝑡)𝑛𝑛
𝑡𝑡=1  

                                             −𝑛𝑛
2

ln|𝐑𝐑|− 1
2
∑ (𝐲𝐲𝑡𝑡 − 𝐌𝐌𝑡𝑡𝐱𝐱𝑡𝑡)′𝐑𝐑−1(𝐲𝐲𝑡𝑡 − 𝐌𝐌𝑡𝑡𝐱𝐱𝑡𝑡)𝑛𝑛
𝑡𝑡=1 . 

(7) 

 
 The maximum likelihood (ML) estimates of the model given by (1) and (4) are 
obtained by maximising the log-likelihood function (7) with respect to parameters 
𝛍𝛍0, 𝚺𝚺0, 𝚽𝚽, 𝐐𝐐 and 𝐑𝐑. In relation to simple problems, the ML estimators can be 
derived directly from the log-likelihood function. When the level of complexity 
increases, which may result from the nature of the series (e.g. higher dimensions, 
more complex model specifications), the direct maximisation is rarely available and 
in practice referring to optimisation techniques such as Newton-Raphson or EM 
algorithms becomes inevitable. 
 Shumway and Stoffer (1982, pp. 256–257) provide formulas for estimating the 
parameters of (1) and (4) using the EM algorithm. This approach enables addressing 
two types of data irregularities: 
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• the expectation step allows the implementation of the smoothing estimator so that 
the observed data (e.g. two-dimensional series) assessing the same effect but with 
some level of a measurement error represented by 𝐑𝐑 can be transformed into the 
smoothed series; 

• the expectation step can be further extended to incorporate compensation for the 
missing data, i.e. finding the maximum likelihood estimates through an iterative 
process replacing the missing values by their expectations drawn from a conditional 
distribution from a prespecified population. 

 The algorithms outlined in Shumway & Stoffer (1982) as well as in Little & Rubin 
(2002, Chapter 8) focus on applications assuming a direct approach to the 
maximisation step. The suggestion proposed in this paper is to combine the EM 
algorithm with the Newton-Raphson method, in this case operating as a sub-algorithm. 
Some examples of such an approach have been described as hybrid maximisation 
methods in Little & Rubin (2002, pp. 186–188) (see for example Lange, 1995). 
 The goal of the approach proposed in this paper is to allow more complex model 
specifications, which is basically equivalent to relaxing some of the constraints used 
to simplify the computations. In Shumway and Stoffer (1982), it is the assumption 
on uncorrelated measurement errors in vector 𝐯𝐯𝑡𝑡 which provides a simplified version 
of the 𝐑𝐑 matrix with a covariance occurring between the measurement errors equal 
to zero. 
 The EM algorithm formulation is depicted in Korczyński, 2018, Chapter 4; Little 
& Rubin, 2002, Chapter 8, and Molenberghs & Kenward, 2007, pp. 93–103. The 
algorithm consists of an initial step and two main steps: the expectation step, in 
which the expected value of the log-likelihood is calculated, and the maximisation 
step, in which updates to the model parameters are found so that they maximise the 
expected likelihood at the current iteration. In the presented version of the 
algorithm, we assume that the actual series of 𝒚𝒚𝑡𝑡 (𝑡𝑡 = 1, 2, … ,𝑛𝑛) is not fully 
observable, and then data vector y is split into observed 𝒚𝒚obs and missing 𝒚𝒚mis. The 
iterative process consists of three steps. 
 Initial step. Set the parameter vector to certain initial values 𝛉𝛉(0). In a missing data 
application the complete-case or available-case approach can be used (for details see 
for example Little & Rubin, 2002, Chapter 8) to obtain the initial estimates. 
 Expectation step. Calculate the expected value of the log-likelihood function with 
the current estimates of parameter vector 𝛉𝛉(𝑖𝑖): 
 
 𝑄𝑄�𝛉𝛉�𝛉𝛉(𝑖𝑖)� = 𝐸𝐸�ln𝐿𝐿 (𝛉𝛉|𝐲𝐲)|𝐲𝐲𝑜𝑜𝑜𝑜𝑜𝑜,𝛉𝛉(𝑖𝑖)�. (8) 
 
 In practice, this step requires finding the expected values of the sufficient statistics 
and replacing the unknown components by their expected values. The unknown 
components may be related to the smoothing of the series to identify the underlying 
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unobserved process (Shumway & Stoffer, 1982, Section 2) or to the missing values 
(Dempster et al., 1977, pp. 3–4). 
 Maximisation step. Find 𝛉𝛉(𝑖𝑖+1) maximising the log-likelihood function considering 
the current expectations over the log-likelihood function: 
 
 𝑄𝑄�𝛉𝛉(𝑖𝑖+1)�𝛉𝛉(𝑖𝑖)� ≥ 𝑄𝑄�𝛉𝛉(𝑖𝑖+1)�𝛉𝛉(𝑖𝑖)� for all 𝛉𝛉. (9) 
 
 After having updated 𝛉𝛉(𝑖𝑖+1), we need to go back to the first step and the cycle is 
repeated until convergence is reached, i.e. until the changes observed for the 
estimates in question are lower than an arbitrarily small value 𝜀𝜀. 
 The EM algorithm, as specified above, ensures convergence to the maximum of 
the log-likelihood (Molenberghs & Kenward, 2007, p. 95), although the rate of the 
convergence can be slow. 
 The suggested extension as outlined in Korczyński (2018, pp. 216–225), involves 
the replacement of the maximisation step with the Newton-Raphson maximisation 
of the parameters for which closed-form solutions are not available. In the model 
outlined by (1) and (4), the Newton-Raphson step would entail estimating the elements 
of variance-covariance matrix 𝐑𝐑, depicting the behaviour of the measurement error 
terms. The general notation of the maximisation is as follows: 
 
 𝛉𝛉�(𝑖𝑖+1) = 𝛉𝛉�(𝑖𝑖) −�𝐸𝐸 �𝜕𝜕

2 ln 𝐿𝐿�𝛉𝛉(𝑖𝑖)|𝐲𝐲�
𝜕𝜕𝛉𝛉(𝑖𝑖)𝜕𝜕𝛉𝛉(𝑖𝑖) ��

−1
𝐸𝐸 �𝜕𝜕 ln 𝐿𝐿�𝛉𝛉

(𝑖𝑖)|𝐲𝐲�
𝜕𝜕𝛉𝛉(𝑖𝑖) �. (10) 

 
 In a regular framework which ignores the noise around the signal and any 
potentially missing data we would proceed directly to the maximisation of the log-
likelihood (7). However, we assume that the true process is only approximated by 
individual data series and we let some elements of the series be missing, which is 
unavoidable in statistical practice. An example of this process which will be further 
discussed in this text is outlined in Figure 2. 
 
Figure 2. Smoothing and predicting based on bivariate observed series with missing data 

𝑡𝑡 𝑌𝑌1𝑡𝑡 𝑌𝑌2𝑡𝑡  𝑋𝑋𝑡𝑡 
1 𝑦𝑦11 𝑦𝑦21  𝑥𝑥1 
2 𝑦𝑦12 𝑦𝑦22  𝑥𝑥2 
3 . 𝑦𝑦23  𝑥𝑥3 
4 . 𝑦𝑦24  𝑥𝑥4 
5 𝑦𝑦15 𝑦𝑦25  𝑥𝑥5 
6 𝑦𝑦16 . ⟶ 𝑥𝑥1 
 ⋮ ⋮  ⋮ 
𝑛𝑛 𝑦𝑦1𝑛𝑛 .  𝑥𝑥𝑛𝑛 

    𝑥𝑥𝑛𝑛+1 
    𝑥𝑥𝑛𝑛+2 
    ⋮ 
    𝑥𝑥𝑛𝑛+𝑙𝑙  

Source: author’s work. 
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 Firstly, we need to find the underlying series through the smoothing of the 
observed data 𝐲𝐲1,𝐲𝐲2, … , 𝐲𝐲𝑛𝑛 to receive 𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑛𝑛. 
 Secondly, we need to consider the fact that some parts of the observed series are 
missing. Both aspects are dealt with by determining the expected value of the log-
likelihood function (7). 
 After calculating the maximum likelihood estimates, we can proceed to the 
prediction of the next 𝑙𝑙 elements of the series. 
 In order to simplify the notation, we assume that the actual process is observed 
through two data sources as described by (2) and (5). In this case the log-likelihood 
can be written as: 

 
ln𝐿𝐿 (𝛉𝛉|𝐱𝐱, 𝐲𝐲) = −1

2
ln𝜎𝜎02 −

1
2𝜎𝜎02

(𝑥𝑥0 − 𝜇𝜇0)2  

                            −𝑛𝑛
2

ln𝑞𝑞2 − 1
2𝑞𝑞2

∑ (𝑥𝑥𝑡𝑡 − 𝜙𝜙𝑥𝑥𝑡𝑡−1)2𝑛𝑛
𝑡𝑡=1  

                            −𝑛𝑛
2

ln �𝑟𝑟1
2 𝑟𝑟12

𝑟𝑟12 𝑟𝑟22
� 

                            −1
2
∑ ��

𝑦𝑦1𝑡𝑡
𝑦𝑦2𝑡𝑡� − �

𝑚𝑚1𝑡𝑡
𝑚𝑚2𝑡𝑡

� 𝑥𝑥𝑡𝑡�
′

𝑛𝑛
𝑡𝑡=1 �𝑟𝑟1

2 𝑟𝑟12
𝑟𝑟12 𝑟𝑟22

�
−1

��
𝑦𝑦1𝑡𝑡
𝑦𝑦2𝑡𝑡� − �

𝑚𝑚1𝑡𝑡
𝑚𝑚2𝑡𝑡

� 𝑥𝑥𝑡𝑡�. 

(11) 

 
 The log-likelihood function (11) can be expressed as: 

 

 

ln𝐿𝐿 (𝛉𝛉|𝐱𝐱, 𝐲𝐲) = −1
2

ln𝜎𝜎02 −
1
2𝜎𝜎02

(𝑥𝑥02 − 2𝜇𝜇0𝑥𝑥0 + 𝜇𝜇02) −𝑛𝑛
2

ln𝑞𝑞2 

                            − 1
2𝑞𝑞2

∑ (𝑥𝑥𝑡𝑡2 − 2𝜙𝜙𝑥𝑥𝑡𝑡𝑥𝑥𝑡𝑡−1 + 𝜙𝜙2𝑥𝑥𝑡𝑡−12 )𝑛𝑛
𝑡𝑡=1  −𝑛𝑛

2
ln(𝑟𝑟12𝑟𝑟22 − 𝑟𝑟122 ) 

                            − 1
2�𝑟𝑟12𝑟𝑟22−𝑟𝑟122 �

∑ [(𝑦𝑦1𝑡𝑡2𝑛𝑛
𝑡𝑡=1 − 2𝑚𝑚1𝑡𝑡𝑦𝑦1𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑚𝑚1𝑡𝑡

2 𝑥𝑥𝑡𝑡2)𝑟𝑟22 

                            −2(𝑦𝑦1𝑡𝑡𝑦𝑦2𝑡𝑡 − 𝑚𝑚2𝑡𝑡𝑦𝑦1𝑡𝑡𝑥𝑥𝑡𝑡 − 𝑚𝑚1𝑡𝑡𝑦𝑦2𝑡𝑡𝑥𝑥𝑡𝑡 − 𝑚𝑚1𝑡𝑡𝑚𝑚2𝑡𝑡𝑥𝑥𝑡𝑡2)𝑟𝑟12 
                            + (𝑦𝑦2𝑡𝑡2 − 2𝑚𝑚2𝑡𝑡𝑦𝑦2𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑚𝑚2𝑡𝑡

2 𝑥𝑥𝑡𝑡2)𝑟𝑟12]. 

(12) 

 
 The implementation of the Newton-Raphson step allows assuming the existence 
of a correlation between the error terms in the 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡 observed series. 
 In order to apply the EM algorithm, we firstly specify the expectation of loglikeli-
hood (8). This step requires calculating: 
• the expectation of the unobserved 𝐱𝐱1, 𝐱𝐱2, ..., 𝐱𝐱𝑛𝑛  series . This allows for the smoothing 

of the observed process to assess the underlying series; 
• the expectation of the incomplete elements of the observed y1, y2, ..., yn series. This 

part addresses the issue of missing data in the process. 
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 The expected log-likelihood for (12) can be expressed as: 
 

 

𝐸𝐸[ln𝐿𝐿 (𝛉𝛉|𝐱𝐱,𝐲𝐲)] = −1
2

ln𝜎𝜎02 −
1
2𝜎𝜎02

[𝐸𝐸(𝑥𝑥02)− 2𝜇𝜇0𝐸𝐸(𝑥𝑥0) + 𝜇𝜇02] −𝑛𝑛
2

ln𝑞𝑞2 

                                  − 1
2𝑞𝑞2

∑ [𝐸𝐸(𝑥𝑥𝑡𝑡2)− 2𝜙𝜙𝐸𝐸(𝑥𝑥𝑡𝑡𝑥𝑥𝑡𝑡−1) + 𝜙𝜙2𝐸𝐸(𝑥𝑥𝑡𝑡−12 )]𝑛𝑛
𝑡𝑡=1   

                                  −𝑛𝑛
2

ln(𝑟𝑟12𝑟𝑟22 − 𝑟𝑟122 )− 1
2�𝑟𝑟12𝑟𝑟22−𝑟𝑟122 �

∑ {[𝐸𝐸(𝑦𝑦1𝑡𝑡2 )𝑛𝑛
𝑡𝑡=1  

                                  −2𝑚𝑚1𝑡𝑡𝐸𝐸(𝑦𝑦1𝑡𝑡𝑥𝑥𝑡𝑡) + 𝑚𝑚1𝑡𝑡
2 𝐸𝐸(𝑥𝑥𝑡𝑡2)]𝑟𝑟22 

                         −2[𝐸𝐸(𝑦𝑦1𝑡𝑡𝑦𝑦2𝑡𝑡)−𝑚𝑚2𝑡𝑡𝐸𝐸(𝑦𝑦1𝑡𝑡𝑥𝑥𝑡𝑡)−𝑚𝑚1𝑡𝑡𝐸𝐸(𝑦𝑦2𝑡𝑡𝑥𝑥𝑡𝑡) 

                                  −𝑚𝑚1𝑡𝑡𝑚𝑚2𝑡𝑡𝐸𝐸(𝑥𝑥𝑡𝑡2)]𝑟𝑟12 + [𝐸𝐸(𝑦𝑦2𝑡𝑡2 ) 

                                  −2𝑚𝑚2𝑡𝑡𝐸𝐸(𝑦𝑦2𝑡𝑡𝑥𝑥𝑡𝑡) + 𝑚𝑚2𝑡𝑡
2 𝐸𝐸(𝑥𝑥𝑡𝑡2)]𝑟𝑟12}. 

(13) 

 
 The next step is to find the expectations of 𝐱𝐱𝑡𝑡 and 𝐲𝐲𝑡𝑡 in (13). The estimator of the 
𝐱𝐱𝑡𝑡 smoothed series is depicted in Subsection 3.2. The calculation of the expectations 
of the missing elements of 𝐲𝐲𝑡𝑡 is presented in Subsection 3.3. Given the expected 𝐱𝐱𝑡𝑡 
and 𝐲𝐲𝑡𝑡 at a specific iteration of the algorithm, the log-likelihood function is 
maximised with respect to the 𝛉𝛉𝑖𝑖  parameters of interest to update the estimates and 
obtain 𝛉𝛉𝑖𝑖+1, which is then utilised to recalculate the expectations of the log-
likelihood. The maximisation is outlined in Subsection 3.4. The algorithm runs in 
cycles, from the expectation step to the maximisation step and over again, until 
convergence occurs. 

3.2. Smoother estimator 

For the specified autoregressive model accounting for noise given by (1) and (4), we 
utilise the Kalman smoother estimator taking relevant steps needed to estimate the 
studied parameters. The process is outlined in Shumway & Stoffer (1982, pp. 262–
263). The expected value of xt is noted as: 
 
 𝐱𝐱𝑡𝑡𝑛𝑛 = 𝐸𝐸[𝐱𝐱𝑡𝑡|𝐲𝐲1,𝐲𝐲2, … ,𝐲𝐲𝑛𝑛], (14) 
 
while the error variance-covariance matrix takes the following form: 
 
 𝐏𝐏𝑡𝑡𝑛𝑛 = 𝐸𝐸[(𝐱𝐱𝑡𝑡 − 𝐱𝐱𝑡𝑡𝑛𝑛)(𝐱𝐱𝑡𝑡 − 𝐱𝐱𝑡𝑡𝑛𝑛)′|𝐲𝐲1,𝐲𝐲2, … , 𝐲𝐲𝑛𝑛]. (15) 
 
 As noted in Anderson & Moore (1979, pp. 37–38), error variance-covariance 
matrix (15) measures how effective the 𝐱𝐱�𝑡𝑡𝑛𝑛 estimate is. The trace of 𝐏𝐏𝑡𝑡𝑛𝑛 from (15) is 
given by: 
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𝑡𝑡𝑟𝑟𝐏𝐏𝑡𝑡𝑛𝑛 = 𝐸𝐸{𝑡𝑡𝑟𝑟[(𝐱𝐱𝑡𝑡 − 𝐱𝐱𝑡𝑡𝑛𝑛)(𝐱𝐱𝑡𝑡 − 𝐱𝐱𝑡𝑡𝑛𝑛)′|𝐲𝐲1,𝐲𝐲2, … , 𝐲𝐲𝑛𝑛]} 

                                         𝐸𝐸{‖𝐱𝐱𝑡𝑡 − 𝐱𝐱𝑡𝑡𝑛𝑛‖𝟐𝟐|𝐲𝐲1,𝐲𝐲2, … ,𝐲𝐲𝑛𝑛}, 
(16) 

 
and it is the conditional error variance for 𝐱𝐱�𝑡𝑡𝑛𝑛. The optimisation involves finding 𝐱𝐱�𝑡𝑡𝑛𝑛, 
for which the error variance is minimised. 
 
 For 𝑡𝑡 =  1, 2, … ,𝑛𝑛 and with the initial condition for the process of 𝐱𝐱00 = 𝛍𝛍0 and 
𝐏𝐏00 = 𝚺𝚺0, the smoothing is performed by means of the following set of recursive 
equations: 
 
 𝐱𝐱𝑡𝑡𝑡𝑡−1 = 𝚽𝚽𝐱𝐱𝑡𝑡−1𝑡𝑡−1, (17) 
 
 𝐏𝐏𝑡𝑡𝑡𝑡−1 = 𝚽𝚽𝐏𝐏𝑡𝑡−1𝑡𝑡−1𝚽𝚽′ + 𝐐𝐐, (18) 
 
 𝐊𝐊𝑡𝑡 = 𝐏𝐏𝑡𝑡𝑡𝑡−1𝐌𝐌𝑡𝑡

′(𝐌𝐌𝑡𝑡𝐏𝐏𝑡𝑡𝑡𝑡−1𝐌𝐌𝑡𝑡
′ + 𝐑𝐑)−𝟏𝟏, (19) 

 
 𝐱𝐱𝑡𝑡𝑡𝑡 = 𝐱𝐱𝑡𝑡𝑡𝑡−1 +𝐊𝐊𝑡𝑡(𝒚𝒚𝑡𝑡 −𝐌𝐌𝑡𝑡𝐱𝐱𝑡𝑡𝑡𝑡−1), (20) 
 
 𝐏𝐏𝑡𝑡𝑡𝑡 = 𝐏𝐏𝑡𝑡𝑡𝑡−1 + 𝐊𝐊𝑡𝑡𝐌𝐌𝑡𝑡𝐏𝐏𝑡𝑡𝑡𝑡−1. (21) 
 
 To find estimates 𝐱𝐱�𝑡𝑡𝑛𝑛 in (14) and 𝐏𝐏�𝑡𝑡𝑛𝑛 in (15), we carry out backward calculations for 
𝑡𝑡 = 𝑛𝑛, 𝑛𝑛 − 1, … , 1 on: 
 𝐉𝐉𝑡𝑡−1 = 𝐏𝐏𝑡𝑡−1𝑡𝑡−1𝚽𝚽′(𝐏𝐏𝑡𝑡𝑡𝑡−1)−𝟏𝟏, (22) 
 
 𝐱𝐱�𝑡𝑡−1𝑛𝑛 = 𝐱𝐱𝑡𝑡−1𝑡𝑡−1 + 𝐉𝐉𝑡𝑡−1(𝒙𝒙𝑡𝑡𝑛𝑛 − 𝚽𝚽𝒙𝒙𝑡𝑡−1𝑡𝑡−1), (23) 
 
 𝐏𝐏�𝑡𝑡−1𝑛𝑛 = 𝐏𝐏𝑡𝑡−1𝑡𝑡−1 + 𝐉𝐉𝑡𝑡−1(𝐏𝐏𝑡𝑡𝑛𝑛 − 𝐏𝐏𝑡𝑡𝑡𝑡−1)𝐉𝐉𝑡𝑡−1′ . (24) 
 
 In expected log-likelihood (13), we need to calculate the expected value of the 
product of the subsequent elements of unobserved series 𝐸𝐸(𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡−1). This requires 
the covariance of the elements, which is calculated for 𝑡𝑡 = 𝑛𝑛, 𝑛𝑛 − 1, … , 2 using 
 
 𝐏𝐏�𝑡𝑡−1,𝑡𝑡−2

𝑛𝑛 = 𝐏𝐏𝑡𝑡−1𝑡𝑡−1 + 𝐉𝐉𝑡𝑡−2′ + 𝐉𝐉𝑡𝑡−1�𝐏𝐏𝑡𝑡,𝑡𝑡−1
𝑛𝑛 − 𝚽𝚽𝐏𝐏𝑡𝑡−1𝑡𝑡−1�𝐉𝐉𝑡𝑡−2′ , (25) 

 
where 
 
 𝐏𝐏𝑛𝑛,𝑛𝑛−1

𝑛𝑛 = (𝐈𝐈 − 𝐊𝐊𝑛𝑛𝐌𝐌𝑛𝑛)𝚽𝚽𝐏𝐏𝑡𝑡−1𝑡𝑡−1. (26) 
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 The expected values of 𝐱𝐱𝑡𝑡 are calculated using formulas (17)–(26) recursively. The 
formulas required to calculate the expected values of the missing elements of 𝐲𝐲𝑡𝑡 are 
presented in the next subsection. 

3.3. Expectations of incomplete data 

3.3.1. General notation for multivariate normal distribution 

In order to find the expectations of 𝐲𝐲𝑡𝑡 for the incomplete series, a reference must be 
made to the properties of the multivariate normal distribution. The concept is 
described in Korczyński (2018, pp. 135–137). Under the parametric assumption 
stating that the process is normal, we can describe it through mean vector 𝛍𝛍 and 
variance-covariance matrix 𝚺𝚺. The process starts from separating the complete and 
incomplete part of vector 𝐲𝐲𝑡𝑡 so that the complete part is followed by the missing 
elements. In effect, the arrangement of elements in the mean vector and variance-
covariance matrix takes the form shown in (27), where 𝛍𝛍1 and 𝚺𝚺1 represent the 
known elements for a specific missing data pattern (solid line), while 𝛍𝛍2 and 𝚺𝚺2 refer 
to the missing data elements (dashed line): 
 

 
𝛍𝛍 = �

 𝛍𝛍1 
𝛍𝛍2 �, 

             𝚺𝚺 = � 𝚺𝚺1 𝚺𝚺12 
 𝚺𝚺12 𝚺𝚺2

�. 
(27) 

 
 For example, let us consider the three-element vector yt at time 𝑡𝑡 = 4 in Figure 3. 
The observation vector is given by 𝐲𝐲𝑡𝑡 = [𝑦𝑦14 . 𝑦𝑦34]′ with the middle element 
missing. The necessary rearrangement would result in 𝐲𝐲𝑡𝑡∗ = [𝑦𝑦14 𝑦𝑦34 .]′, which is 
equivalent to 𝐲𝐲𝑡𝑡

(1) = [𝑦𝑦14 𝑦𝑦34]′ and 𝐲𝐲𝑡𝑡
(2) missing,1 with the respective changes to 

mean vector and variance-covariance matrix (27):  𝛍𝛍1 = [𝜇𝜇1 𝜇𝜇3]′,  𝛍𝛍2 = 𝜇𝜇2, 𝚺𝚺1 =

�𝜎𝜎1
2 𝜎𝜎13

𝜎𝜎13 𝜎𝜎32
�
′

,  𝚺𝚺2 = 𝜎𝜎22,  𝚺𝚺12 = 𝚺𝚺21′ = [𝜎𝜎12 𝜎𝜎23]′. The joint mean vector and 

variance-covariance matrix for that missing data pattern can be expressed as: 
 

 

𝛍𝛍 = [ μ1 μ3 μ2 ]′, 

   𝚺𝚺 = �
𝜎𝜎12 𝜎𝜎13 𝜎𝜎12
𝜎𝜎13 𝜎𝜎32 𝜎𝜎23
𝜎𝜎12 𝜎𝜎23 𝜎𝜎22

�. 
(28) 

 
1 Notation 𝐲𝐲𝑡𝑡

(1)is to represent the observed part of vector 𝐲𝐲𝑡𝑡 at time 𝑡𝑡. Similarly, 𝐲𝐲𝑡𝑡
(2)is to represent the 

missing part. Indices 1 and 2 can refer to various combinations of the three elements of 𝐲𝐲𝑡𝑡, and therefore it 
should be noted that 𝑦𝑦1𝑡𝑡 (the value of the first element of 𝐲𝐲𝑡𝑡 at time 𝑡𝑡) and 𝐲𝐲𝑡𝑡

(1) represent different 
notations. 
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Figure 3. Example of a missing data pattern 

  Data   Resulting missing data pattern 

𝑡𝑡 𝑌𝑌1𝑡𝑡 𝑌𝑌2𝑡𝑡 𝑌𝑌2𝑡𝑡  𝑠𝑠 𝑌𝑌1𝑜𝑜 𝑌𝑌2𝑜𝑜  𝑌𝑌3𝑜𝑜  

1 𝑦𝑦11 𝑦𝑦21 . ⟶ 1 o o x 
2 𝑦𝑦12 𝑦𝑦22 .  2 o x x 
3 𝑦𝑦13 . .  3 o x o 
4 𝑦𝑦14 . 𝑦𝑦34      

Source: Korczyński (2018, p. 133). 

 
 In the i-th iteration of the EM algorithm the expected value of missing part 𝐲𝐲𝑡𝑡

(2) is 
calculated as follows: 
 
 𝐸𝐸 �𝐲𝐲𝑡𝑡

(2)�𝐲𝐲𝑡𝑡
(1),𝛍𝛍�(𝑖𝑖−1),𝚺𝚺�(𝑖𝑖−1)� = 𝛂𝛂�2|1

(𝑖𝑖) + 𝛃𝛃�2|1
(𝑖𝑖) 𝐲𝐲𝑡𝑡

(1), (29) 
 
where: 
 
 𝛂𝛂�2|1

(𝑖𝑖) = 𝛍𝛍�2
(𝑖𝑖−1) − 𝚺𝚺�21

(𝑖𝑖−1)𝚺𝚺�11
−1(𝑖𝑖−1)𝛍𝛍�2

(𝑖𝑖−1), (30) 
 
 𝛃𝛃�2|1

(𝑖𝑖) = 𝚺𝚺�21
(𝑖𝑖−1)𝚺𝚺�11

−1(𝑖𝑖−1). (31) 
 
 The variance-covariance matrix of the error term in the model specified by (29) is 
given by 
 
 𝚺𝚺�2|1

(𝑖𝑖) = 𝚺𝚺�22
(𝑖𝑖−1) − 𝚺𝚺�21

(𝑖𝑖−1)𝚺𝚺�11
−1(𝑖𝑖−1)𝚺𝚺�12

(𝑖𝑖−1). (32) 
 
 In order to calculate conditional expected values 𝐸𝐸�𝑦𝑦𝑗𝑗𝑡𝑡2 �𝑤𝑤� and 𝐸𝐸�𝑦𝑦𝑗𝑗𝑡𝑡𝑦𝑦𝑘𝑘𝑡𝑡�𝑤𝑤� for 
𝑗𝑗 ≠ 𝑘𝑘, and with w representing the condition, a reference is made to the properties 
of the variance-covariance matrix (see Härdle & Simar, 2015, pp. 123–125): 
 
 𝐶𝐶𝐶𝐶𝑣𝑣(𝐱𝐱,𝐲𝐲) = 𝐸𝐸(𝐱𝐱𝐲𝐲′)− 𝐸𝐸(𝐱𝐱)[𝐸𝐸(𝐲𝐲)]′. (33) 
 
 The expectations are conditional on the current parameter estimates and the 
observed part of vector 𝒚𝒚t. 
 We can further adjust (33) to the desired notation using 𝐲𝐲𝑡𝑡

(1) and 𝐲𝐲𝑡𝑡
(2): 

 

 
𝐸𝐸 ��𝐲𝐲𝑡𝑡

(2)|𝐲𝐲𝑡𝑡
(1)��𝐲𝐲𝑡𝑡

(2)|𝐲𝐲𝑡𝑡
(1)�

′
� =𝐸𝐸 �𝐲𝐲𝑡𝑡

(2)|𝐲𝐲𝑡𝑡
(1)� �𝐸𝐸 �𝐲𝐲𝑡𝑡

(2)|𝐲𝐲𝑡𝑡
(1)��

′
+

𝐶𝐶𝐶𝐶𝑣𝑣 ��𝐲𝐲𝑡𝑡
(2)|𝐲𝐲𝑡𝑡

(1)��𝐲𝐲𝑡𝑡
(2)|𝐲𝐲𝑡𝑡

(1)��, 
(34) 
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where 𝐶𝐶𝐶𝐶𝑣𝑣 ��𝐲𝐲𝑡𝑡
(2)|𝐲𝐲𝑡𝑡

(1)� �𝐲𝐲𝑡𝑡
(2)|𝐲𝐲𝑡𝑡

(1)�� = 𝚺𝚺2|1 is the variance-covariance matrix of the 
error terms in model (29). 
 
 With regard to the earlier example presented in Figure 3, we now consider vector 
𝐲𝐲𝑡𝑡 at time 𝑡𝑡 = 3. In this case missing data vector 𝐲𝐲𝑡𝑡

(2) has two elements representing 
𝑦𝑦23 and 𝑦𝑦33. The expected values of 𝐸𝐸(𝑦𝑦2𝑡𝑡2 |𝑤𝑤), 𝐸𝐸(𝑦𝑦3𝑡𝑡2 |𝑤𝑤) and 𝐸𝐸(𝑦𝑦2𝑡𝑡𝑦𝑦3𝑡𝑡|𝑤𝑤) can be 
calculated using formula (34). The respective equation can be expressed as: 
 

 

�
𝐸𝐸(𝑦𝑦2𝑡𝑡2 |𝑤𝑤) 𝐸𝐸(𝑦𝑦2𝑡𝑡𝑦𝑦3𝑡𝑡|𝑤𝑤)

𝐸𝐸(𝑦𝑦2𝑡𝑡𝑦𝑦3𝑡𝑡|𝑤𝑤) 𝐸𝐸(𝑦𝑦3𝑡𝑡2 |𝑤𝑤) � =                                          

 

=  �
𝐸𝐸(𝑦𝑦2𝑡𝑡|𝑤𝑤)2 𝐸𝐸(𝑦𝑦2𝑡𝑡|𝑤𝑤)𝐸𝐸(𝑦𝑦3𝑡𝑡|𝑤𝑤)

𝐸𝐸(𝑦𝑦2𝑡𝑡|𝑤𝑤)𝐸𝐸(𝑦𝑦3𝑡𝑡|𝑤𝑤) 𝐸𝐸(𝑦𝑦3𝑡𝑡|𝑤𝑤)2 � + 𝚺𝚺2|1, 

(35) 

 
where 
 

 𝚺𝚺2|1 = �
𝜎𝜎𝑦𝑦2𝑡𝑡|𝑦𝑦1𝑡𝑡
2 𝜎𝜎𝑦𝑦2𝑡𝑡𝑦𝑦3𝑡𝑡|𝑦𝑦1𝑡𝑡

𝜎𝜎𝑦𝑦2𝑡𝑡𝑦𝑦3𝑡𝑡|𝑦𝑦1𝑡𝑡 𝜎𝜎𝑦𝑦3𝑡𝑡|𝑦𝑦1𝑡𝑡
2 �. (36) 

 
 From the property presented in (34) we can derive well-known equations defining 
variance and covariance through expected values: 
 
 𝐷𝐷2𝑋𝑋 = 𝐸𝐸𝑋𝑋2 − (𝐸𝐸𝑋𝑋)2, (37) 
 
and 
 
 𝐶𝐶𝐶𝐶𝑣𝑣(𝑋𝑋,𝑌𝑌) = 𝐸𝐸(𝑋𝑋𝑌𝑌)− 𝐸𝐸(𝑋𝑋)𝐸𝐸(𝑌𝑌). (38) 

3.3.2. Adjusting for missing values in an autoregressive model accounting for noise 

The calculation of the expected values of 𝐲𝐲𝑡𝑡 required for the model outlined by (2) 
and (5) involve the derivation of the mean vector and variance covariance matrix 
(27) specified for that modelling framework. 
 For the case of bivariate 𝐲𝐲𝑡𝑡 and univariate 𝐱𝐱𝑡𝑡, which is equivalent to the notation 
given by (2) and (5), the mean vector of 𝐲𝐲𝑡𝑡 is given by 
 

𝛍𝛍 = �
𝜇𝜇1
𝜇𝜇2� = �

𝐸𝐸(𝑦𝑦1𝑡𝑡)
𝐸𝐸(𝑦𝑦2𝑡𝑡)

� = �
𝐸𝐸(𝑚𝑚1𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑣𝑣1𝑡𝑡)
𝐸𝐸(𝑚𝑚2𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑣𝑣2𝑡𝑡)

� = �
𝐸𝐸(𝑚𝑚1𝑡𝑡𝑥𝑥𝑡𝑡)
𝐸𝐸(𝑚𝑚2𝑡𝑡𝑥𝑥𝑡𝑡)

� = �
𝑚𝑚1𝑡𝑡𝑥𝑥�𝑡𝑡𝑛𝑛
𝑚𝑚2𝑡𝑡𝑥𝑥�𝑡𝑡𝑛𝑛

�,  (39) 

 
for 𝑡𝑡 = 1, 2, … ,𝑛𝑛 and based on the fact that the expected value of the error terms in 
𝐯𝐯𝑡𝑡 equals zero (3), and where 𝑥𝑥�𝑡𝑡𝑛𝑛 (23) is the estimate of 𝑥𝑥𝑡𝑡𝑛𝑛 (14), calculated through 
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the described recursive set of equations. In order to provide the probabilistic part of 
the distribution specification, i.e. the elements of 𝚺𝚺, we should first note that the 
variance of 𝐲𝐲𝑡𝑡 is 
 

 
�𝜎𝜎1

2

𝜎𝜎22
� = �

𝐷𝐷2(𝑦𝑦1𝑡𝑡)
𝐷𝐷2(𝑦𝑦2𝑡𝑡)

� = �
𝐷𝐷2(𝑚𝑚1𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑣𝑣1𝑡𝑡)
𝐷𝐷2(𝑚𝑚2𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑣𝑣2𝑡𝑡)

� 

                   = �
𝑚𝑚1𝑡𝑡
2 𝐷𝐷2(𝑥𝑥𝑡𝑡) + 𝑟𝑟12)

𝑚𝑚2𝑡𝑡
2 𝐷𝐷2(𝑥𝑥𝑡𝑡) + 𝑟𝑟22)

� = �
𝑚𝑚1𝑡𝑡
2 𝑃𝑃�𝑡𝑡𝑛𝑛 + 𝑟𝑟12

𝑚𝑚2𝑡𝑡
2 𝑃𝑃�𝑡𝑡𝑛𝑛 + 𝑟𝑟22

�, 
(40) 

 
for 𝑡𝑡 = 1, 2, … ,𝑛𝑛, where 𝑟𝑟12 and 𝑟𝑟22 are the variances of error term 𝐯𝐯𝑡𝑡 in (3). The 
following equation illustrates the use of the property of variance of the sum of random 
variables (see for example Jóźwiak & Podgórski, 2006, p. 107): 
 
 𝐷𝐷2(𝑋𝑋 + 𝑌𝑌) = 𝐷𝐷2(𝑋𝑋) + 𝐷𝐷2(𝑌𝑌) + 2𝐶𝐶𝐶𝐶𝑣𝑣(𝑋𝑋,𝑌𝑌), (41) 
 
and assuming that two random variables 𝑚𝑚1𝑡𝑡𝑥𝑥𝑡𝑡 and 𝑣𝑣1𝑡𝑡 are independent, which is 
equivalent to 𝐶𝐶𝐶𝐶𝑣𝑣(𝑚𝑚1𝑡𝑡𝑥𝑥𝑡𝑡,𝑣𝑣1𝑡𝑡) = 0. Variance 𝑃𝑃�𝑡𝑡𝑛𝑛 is calculated using (24). 
 
 According to model specification (2), 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡 are strongly linearly correlated. 
In fact, the two series describe the same process and the differences result from 
measurement errors. By that, even with a large discrepancy between variances 
𝐷𝐷2(𝑦𝑦1𝑡𝑡) and 𝐷𝐷2(𝑦𝑦2𝑡𝑡), the Pearson correlation coefficient between 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡 is 
approximately equal to one (𝜌𝜌 ≈ 1). This leads to the following approximation of 
the covariance between 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡: 
 
 𝜎𝜎12 = 𝐶𝐶𝐶𝐶𝑣𝑣(𝑦𝑦1𝑡𝑡 ,𝑦𝑦2𝑡𝑡) ≈ 𝐷𝐷(𝑦𝑦1𝑡𝑡)𝐷𝐷(𝑦𝑦2𝑡𝑡) = 𝜎𝜎1𝜎𝜎2, (42) 
 
which comes from a well-known formula for calculating the Pearson correlation 
coefficient (see for example Jóźwiak & Podgórski, 2006, p. 107): 
 

 𝜌𝜌 =
𝐶𝐶𝐶𝐶𝑣𝑣(𝑋𝑋,𝑌𝑌)
𝐷𝐷(𝑋𝑋)𝐷𝐷(𝑌𝑌)

. (43) 

 
 Formulas (40) and (42) provide the following specification of variance-covariance 
matrix 𝚺𝚺 of the joint distribution of 𝐲𝐲𝑡𝑡 elements in (27):2 
 

 𝚺𝚺 = �𝜎𝜎1
2 𝜎𝜎12

𝜎𝜎12 𝜎𝜎22
�. (44) 

 
2 At this stage 𝛍𝛍 and 𝚺𝚺 are still prior to the rearrangement for the observed and missing parts. 
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 Based on (39) and (44) we can proceed to the description of the steps needed to 
calculate the expected values of the missing elements of 𝐲𝐲𝑡𝑡 conditional on the 
observed data and the current estimates of the mean vector and the variance-
covariance matrix at a given iteration of the EM algorithm, denoted as 𝛍𝛍(1𝑖𝑖) and 𝚺𝚺(𝑖𝑖), 
where i is the iteration number. 
 We further assume that the observed time series is as shown in Figure 2, i.e. for 
some parts of the series one of the components can be missing for a number of 
periods. For the parts of the series where 𝑦𝑦1𝑡𝑡 is missing, the mean vector and variance- 
covariance matrix (27), after undergoing a rearrangement into the observed and 
incomplete part, take the form of: 
 

𝛍𝛍 = �
 𝜇𝜇2 
𝜇𝜇1 �, 

             𝚺𝚺 = � 𝜎𝜎2
2 𝜎𝜎12 

 σ12 𝜎𝜎12
�. 

(45) 

 
and the expected value of y1t is calculated using (29) 
 

 
𝐸𝐸(𝑦𝑦1𝑡𝑡|𝑤𝑤) = 𝐸𝐸�𝑦𝑦1𝑡𝑡�𝑦𝑦2𝑡𝑡 ,𝛍𝛍�(𝑖𝑖−1),𝚺𝚺�(𝑖𝑖−1)� = 𝛂𝛂�2|1

(𝑖𝑖) + 𝛃𝛃�2|1
(𝑖𝑖) 𝐲𝐲𝑡𝑡

(1) 

= �̂�𝜇1
(𝑖𝑖−1) + 𝜎𝜎12

(𝑖𝑖−1)

𝜎𝜎2
2 (𝑖𝑖−1) (𝑦𝑦2𝑡𝑡 − �̂�𝜇2

(𝑖𝑖−1)),       
(46) 

 
where w represents the conditional term in 𝐸𝐸�𝑦𝑦1𝑡𝑡�𝑦𝑦2𝑡𝑡 ,  𝛍𝛍� (𝑖𝑖−1), 𝚺𝚺�(𝑖𝑖−1)� and is applied 
here to simplify the further notation. 
 
 Expected value 𝐸𝐸(𝑦𝑦1𝑡𝑡2 |𝑤𝑤) is calculated using (36) and in the considered case the 
expression is simplified to 
 
 𝐸𝐸(𝑦𝑦1𝑡𝑡2 |𝑤𝑤) = 𝐸𝐸�𝑦𝑦1𝑡𝑡2 �𝑦𝑦2𝑡𝑡 ,𝛍𝛍�(𝑖𝑖−1),𝚺𝚺�(𝑖𝑖−1)� = 𝐸𝐸(𝑦𝑦1𝑡𝑡|𝑤𝑤)2. (47) 
 
 Similarly, for the missing y2t the mean vector and variance-covariance matrix (27) 
take the following form: 
 

𝛍𝛍 = �
 𝜇𝜇1 
𝜇𝜇2 �, 

             𝚺𝚺 = � 𝜎𝜎1
2 𝜎𝜎12 

 σ12 𝜎𝜎22
�, 

(48) 

 
and this leads to the expected value of 𝑦𝑦2𝑡𝑡: 
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𝐸𝐸(𝑦𝑦2𝑡𝑡|𝑤𝑤) = 𝐸𝐸�𝑦𝑦2𝑡𝑡�𝑦𝑦1𝑡𝑡 ,𝛍𝛍�(𝑖𝑖−1),𝚺𝚺�(𝑖𝑖−1)� = 𝛂𝛂�2|1

(𝑖𝑖) + 𝛃𝛃�2|1
(𝑖𝑖) 𝐲𝐲𝑡𝑡

(2) 

= �̂�𝜇2
(𝑖𝑖−1) + 𝜎𝜎12

(𝑖𝑖−1)

𝜎𝜎1
2 (𝑖𝑖−1) (𝑦𝑦1𝑡𝑡 − �̂�𝜇1

(𝑖𝑖−1)).       
(49) 

 
 For expected value 𝐸𝐸(𝑦𝑦2𝑡𝑡2 |𝑤𝑤) we obtain 
 
 𝐸𝐸(𝑦𝑦2𝑡𝑡2 |𝑤𝑤) = 𝐸𝐸�𝑦𝑦2𝑡𝑡2 �𝑦𝑦1𝑡𝑡 ,𝛍𝛍�(𝑖𝑖−1),𝚺𝚺�(𝑖𝑖−1)� = 𝐸𝐸(𝑦𝑦2𝑡𝑡|𝑤𝑤)2. (50) 
 
 The expectations of 𝐱𝐱𝑡𝑡  determined to smooth the time series, and 𝐲𝐲𝑡𝑡 to adjust for 
the missing data described in the preceding subsections are used to calculate the 
expected log-likelihood function (13), which can be rewritten to 
 
𝐸𝐸[ln𝐿𝐿 (𝛉𝛉|𝐱𝐱,𝐲𝐲)] = 

 −1
2

ln𝜎𝜎02 −
1
2𝜎𝜎02

�(𝑥𝑥�0𝑛𝑛)2 + 𝑃𝑃�0𝑛𝑛 − 2𝑥𝑥�0𝑛𝑛𝜇𝜇0 + 𝜇𝜇02�  

−𝑛𝑛
2

ln𝑞𝑞2 − 1
2𝑞𝑞2

∑ [(𝑥𝑥�𝑡𝑡𝑛𝑛)2 + 𝑃𝑃�𝑡𝑡𝑛𝑛 − 2𝜙𝜙𝑥𝑥�𝑡𝑡𝑛𝑛𝑥𝑥�𝑡𝑡−1𝑛𝑛 − 2𝜙𝜙𝑃𝑃�𝑡𝑡,𝑡𝑡−1
𝑛𝑛𝑛𝑛

𝑡𝑡=1  + 𝜙𝜙2(𝑥𝑥�𝑡𝑡−1𝑛𝑛 )2 +

𝜙𝜙2𝑃𝑃�𝑡𝑡−1𝑛𝑛 ] 
 −𝑛𝑛

2
ln(𝑟𝑟12𝑟𝑟22 − 𝑟𝑟122 ) − 1

2�𝑟𝑟12𝑟𝑟22−𝑟𝑟122 �
 𝑙𝑙1, 

(51) 

 
where 𝑙𝑙1 would depend on the missing data pattern. For a complete 𝐲𝐲𝑡𝑡, we note 𝑙𝑙1𝑜𝑜𝑜𝑜𝑜𝑜: 
 

 
      𝑙𝑙1𝑜𝑜𝑜𝑜𝑜𝑜 = ∑ [𝑦𝑦1𝑡𝑡2𝑛𝑛

𝑡𝑡=1 − 2𝑚𝑚1𝑡𝑡𝑦𝑦1𝑡𝑡𝐸𝐸(𝑥𝑥𝑡𝑡) + 𝑚𝑚1𝑡𝑡
2 𝐸𝐸(𝑥𝑥𝑡𝑡2)]𝑟𝑟22 

              −2[𝑦𝑦1𝑡𝑡𝑦𝑦2𝑡𝑡 − 𝑚𝑚2𝑡𝑡𝑦𝑦1𝑡𝑡𝐸𝐸(𝑥𝑥𝑡𝑡)−𝑚𝑚1𝑡𝑡𝑦𝑦2𝑡𝑡𝐸𝐸(𝑥𝑥𝑡𝑡)−𝑚𝑚1𝑡𝑡𝑚𝑚2𝑡𝑡𝐸𝐸(𝑥𝑥𝑡𝑡2)]𝑟𝑟12 
              + [𝑦𝑦2𝑡𝑡2 − 2𝑚𝑚2𝑡𝑡𝑦𝑦2𝑡𝑡𝐸𝐸(𝑥𝑥𝑡𝑡) + 𝑚𝑚2𝑡𝑡

2 𝐸𝐸(𝑥𝑥𝑡𝑡2)]𝑟𝑟12. 
(52) 

 
 For an incomplete 𝐲𝐲𝑡𝑡, its missing elements in 𝑙𝑙1 are replaced by their expected 
values according to (46)-(47) and (49)-(50). 

3.4. Maximisation of the log-likelihood 

The EM algorithm involves the maximisation of the log-likelihood function (51) 
with respect to the parameters of the model given by (2) and (5): 𝜇𝜇0, 𝜎𝜎02, 𝜙𝜙, 𝑞𝑞2 and 
𝐑𝐑. The closed-form solutions maximising the log-likelihood can be found for most 
of the parameters. As we do not assume the error terms in (2) to be uncorrelated, 
covariance 𝑟𝑟12 leads to the respective log-likelihood being specified as a higher-order 
polynomial. For the estimation of that parameter, the Newton-Raphson step is pro- 
posed as an iterative alternative to direct maximisation. 
 In order to find both the closed-form and the Newton-Raphson solutions, we first 
calculate the partial derivatives of the log-likelihood with respect to the model 
parameters 
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 𝐸𝐸 �𝜕𝜕 ln𝐿𝐿(𝛉𝛉|𝒙𝒙,𝐲𝐲)
𝜕𝜕𝜃𝜃𝑗𝑗

�, (53) 

 
where 𝛉𝛉 = [𝜇𝜇0 𝜎𝜎02 𝜙𝜙 𝑞𝑞2 𝑟𝑟12 𝑟𝑟22 𝑟𝑟12]′. For 𝜇𝜇0, 𝜎𝜎02, 𝜙𝜙, 𝑞𝑞2, we can directly 
maximise the log-likelihood by equating the first derivative of the log-likelihood (53) 
to zero: 
 
 𝐸𝐸 �𝜕𝜕 ln𝐿𝐿(𝛉𝛉|𝒙𝒙,𝐲𝐲)

𝜕𝜕𝜃𝜃𝑗𝑗
� = 0. (54) 

 
 Therefore, from  in (51) we follow with the equations below: 
 
 𝐸𝐸 �𝜕𝜕 ln 𝐿𝐿(𝛉𝛉|𝒙𝒙,𝐲𝐲)

𝜕𝜕𝜇𝜇0
� = 0, (55) 

 
 𝐸𝐸 �𝜕𝜕 ln 𝐿𝐿(𝛉𝛉|𝒙𝒙,𝐲𝐲)

𝜕𝜕𝜎𝜎02
� = 0, (56) 

 
through which we obtain the following maximum likelihood estimates of 𝜇𝜇0, 𝜎𝜎02:  
 
 �̂�𝜇0 = 𝑥𝑥�0𝑛𝑛, (57) 
 
 𝜎𝜎�02 = 𝑃𝑃�0𝑛𝑛, (58) 
 
where 𝑥𝑥�0𝑛𝑛 and 𝑃𝑃�0𝑛𝑛 are from (23) and (24). 
 
 The two parameters defining the autoregressive process are estimated according 
to the formula resulting from  in (51): 
 
 𝐸𝐸 �𝜕𝜕 ln 𝐿𝐿(𝛉𝛉|𝒙𝒙,𝐲𝐲)

𝜕𝜕𝜙𝜙
� = 0, (59) 

 
 𝐸𝐸 �𝜕𝜕 ln 𝐿𝐿(𝛉𝛉|𝒙𝒙,𝐲𝐲)

𝜕𝜕𝑞𝑞2
� = 0. (60) 

 
 With the use of properties described in (37) and (38), the estimators take the form of: 
 

 𝜙𝜙� =
∑ 𝑥𝑥�𝑡𝑡𝑛𝑛𝑥𝑥�𝑡𝑡−1𝑛𝑛 +𝑃𝑃�𝑡𝑡,𝑡𝑡−1

𝑛𝑛𝑛𝑛
𝑡𝑡=1

∑ �𝑥𝑥�𝑡𝑡−1
𝑛𝑛 �2+𝑃𝑃�𝑡𝑡−1

𝑛𝑛𝑛𝑛
𝑡𝑡=1

, (61) 

 
 𝑞𝑞�2 = ∑ (𝑥𝑥�𝑡𝑡𝑛𝑛 − 𝜙𝜙𝑥𝑥�𝑡𝑡−1𝑛𝑛 )2 + 𝑃𝑃�𝑡𝑡𝑛𝑛 − 𝜙𝜙�2𝑃𝑃�𝑡𝑡,𝑡𝑡−1

𝑛𝑛 + 𝜙𝜙𝑃𝑃�𝑡𝑡−1𝑛𝑛 �𝑛𝑛
𝑡𝑡=1 , (62) 

 
where 𝑥𝑥�𝑡𝑡𝑛𝑛 and 𝑥𝑥�𝑡𝑡−1𝑛𝑛  are from (23), 𝑃𝑃�𝑡𝑡𝑛𝑛 and 𝑃𝑃�𝑡𝑡−1𝑛𝑛  are given by (24), and 𝑃𝑃�𝑡𝑡,𝑡𝑡−1

𝑛𝑛  is 
provided by (25). The variances of error terms 𝑟𝑟12 and 𝑟𝑟22 from  in (51) can be 
maximised directly from: 
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 𝐸𝐸 �𝜕𝜕 ln 𝐿𝐿(𝛉𝛉|𝒙𝒙,𝐲𝐲)
𝜕𝜕𝑟𝑟12

� = 0, (63) 

 
 𝐸𝐸 �𝜕𝜕 ln 𝐿𝐿(𝛉𝛉|𝒙𝒙,𝐲𝐲)

𝜕𝜕𝑟𝑟22
� = 0. (64) 

 
 First, let us observe that  in (51) can be rewritten as: 

 
 −𝑛𝑛

2
ln(𝑟𝑟12𝑟𝑟22 − 𝑟𝑟122 )− 1

2�𝑟𝑟12𝑟𝑟22−𝑟𝑟122 �
 ∑ 𝑎𝑎𝑟𝑟22 − 2𝑏𝑏𝑟𝑟12 + 𝑐𝑐𝑟𝑟12𝑛𝑛

𝑡𝑡=1 , (65) 

 
where: 
𝑎𝑎 =  𝑦𝑦1𝑡𝑡2 − 2𝑚𝑚1𝑡𝑡𝑦𝑦1𝑡𝑡𝐸𝐸(𝑥𝑥𝑡𝑡) +𝑚𝑚1𝑡𝑡

2 𝐸𝐸(𝑥𝑥𝑡𝑡2), 
𝑏𝑏 = 𝑦𝑦1𝑡𝑡𝑦𝑦2𝑡𝑡 − 𝑚𝑚2𝑡𝑡𝑦𝑦1𝑡𝑡𝐸𝐸(𝑥𝑥𝑡𝑡)−𝑚𝑚1𝑡𝑡𝑦𝑦2𝑡𝑡𝐸𝐸(𝑥𝑥𝑡𝑡)−𝑚𝑚1𝑡𝑡𝑚𝑚2𝑡𝑡𝐸𝐸(𝑥𝑥𝑡𝑡2),  
𝑐𝑐 = 𝑦𝑦2𝑡𝑡2 − 2𝑚𝑚2𝑡𝑡𝑦𝑦2𝑡𝑡𝐸𝐸(𝑥𝑥𝑡𝑡) + 𝑚𝑚2𝑡𝑡

2 𝐸𝐸(𝑥𝑥𝑡𝑡2). 

 
 After taking the first derivative with respect to the parameter of interest, in this 
case 𝑟𝑟12, and multiplying the whole expression by denominator (𝑟𝑟12𝑟𝑟22 − 𝑟𝑟122 )2, we 
note that 𝑟𝑟12 would be cancelled out by the second element of the sum and the 
resulting maximum likelihood estimator would take the form of 

 

 �̂�𝑟12 = − 1
𝑛𝑛𝑟𝑟22

�𝑛𝑛𝑟𝑟122 + �∑ 𝑎𝑎𝑟𝑟22 − 2𝑏𝑏𝑟𝑟12 + 𝑐𝑐 𝑟𝑟12
2

𝑟𝑟22
𝑛𝑛
𝑡𝑡=1 �� . (66) 

 
 Similarly, we obtain the following for 𝑟𝑟22: 

 

 �̂�𝑟22 = − 1
𝑛𝑛𝑟𝑟12

�𝑛𝑛𝑟𝑟122 + �∑ 𝑐𝑐𝑟𝑟12 − 2𝑏𝑏𝑟𝑟12 + 𝑎𝑎 𝑟𝑟122

𝑟𝑟12
𝑛𝑛
𝑡𝑡=1 �� . (67) 

 
 For the estimation of 𝑟𝑟12, we introduce the Newton-Raphson step, which operates 
within the EM algorithm according to (10): 

 

 r�12𝑖𝑖+1 = r�12𝑖𝑖 − �𝐸𝐸 �𝜕𝜕
2 ln 𝐿𝐿(𝛉𝛉|𝒙𝒙,𝐲𝐲)

𝜕𝜕𝑟𝑟12
(𝑖𝑖)𝜕𝜕𝑟𝑟12

(𝑖𝑖) ��
−1
𝐸𝐸 �𝜕𝜕 ln 𝐿𝐿(𝛉𝛉|𝒙𝒙,𝐲𝐲)

𝜕𝜕𝑟𝑟12
(𝑖𝑖) �, (68) 

 
where 

 

𝐸𝐸 �𝜕𝜕 ln𝐿𝐿(𝛉𝛉|𝒙𝒙,𝐲𝐲)

𝜕𝜕𝑟𝑟12
(𝑖𝑖) � = 𝑛𝑛𝑟𝑟12

𝑟𝑟12𝑟𝑟22−𝑟𝑟122
− 𝑟𝑟12

(𝑟𝑟12𝑟𝑟22−𝑟𝑟122 )2 
∑ 𝑎𝑎𝑟𝑟22 + 𝑐𝑐𝑟𝑟12𝑛𝑛
𝑡𝑡=1 + 1

𝑟𝑟12𝑟𝑟22−𝑟𝑟122  
∑ 𝑏𝑏𝑛𝑛
𝑡𝑡=1 ,  (69) 
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and 
 

𝐸𝐸 �𝜕𝜕
2 ln𝐿𝐿(𝛉𝛉|𝒙𝒙,𝐲𝐲)

𝜕𝜕𝑟𝑟12
(𝑖𝑖)𝜕𝜕𝑟𝑟12

(𝑖𝑖) � = 𝑛𝑛(𝑟𝑟122 +𝑟𝑟12𝑟𝑟22)
(𝑟𝑟12𝑟𝑟22−𝑟𝑟122 )2 

− 3𝑟𝑟122 +𝑟𝑟12𝑟𝑟22

(𝑟𝑟12𝑟𝑟22−𝑟𝑟122 )3 
∑ 𝑎𝑎𝑟𝑟22 + 𝑐𝑐𝑟𝑟12𝑛𝑛
𝑡𝑡=1  

+ 2𝑟𝑟12(𝑟𝑟122 +3𝑟𝑟12𝑟𝑟22)
(𝑟𝑟12𝑟𝑟22−𝑟𝑟122 )3 

∑ 𝑏𝑏𝑛𝑛
𝑡𝑡=1 .      

(70) 

 
 The Newton-Raphson step in the EM procedure actually operates as a sub-
algorithm, finding the maximum likelihood estimate of 𝑟𝑟12 iteratively, at each run of 
the EM. It is worth noting that we can apply the use of the Newton-Raphson 
algorithm to more than one parameter within the EM, which extends the usage of 
this estimation procedure. 
 To summarise, the EM algorithm with the Newton-Raphson step operates according 
to the following scheme (compare with Shumway & Stoffer, 1982, p. 258): 
• set the initial values of parameters 𝜇𝜇0, 𝜎𝜎02, 𝜙𝜙, 𝑞𝑞2, 𝑟𝑟12, 𝑟𝑟22 and 𝑟𝑟12; 
• for the current values of the estimates, calculate the expected values of 𝐱𝐱𝑡𝑡 using 𝑥𝑥�𝑡𝑡𝑛𝑛 

and 𝑥𝑥�𝑡𝑡−1𝑛𝑛 from (23), 𝑃𝑃�𝑡𝑡𝑛𝑛 and 𝑃𝑃�𝑡𝑡−1𝑛𝑛  from (24), and 𝑃𝑃�𝑡𝑡,𝑡𝑡−1
𝑛𝑛  from (25) and 𝐲𝐲𝑡𝑡 using 

(46)–(37) and (49)–(50) for the two missing data patterns, respectively; 
• estimate the parameters of the substantive model using formulas �̂�𝜇0, 𝜎𝜎�02, 𝜙𝜙�, 𝑞𝑞�2, 
�̂�𝑟12, �̂�𝑟22 and �̂�𝑟12 (57), (58), (61), (62), (66), (67) and (68), noting that (68) for 𝑟𝑟12 is 
the iterative approach. If the estimates of the parameters are not stabilised, move 
to step 2, whereas if the convergence has been reached, stop the process. The 
estimates from the last iteration of the EM algorithm are the maximum likelihood 
estimates of the model described by (2) and (5). 

4. Assessment and application of the EM algorithm with the Newton-
Raphson step 

4.1. Assessment of the algorithm 

The EM algorithm with the Newton-Raphson step (EMNR) as described in the 
previous section has been applied to the data generated from a distribution imitating 
the process of autoregression affected by noise, with two observed series measuring 
the same, unobserved underlying process. The algorithm has been applied using 
a programme code written in SAS® IML, available upon request. 
 The sample of 𝑛𝑛 = 200 values was drawn from a population described by two 
equations – (2) and (5). The parameters of the model from which the sample was 
drawn are shown in Table 1. The values of the parameters have been selected so as to 
demonstrate an exemplary autoregressive process with a relatively strong autocorrela- 
tion between adjacent elements of time series. The goal was to compare the estimates 
with the actual values. 
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Table 1. Parameters of the model used to generate the sample 

𝜇𝜇0 𝜎𝜎02 𝜙𝜙 𝑞𝑞2 𝑟𝑟12 𝑟𝑟22 𝑟𝑟12 

47,000 8,319,328.444 0.98 4,000 4,000 4,000 2,000 

Source: author’s work. 

 
 At first, the initial value of process 𝑥𝑥0 was drawn from 𝑁𝑁(𝜇𝜇0,𝜎𝜎0). Subsequently, 
the autoregressive parameter was set equal to 𝜙𝜙 =0.98. Further, an assumption was 
made that the observed series 𝒚𝒚𝒕𝒕 for 𝑡𝑡 =  1, 2, … ,𝑛𝑛 can differ by the error terms, and 
the transition factor from the unobserved to observed series is one, which is 
equivalent to 𝐌𝐌𝑡𝑡 = [1 1]′. Having specified 𝜙𝜙, the values of 𝑥𝑥𝑡𝑡 were drawn from 
the autoregressive process with the 𝑤𝑤𝑡𝑡 disturbance term. Following that and having 

specified 𝐌𝐌𝑡𝑡, observed series 𝐲𝐲𝑡𝑡 were drawn from 𝐑𝐑 = �4000 2000
2000 4000�. The draw of 

the series was followed by the removal of observations from 𝑦𝑦1𝑡𝑡 for 𝑡𝑡 between 51 and 
84 and 𝑡𝑡 >191, and for 𝑦𝑦2𝑡𝑡 for 𝑡𝑡 between 140 and 167. This was to imitate the 
situation of losing one source of the signal for a specific time period. Overall, this 
resulted in 𝑟𝑟 = 133 complete observations (i.e. 66.5% of data were complete). 
 Figure 4 shows the series of the generated 𝑥𝑥𝑡𝑡 values (circles). The breaks in the 
series represent the time periods with a limited signal, which in this case involved 
observing only one element – 𝐲𝐲𝑡𝑡 for some time. 
 
Figure 4. The generated series (circles) and the estimated curve (pluses) 

 
Source: author’s work. 
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Figure 5. Iterations history for the EMNR algorithm 

 
Source: author’s work. 
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 The EMNR was applied with the number of iterations equal to 10,000. In order 
to speed up the processing, parameter 𝑟𝑟12 was set to 0 for the initial 20 iterations, 
which allowed stabilising at first 𝑟𝑟12, 𝑟𝑟22. From the 21st iteration onwards, 𝑟𝑟12 was 
approximated at each iteration. 
 The high number of iterations allows observing the behaviour of the algorithm for 
a longer period. In fact, a far smaller number of iterations was required to reach 
convergence (see Figure 5). The estimates of 𝑥𝑥𝑡𝑡  for 𝑡𝑡 = 1, 2, … ,𝑛𝑛 after smoothing and 
adjusting for incomplete data are indicated with pluses in Figure 4. By comparing the 
pluses with the curve showing the actual process, we can see that it was resumed 
regardless of the missing data which occurred for some periods in both series. 
 Furthermore, the descriptive statistics for the Absolute Percentage Error (APE) 
were calculated following an estimation using the EMNR and the standard EM 
algorithm, in which 𝑟𝑟12 = 0. The Mean Absolute Percentage Error (MAPE) was 
calculated according to the following formula: 
 
 𝑀𝑀𝑀𝑀𝑃𝑃𝐸𝐸 = 1

𝑛𝑛
∑ �𝑥𝑥𝑡𝑡−𝑥𝑥�𝑡𝑡

𝑥𝑥𝑡𝑡
�𝑛𝑛

𝑡𝑡=1  , (71) 

 
with the result values multiplied by a 100. 
 
 The results are presented in Table 2. We can see that the MAPE expressing the 
relative deviation from the actual values ex post is smaller for the EMNR than for the 
standard EM algorithm (0.84 vs 0.92) and display a lower standard deviation of APE 
(1.172 vs 1.283). The prediction error is on average less than 0.9% of the actual 
values of the underlying process. The forecasts from both algorithms were compared 
using the Diebold-Mariano (DM) test (1995) with a forecast horizon of three 
periods, through a one-sided test with the null hypothesis of no difference and an 
alternative that the EMNR forecast is more accurate than the EM forecast. The DM 
yielded the test statistic of DM = −3.06 with the 𝑝𝑝−value = 0.001 and, thus, the null 
hypothesis was rejected at 𝛼𝛼 = 0.05. The predictions from the EMNR algorithm are 
significantly more accurate statistically than the ones from the standard EM 
algorithm. The result is determined by the possibility to relax the assumption for 
𝑟𝑟12 = 0, which is not required in the EMNR algorithm. The estimates of the 
standard EM algorithm are presented in the last row of Table 3. 
 The iteration process of the EMNR is shown in Table 3 and Figure 5, which 
demonstrate that the algorithm required approximately 1,000 iterations to reach 
convergence for all the estimated parameters, i.e. 𝜇𝜇0, 𝜎𝜎02, 𝜙𝜙, 𝑞𝑞2, 𝑟𝑟12, 𝑟𝑟22 and 𝑟𝑟12. What 
is more, after reaching convergence the estimates remained stable, which is reflected 
in the curves representing the estimates at subsequent iterations (Figure 5) and in 
their comparison with the estimates from the last iterations (Table 3). Autoregressive 
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parameter estimate 𝜙𝜙 is equal to the parameter value. Estimates 𝜇𝜇0, 𝑞𝑞2, 𝑟𝑟22 and 𝑟𝑟12 
are close to the true underlying values. A smaller value than expected is obtained for 
𝑟𝑟12. A similar situation is with initial variance 𝜎𝜎02, for which it would be the highest 
deviation from the actual value, however this last parameter is of less importance for 
the process description. The missing data would be mostly affecting the estimate of 
the variance of the first error term in (2). 
 The Newton-Raphson sub-algorithm was set to work in a loop of 50 iterations. 
The actual convergence was immediate, occurring after only several repetitions of 
the cycle. An example of sub-iteration for the 10th iteration of the EM algorithm is 
presented in Figure 6. 
 
Table 2. Descriptive statistics of the APE for the smoothing estimator, and results of the DM 

test for forecast comparison 

Method 𝑛𝑛 Mean Std. Dev. Minimum Maximum 

EMNR algorithm  ..............  200 0.84 1.172 0.0004 6.09 
EM algorithm  ....................  200 0.92 1.283 0.0012 6.48 

Note. A one-sided DM test with an alternative hypothesis stating that EMNR forecasts are more accurate 
than EM forecasts and a forecast horizon of three periods yielded a test statistic of DM = −3.06 with 
a 𝑝𝑝-value = 0.001. 

Source: author’s calculations. DM test generated using the ‘multDM’ R package.  

 
Table 3. Iteration process for the EMNR algorithm 

Iteration 𝜇𝜇0 𝜎𝜎02 𝜙𝜙 𝑞𝑞2 𝑟𝑟12 𝑟𝑟22 𝑟𝑟12 

1  .....................  21,321.20 7,072.78 0.9847 6,863,171.56 1,809,904.50 1,813,848.31 0 
2  .....................  21,346.27 7,066.46 0.9887 4,633,299.45 958,295.53 961,020.78 0 
3  .....................  21,384.15 7,056.85 0.9896 4,079,657.86 536,900.08 539,165.70 0 
4  .....................  21,428.38 7,045.62 0.9898 3,929,662.89 319,062.70 320,625.27 0 
5  .....................  21,475.19 7,033.73 0.9899 3,871,281.88 197,721.15 198,743.50 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
21  ...................  22,271.12 6,831.60 0.9901 3,586,632.42 2,051.60 2,069.82 862.78 
22  ...................  22,321.24 6,818.88 0.9901 3,572,790.50 2,074.15 2,097.57 902.68 
23  ...................  22,371.36 6,806.15 0.9901 3,559,551.61 2,106.44 2,133.39 932.70 
24  ...................  22,421.48 6,793.42 0.9901 3,546,362.07 2,132.28 2,163.73 959.99 
25  ...................  22,471.60 6,780.69 0.9901 3,533,192.22 2,155.03 2,191.44 984.09 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
9,991  .............  49,630.05 0.74 0.9804 5,006.55 2,496.28 3,217.49 1,657.64 
9,992  .............  49,630.05 0.74 0.9804 5,006.55 2,496.28 3,217.48 1,657.64 
9,993  .............  49,630.05 0.74 0.9804 5,006.55 2,496.28 3,217.48 1,657.64 
9,994  .............  49,630.05 0.74 0.9804 5,006.55 2,496.28 3,217.48 1,657.64 
9,995  .............  49,630.05 0.74 0.9804 5,006.55 2,496.28 3,217.48 1,657.64 
9,996  .............  49,630.05 0.74 0.9804 5,006.55 2,496.28 3,217.48 1,657.64 
9,997  .............  49,630.06 0.74 0.9804 5,006.55 2,496.28 3,217.48 1,657.64 
9,998  .............  49,630.06 0.74 0.9804 5,006.55 2,496.28 3,217.48 1,657.64 
9,999  .............  49,630.06 0.74 0.9804 5,006.55 2,496.29 3,217.48 1,657.64 
10,000  ...........  49,630.06 0.74 0.9804 5,006.55 2,496.29 3,217.48 1,657.64 
        
10,000*  .........  49640.3 0.81 0.9804 6,481.13 1,688.3 2,225.3 0 

*The last row includes the estimates from the standard EM algorithm for comparison with the EMNR. 

Source: author’s calculations. 
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Figure 6. Sub-iterations history for the Newton-Raphson step within the EM algorithm 
– 25th iteration of the EMNR algorithm 

 

Source: author’s calculations. 

4.2. Forecasting demand based on incomplete bivariate time series data 

The model given by (2) and (5) has been utilised to analyse the demand for 
newspapers and to create a forecast for the three months following the last 
observations to illustrate the application of the EMNR algorithm. The data have 
been drawn from a website providing the service of monitoring the sales and 
circulation of the press titles in Poland (Teleskop, n.d.). The analysed dataset 
consists of two series of the monthly sales and distribution of the printed Polish daily 
newspaper ‘Rzeczpospolita’ between January 2016 and May 2018 (Table 4). The 
sample size equals 𝑛𝑛 = 29. Note that for practical applications a larger sample would 
be expected as the underlying estimation method is the maximum likelihood. 
 The goal of the example is to demonstrate the application of the EMNR algorithm 
in the context of a business problem using empirical data. The problem selected for 
analysis is experienced by newspaper companies and its aim is to predict the correct 
number of printouts required by particular selling points. 
 In order to illustrate the functioning of the algorithm, the values in the brackets in 
Table 4 were considered missing, which, as in sampled data description, is to mimic 
the break in the reception of one of the signals used to assess the demand in this case. 
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 The programme written in SAS® IML and available upon request has been applied 
to estimate the parameters of the model describing the evolution of the demand for 
the analysed newspaper. The number of iterations was set to 10,000. Unlike in the 
case of sampled data, the convergence is slower. The algorithm reached a stable level 
for the studied parameters close to the end of the predefined iteration number, 
which might have resulted from the fact that the available sample was very small. 
The estimates for the early and final iterations of the algorithm are shown in Table 5. 
The convergence of the Newton-Raphson sub-algorithm was immediate. 
 Figure 7 presents observed series 𝐲𝐲𝑡𝑡 along with the estimated smoothed series 
reflecting underlying process 𝑥𝑥𝑡𝑡. We can see that the model fit leads to a nearly 
linear evolution around the shifts captured by the error terms deviations. 
 Equations (17)–(21) have been used to calculate the forecast for the demand for 
the ‘Rzeczpospolita’ newspaper for the three months following the last observation 
(see Shumway & Stoffer, 1982, p. 262). 
 Predictions with the standard errors are shown in Table 6. Their values indicate 
a downward trend observed for the series in the analysis. 
 
Figure 7. Observed series yt (circles) and the estimates for xt (pluses) 

 

Source: author’s calculations. 
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Table 4. Sales and distribution of the ‘Rzeczpospolita’ newspaper between January 2016 
and May 2018 

Time Sales Distribution 

1  ....................  47,389 49,117 
2  ....................  44,026 44,115 
3  ....................  44,263 44,398 
4  ....................  43,812 43,910 
5  ....................  43,044 43,203 
6  ....................  43,168 43,379 
7  ....................  42,961 43,059 
8  ....................  41,601 (41,694) 
9  ....................  41,698 (41,813) 
10  ..................  40,965 (41,071) 
11  ..................  40,675 (40,780) 
12  ..................  40,647 40,739 
13  ..................  40,927 41,000 
14  ..................  37,753 37,842 
15  ..................  37,390 37,417 
16  ..................  38,047 38,139 
17  ..................  37,612 37,695 
18  ..................  37,487 37,514 
19  ..................  37,606 37,652 
20  ..................  37,064 37,092 
21  ..................  37,025 37,093 
22  ..................  36,540 36,648 
23  ..................  36,782 36,897 
24  ..................  36,859 36,918 
25  ..................  (34,080) 34,117 
26  ..................  (34,191) 34,225 
27  ..................  (35,058) 35,084 
28  ..................  (34,297) 34,364 
29  ..................  (34,156) 34,247 

Source: author’s calculations based on data from Teleskop (n.d.). 
 
Table 5. Iteration history for the EM algorithm – newspaper dataset 

Iteration 𝜇𝜇0 𝜎𝜎02 𝜙𝜙 𝑞𝑞2 𝑟𝑟12 𝑟𝑟22 𝑟𝑟12 

1 .....................  21,321.2 7,072.78 0.9978 27,289,942.3 2,221,952.9 2,498,100.3 0 
2 .....................  21,327.8 7,071.02 0.9996 26,186,180.8 1,401,354.4 1,553,840.5 0 
3 .....................  21,334.8 7,069.17 0.9996 26,164,134.9 904,320.5 1,008,221.3 0 
4 .....................  21,341.9 7,067.29 0.9995 26,203,873.2 602,394.4 673,174.3 0 
5 .....................  21,349.1 7,065.41 0.9995 26,224,958.2 413,633.3 463,387.0 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
21  ..................  21,464.3 7,035.09 0.9995 25,979,283.8 72,433.6 89,516.6 26,224.1 
22  ..................  21,471.5 7,033.19 0.9996 25,851,652.3 72,421.1 95,489.9 30,575.4 
23  ..................  21,478.7 7,031.28 0.9996 25,725,415.0 72,710.1 102,398.1 33,939.5 
24  ..................  21,486.0 7,029.37 0.9996 25,599,466.9 72,555.9 108,888.4 37,129.5 
25  ..................  21,493.2 7,027.44 0.9997 25,471,929.7 72,184.8 115,224.2 40,116.4 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
9,991  ............  46,052.6 111.00 0.9893 767,016.6 61,832.4 311,668.8 138,820.5 
9,992  ............  46,052.7 110.98 0.9893 767,014.7 61,832.4 311,668.8 138,820.5 
9,993  ............  46,052.7 110.97 0.9893 767,012.9 61,832.4 311,668.8 138,820.5 
9,994  ............  46,052.8 110.95 0.9893 767,011.0 61,832.4 311,668.8 138,820.5 
9,995  ............  46,052.9 110.93 0.9893 767,009.1 61,832.4 311,668.8 138,820.5 
9,996  ............  46,052.9 110.92 0.9893 767,007.2 61,832.4 311,668.8 138,820.5 
9,997  ............  46,053.0 110.90 0.9893 767,005.3 61,832.4 311,668.8 138,820.5 
9,998  ............  46,053.1 110.89 0.9893 767,003.4 61,832.4 311,668.8 138,820.5 
9,999  ............  46,053.1 110.87 0.9893 767,001.5 61,832.4 311,668.8 138,820.5 
10,000  ..........  46,053.2 110.86 0.9893 766,999.6 61,832.4 311,668.8 138,820.5 

Source: author’s calculations. 
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Table 6. Prediction of the demand for the ‘Rzeczpospolita’ newspaper for June–August 2018 

Time 𝑥𝑥�𝑡𝑡+1 �𝑃𝑃�𝑡𝑡+1 

𝑡𝑡 +  1  ..........  33,881 875 
𝑡𝑡 +  2  ..........  33,520 1,232 
𝑡𝑡 +  3  ..........  33,162 1,501 

Source: author’s calculations. 

5. Conclusions 

Statistical practice is faced with the issue of handling various imperfections resulting 
from data’s nature. Different types of measurement errors need to be modelled and 
irregularities in the observed data such as missing observations must be taken into 
account. The Kalman filter is one of the tools that allows modelling noisy time series 
data. The article focused on exploring the application of the model and the 
underlying estimation process to situations when empirical data series contain 
measurement errors and are incomplete. The incompleteness involves situations 
when one of the sources of the signal is broken for some time, leaving less precise 
information to estimate the parameters and make predictions. The technique 
presented in the text was built on the concept described by Shumway & Stoffer 
(1982), extending the algorithm from the paper to a hybrid version, including the 
Newton-Raphson sub-algorithm. 
 The extended version of the algorithm has been verified using sampled data from 
a model imitating the studied process. The verification showed that the EMNR 
converged with a relatively small number of iterations and produced stable 
maximum likelihood estimates. The estimation accounted for incompleteness of the 
observed data vector, restoring the missing information so that the estimates of the 
substantive model parameters converged towards the parameters of the data-
generating model. The extended EMNR algorithm provided statistically significantly 
more accurate predictions as compared to the standard EM algorithm. An appli- 
cation to empirical data has also been included jointly with a calculation of the 
demand for newspapers  predicted in subsequent periods closely after the last obser- 
vation. 
 The suggested extension of the algorithm could supplement the solution for 
obtaining maximum likelihood estimates with a better assessment of uncertainty 
resulting from missing data through multiple imputations within the Bayesian 
paradigm. The basic scheme for complete data estimation of an autoregressive 
process can be found in Geweke (2005, Section 7.1). The approach would require 
a further assessment of the probabilistic characteristics of the estimates, which would 
lead to a proper assessment of the confidence intervals. 
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