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Abstract. The starting point for the presentation of the similarities and differences between the 
principles of conducting statistical research according to the rules of both statistical inference 
and statistical learning is the paradigm theory, formulated by Thomas Kuhn. In the first section 
of this paper, the essential features of the statistical inference paradigm are characterised,  
with particular attention devoted to its limitations in contemporary statistical research. 
Subsequently, the article presents the challenges faced by this research jointly with the 
expanding opportunities for their effective reduction. The essence of learning from data is 
discussed and the principles of statistical learning are defined. Moreover, significant features of 
the statistical learning paradigm are formulated in the context of the differences between the 
statistical inference paradigm and the statistical learning paradigm. It is emphasised that the 
statistical learning paradigm, as the more universal one of the two discussed, broadens the 
possibilities of conducting statistical research, especially in socio-economic sciences. 
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1. The statistical inference paradigm 

Thomas S. Kuhn, an American physicist, historian and philosopher of science, is the 
founder of the concept of the scientific paradigm. In his basic work on the 
philosophy of science entitled The Structure of Scientific Revolutions (Kuhn, 1962),1 
he introduced into the philosophy of science the idea of a paradigm as a set of 
concepts and theories that form the basis of a given science. These theories and 
concepts are not questioned, at least as long as the paradigm is cognitively creative, 
i.e. it can be used to create specific theories consistent with the experimental or 
historical data which the science concerns. The most general paradigm is that of the 
scientific method, which formulates the criteria for recognising an activity as 
scientific. The paradigm guides the research effort of scientific communities and is 
the basic criterion for identifying areas of individual sciences. Kuhn’s fundamental 
claim is that a transition from the old to the new paradigm takes place in the process 
of scientific revolutions. When a paradigm shift occurs, the scientific world changes 
qualitatively by enriching it with new facts and theories. Thus, according to Kuhn, 
the development of scientific theories continues. 
 In science, and especially in social sciences, different paradigms can occur 
simultaneously, which can even lead to scientific paradigm wars, involving scientists 
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from different camps to contest each other and deny others their scientific character. 
Examples of different paradigms in economic sciences are those of classical and 
Keynesian economics. Parallel paradigms exist in statistics, including descriptive 
statistics, mathematical statistics, Bayesian statistics or the statistical learning 
paradigm (Pociecha, 2020). 
 The paradigm of mathematical statistics (statistical inference) is based on the 
notions of a (general) population, i.e. a statistical population which we do not study, 
and a sample, i.e. a subset of the population we are investigating. The paradigm 
assumes that – on the basis of the sample – we can infer about the population, as 
long as the sample is representative of the population. A necessary condition for the 
representativeness of a sample is its random selection. Sample representativeness is  
a gradual concept; the degree of sample representativeness depends on the sampling 
method and, for a given sampling scheme, the size of the sample. Quite complicated, 
layered sampling schemes are generally used in statistical survey practice, especially 
when the population is very numerous and clearly structured. The sampling theory 
deals with sampling procedures (see e.g. Bracha, 1996; Steczkowski, 1995; Tillé, 
2006).  
 As part of mathematical statistics, two theories constituting its methodological 
basis were formulated – the statistical estimation theory and the statistical 
hypotheses testing theory. The theory of estimation lays down the rules for 
estimating the parameters of the distribution in the population, based on the 
obtained sample, with a fixed type of distribution. The theory of statistical 
hypotheses testing formulates rules for verifying the truthfulness of judgements 
regarding the parameters of the distribution in a certain population by comparing it 
with a determined type of distribution, or judgements relating to the compliance of 
the empirical distribution with a selected theoretical distribution. Moreover, the 
theory involves examining hypotheses regarding the randomness of a sample or 
other related judgements about one or more populations. 
 Statistical inference is of a probabilistic nature and uses two concepts in 
particular: the concept of a confidence level, defined as a confidence coefficient or 
interval, understood as a probabilistic measure of an estimation error in parameter 
estimation, and the concept of a significance level, defined as a predetermined 
probability (risk) of committing a first type error. 
 The paradigm of mathematical statistics is based on the stochastic nature of 
statistical regularities resulting from the indeterministic understanding of the 
connections between the components of the world around us, on the principles of 
inductive inference in the incomplete version and the frequency definition of 
probability. The assumptions of the Aristotelian realist philosophy, assuming that 
the world (reality) exists objectively (outside our mind) and is knowable constitute 
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the fundamental philosophical basis of the paradigm of statistical inference as a tool 
for studying mass processes. This philosophy shows that learning about the reality 
that surrounds us, although difficult, is possible and the scientific effort it entails is 
deliberate. This justifies the possibility and purposefulness of conducting scientific 
research also with the use of statistical methods. An important premise of the 
statistical inference paradigm is Karl Popper’s critical rationalism, which forms the 
philosophical basis for testing scientific hypotheses. The immediate philosophical 
foundation of this paradigm is probabilism, which originated from ancient sceptics 
and was developed by neo-positivists. Popper adopts a sceptical understanding of 
the truth, which we can approach only at a distance acceptable to us (with an error 
that we accept), and which allows making statistical inferences (Pociecha, 2020). 
 Conducting statistical research in accordance with the presented paradigm of 
mathematical statistics is, however, subject to certain limitations and its correct 
performance – in both theoretical and practical terms – faces a number of 
difficulties. In particular, it is challenging for socio-economic sciences to put into 
practice the theoretical requirements for sampling (Cassel et al., 1977). This relates 
to defining the substantive, spatial and temporal scope of the population, 
determining the sampling frame, sampling scheme, sampling procedure (quota, 
group, systematic, stratified sampling), the multi-stage sampling scheme or 
determining the sample size. Each decision in any of the mentioned areas affects the 
obtained sample representativeness. However, in the practice of statistical analyses, 
often no attention is devoted as to how the data set, which we consider a random 
sample, was obtained and no tests verifying the randomness of a sample are 
conducted. In effect, the correctness of the obtained results of statistical 
investigations is often questioned, and the validity of using statistical methods in 
socio-economic research becomes uncertain. 
 The statistical estimation theory and the theory of parametric statistical 
hypotheses verification requires assuming a specific analytical form of distribution 
in the population. The vast majority of estimation procedures and the verification of 
parametric hypotheses require the assumption of normal distribution in the 
population. While in physico-biological studies the assumption of the normality of 
distribution in the population is in most cases satisfied, in socio-economic studies it 
is usually not. However, procedures aiming to test the normality of a population 
distribution are rarely used. There are, of course, also procedures assuming  
a different than normal analytical form of distribution in the population, but 
statistical procedures based on such distributions have not been developed and are 
theoretically complex. 
 It should also be noted that parametric hypothesis estimation and testing 
procedures are limited to solving problems which can be effectively parameterised, 
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but there are numerous empirical research problems that cannot. The existing non-
parametric tests alleviate the problem of analysing non-parameterised issues only to 
a certain extent. 
 Another limitation of the mathematical statistics paradigm is the adoption of an 
axiomatic in theory and frequentative in practice definition of probability. The 
Bayesian statistic paradigm extends the understanding of probability to an a priori 
probability and a probability a posteriori, which broadens the understanding of this 
key concept to include its subjective aspect and allows for a clear connection 
between statistical theory and empirical research. The limitation of classical 
statistical inference is that the testing of statistical hypotheses is based on minimising 
the risk of committing the first type error, i.e. rejecting the null hypothesis when it is 
actually true, which occurs in significance tests. In a large number of cases, it is more 
important to minimise the risk of making a second type error, i.e. accepting the null 
hypothesis when it is false. These situations arise, for example, in the process of 
testing the correctness of financial statements when their audit is performed (Hołda 
& Pociecha, 2009). 
 The limitations resulting from the failure of empirical data to meet the theoretical 
assumptions underlying the methods of the estimation and verification of statistical 
hypotheses are also highlighted by Wiesław Szymczak in his book on the practice of 
statistical inference (Szymczak, 2018). In his work, the author critically assesses the 
role of the paradigm in statistics. Summing up, it should be emphasised that the 
commonly functioning paradigm of statistical inference does not provide a universal 
basis for empirical statistical research. It is subject to significant limitations and 
creates a number of difficulties for the correct implementation of empirical research 
according to this paradigm. 

2. Challenges facing modern statistical research 

The rapid development of information technology (IT), encompassing more and 
more efficient computer hardware and involving an increasingly higher quality and 
reliability computer software, enables processing great amounts of information, 
offering new analytical possibilities for contemporary statistical research, unlike ever 
before. Modern computers have an unimaginable computing power. Currently, the 
most powerful computer in the world, designated as 1/10 1 – Summit – IBM Power 
System AC922 has 2,801,644 GB of memory and 2,414,592 cores. Its computing 
power is at the level of 148,600 teraflops per second, and may even exceed the value 
of 200,795 teraflops (Onet, n.d.). Thus, it can be concluded that the current 
computational possibilities for statistical analyses face no technical barriers. 
 The increased ability to collect, process and store data is now leading to the 
creation of extremely large data sets for which the term Big Data has been adopted. 
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Big Data is defined as a dense, continuous and unstructured data stream resulting 
from interpersonal interactions, interactions between devices being part of the 
infrastructure of the global computer network, and all other instruments through 
which this data stream is registered and transmitted (Migdał-Najman & Najman, 
2017). The most important source of Big Data, however, are the interactions 
resulting from humans’ connections with IT devices, giving people access to 
numerous services such as transaction systems, online stores, financial services, 
mobile services, systems monitoring health, emotions, location, and physical activity. 
Big Data sets are characterised by the amount of data they contain (volume), data 
processing speed (velocity) and data diversity (variety). The above-mentioned 
features include the degree of their reliability (veracity), their value for the user 
(value) and the possibility of their visualisation (visualisation) (Tabakow et al., 
2014). 
 Even if a Big Data set displays the above-mentioned features, it does not 
necessarily mean that it is directly useful for conducting statistical analyses. Big Data, 
in addition to providing useful, up-to-date, accessible, comparable, consistent and 
accurate data, called clear data, consists of inaccurate, repeated, incomplete, wrongly 
named or non-integrated data, referred to as dirty data, as well as dark data, whose 
author, place and time of creation, content and connection with other data remains 
unidentified (Migdał-Najman & Najman, 2017). 
 Thus, Big Data contains not only the clear data desired by the analyst, but also 
dirty data, whose removal often involves complicated cleaning procedures (Kim et 
al., 2003), and dark data, towards which the analyst should make a decision whether 
to eliminate them from the given data set. It is difficult to clearly state in what 
proportions the above-mentioned Big Data components occur, but IT specialists and 
analysts claim that clear data is a substantial minority within Big Data, which is also 
reflected in the obvious disproportion between the amount of data collected and the 
amount of relevant data providing valuable information. IT specialists say that dark 
data can account for up to 90% of the entire volume of Big Data – it is then this 
percentage of Big Data that is not fit for analytical purposes. Thus, the technical and 
IT-related capacity for collecting and storing data are much higher than the ability to 
analyse and draw conclusions from these data; moreover, this disproportion is 
growing rapidly (Migdał-Najman & Najman, 2017). 
 The changes in the acquisition, storage, processing and analysis of data presented 
above pose new challenges for modern statistical research. It is not the issue of 
limited data availability or restricted computational possibilities that constitute  
a barrier to the development and application of statistical methods. On the contrary, 
today’s excess of data and the enormous computing power of computers pose  
a challenge for the rational application of statistical methods in socio-economic 
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analyses. In consequence, the classical paradigm of mathematical statistics is often 
insufficiently effective for modern statistical research. This made it necessary to 
search for a new paradigm of empirical research using statistical tools. 

3. Learning from data 

The purpose of statistical analysis is to extract information from data, while data 
analysis involves the processing of data in order to obtain useful information and 
draw conclusions. Sometimes the term ‘data analysis’ is understood as a field of 
knowledge covering the issues of acquiring, storing and processing data, building 
data warehouses, databases and algorithms; the term may also relate to the 
knowledge of IT tools such as Excel, Python, R, SQL environment, etc. Data analysis 
understood in this way is described in many works, e.g. in Alexander & Kusleika 
(2019). It should be emphasised, however, that the scope of data analysis is 
significantly broader and involves not only obtaining or processing data with the use 
of appropriate IT tools, but, above all, inferring about the socio-economic reality 
which these data come from. 
 In data analysis, the saying ‘let the data speak for itself’ means learning from data. 
The idea is to acquire knowledge not only useful for performing current activities, 
but also to improve future performance. Learning from data is an inductive 
inference made on the basis of available observations. Learning outcomes are 
influenced by three main factors: the components of learning from data, the type of 
feedback on the basis of which the learning process takes place, and the method of 
presenting the acquired information (Russel & Norvig, 2003). 
 In the era of the rapid development of information technology, computers are 
designed to learn from data. In result, machine learning was created, i.e. self-learning 
systems based on algorithms which automatically improve through experience 
(Cichosz, 2000). Machine learning should therefore be understood as the ability of 
computers to automatically learn from data and transfer this knowledge to the 
recipient. 
 Machine learning from data can be realised in three forms: supervised learning, 
unsupervised learning and reinforcement learning. Supervised learning consists in 
approximating unknown function 𝑓𝑓 by mapping the input data with the output data 
by providing individual input data (𝑥𝑥𝑖𝑖) and knowing the output data (𝑦𝑦𝑖𝑖). The 
essence of supervised learning is to provide the algorithm with a set of input-output 
pairs, i.e. (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) pairs in order to approximate unknown function 𝑓𝑓. According to 
the supervised learning theory, input-output is entered to find function 𝑓𝑓 that maps 
the values of 𝑥𝑥 to the value of 𝑦𝑦. The set of all possible functions that can describe 
this mapping is called hypothetical space 𝐻𝐻. Next, function ℎ is selected. This 
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function belongs to hypothetical space 𝐻𝐻, which, in the author’s opinion, 
approximates unknown function 𝑓𝑓 well and provides the possibility of making 
rational future decisions. Function ℎ is a hypothesis of the actual course of function 
𝑓𝑓 (Russel & Norvig, 2003). In statistical literature, input data are called predictors, or 
classically – independent (explanatory) variables. In the machine learning 
terminology output data are called response variables, and classically – dependent 
variables (Hastie et al., 2009). 
 Unsupervised learning is a type of machine learning which assumes that there is 
no exact or even approximate output in the training data. So unsupervised learning 
involves learning patterns on the basis of the given data when only the input data are 
known. The aim of unsupervised learning is to either identify the interdependencies 
between features or to discover the internal structure of a data set. Examples of 
unsupervised learning include cluster analysis and correspondence analysis. 
Unsupervised learning methods are taxonomic methods used to classify objects in  
a multidimensional space of features according to the adopted measure of their 
similarity or distance (Pociecha et al., 1988). 
 Reinforcement learning does not use input or output data. It consists in observing 
the environment by the learning system and selecting activities in order to maximise 
the rewards and avoid the punishments. The learning system learns on its own the 
best strategy, called politics, to collectively obtain the highest reward (Géron, 2018). 
 Function 𝑓𝑓, connecting the input data with the output data in supervised learning, 
can be deterministic or indeterministic; consequently, learning can also be 
deterministic or indeterministic. In the study of socio-economic phenomena, usually 
indeterministic relationships are observed, therefore supervised learning should be 
understood as indeterministic learning. Unknown function 𝑓𝑓 is approximated by 
hypothetical function ℎ. In theory, the more complex the function, the better chance 
of an exact approximation of function 𝑓𝑓. The indeterministic learning process 
involves an inevitable compromise between the complexity of hypothetical function 
ℎ and the degree of dispersion of the input data. The learning problem is feasible if 
hypothesis space 𝐻𝐻 contains the actual function 𝑓𝑓. Unfortunately, it is not always 
possible to assess whether a given learning problem is feasible because the true 
function is unknown. One way to bypass this barrier is to use the previously gained 
knowledge to derive hypothesis ℎ from space 𝐻𝐻, when it is certain that the actual 
function 𝑓𝑓 is contained in this space (Russel & Norvig, 2003). 
 If the actual function 𝑓𝑓 is of a stochastic nature, supervised learning is understood 
as statistical learning. Bearing in mind that in the vast majority of cases function 𝑓𝑓, 
which assigns input data to output data, is defined in a stochastic manner, machine 
learning is in fact almost entirely statistical learning. However, due to the fact that it 
was introduced into the literature by computer scientists, the term ‘statistical 



8 Przegląd Statystyczny. Statistical Review 2021 | 1 

 

 

learning’ has been dominated by the term ‘machine learning’. It is only thanks to the 
fundamental works of Hastie et al. (2009) and James et al. (2013) that statistical 
learning begins to occupy its rightful place in the world literature. 
 The formal definition of statistical learning is presented in numerous studies, 
including that of Vapnik (2000). According to a popular operational definition, 
statistical learning is a collection of descriptive statistics, mathematical statistics, and 
non-parametric and non-algorithmisable procedures for modelling and under-
standing complex data sets. Statistical learning is a new field of knowledge that has 
been developing since the turn of the 20th and 21st century, being the product of the 
development of statistics and computer science. It combines the principles of 
machine learning with statistical methods (James et al., 2013). 

4. Principles of statistical learning 

In the general approach to statistical learning, we have dependent variable 𝑌𝑌, under- 
stood as the response variable and 𝑘𝑘 explanatory variables (predictors) 𝑋𝑋1,  𝑋𝑋2, … ,𝑋𝑋𝑘𝑘. 
We assume that there is a relationship between 𝑌𝑌 and 𝑋𝑋 = (𝑋𝑋1,  𝑋𝑋2, … ,𝑋𝑋𝑘𝑘) which we 
can generally define as 

 
 𝑌𝑌 = 𝑓𝑓(𝑋𝑋) + 𝜉𝜉, (1) 

 
where 
𝑓𝑓 – an unknown function associating 𝑌𝑌 with 𝑋𝑋; 
𝜉𝜉 – a random component.  

 
 The essence of statistical learning is to guess function 𝑓𝑓 using function ℎ, which is 
one of the hypotheses belonging to hypothesis space 𝐻𝐻, concerning unknown 
function 𝑓𝑓 (Hastie et al., 2009). 
 There are two primary reasons for attempting to guess function 𝑓𝑓. The first one, 
of a practical nature, is the prediction of 𝑌𝑌 based on the knowledge of 𝑋𝑋. The other 
reason, of a more cognitive nature, is the inference about 𝑌𝑌 on the basis of 𝑋𝑋. The 
prediction task is when a set of 𝑋𝑋 predictors is available, but the corresponding 
values of response variable 𝑌𝑌 are unknown. In this case, we predict 𝑌𝑌 using the 
following equation: 
 
 𝑌𝑌� =  𝑓𝑓(X), (2) 
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where 𝑓𝑓 is one of the functions falling in hypothetical space 𝐻𝐻. In this approach, 𝑓𝑓 is 
treated as a black box, in the sense that it is not usually a specific analytical form of 
𝑓𝑓, on condition that it provides accurate possible forecasts of 𝑌𝑌. 
 
 If we want to use statistical learning methods for the purpose of inferring about 
the relationship between the dependent variable and the explanatory variables, then 
we cannot treat 𝑓𝑓 as a black box, but we have to take the specific form of function 𝑓𝑓.�  
Subsequently, we attempt to answer the following questions:  
• Which pre-adopted explanatory variables actually affect the response variable? 
• What is the direction of the relationship between the response variable and 

individual explanatory variables? 
• What is the appropriate analytical form for 𝑓𝑓? 
• Is the linear form sufficient? 
 Statistical learning methods are designed to answer these types of questions 
(James et al., 2013). 
 The approximation of the actual 𝑓𝑓 function is the key statistical learning problem. 
Its estimation is based on a data set, called the training data or training set, 
containing input and output information (𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖). In other words, we seek such  
a function 𝑓𝑓, for which 
 
 𝑌𝑌 ≈ 𝑓𝑓(𝑋𝑋) (3) 
 
for any pair of observations from set (𝑋𝑋,𝑌𝑌). A parametric or non-parametric 
approach can be applied here. 
 The parametric method of statistical learning involves specifying the analytical 
form of function 𝑓𝑓. In the simplest and most common case, we assume it as a linear 
multivariate model. Then, using the data from the training set, the partial regression 
coefficients of this model are estimated, most often by means of the least squares 
method. Of course, in the case of parametric statistical learning there are many 
options for both the selection of the vector of explanatory variables and the 
analytical form of the regression function. 
 Non-parametric statistical learning methods do not make explicit assumptions 
about the analytical form of the functions for 𝑓𝑓. Instead, they look for a form of 
function 𝑓𝑓 which fits as closely as possible to the data from the training set. The non-
parametric approach can have a great advantage over the parametric approach, 
because by avoiding the assumption of a specific analytical form of function 𝑓𝑓, it can 
fit the empirical data more accurately. The parametric approach involves the risk 
that the analytical form of function 𝑓𝑓 deviates greatly from the actual function 𝑓𝑓, 
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which links the predictors with the result variable. Nevertheless, the non-parametric 
approach has the disadvantage that it does not reduce the number of the estimated 
parameters to only the significant ones, and thus requires a much larger training set 
(James et al., 2013). 
 When selecting the best function 𝑓𝑓 belonging to hypothetical space 𝐻𝐻, one should 
follow a specific quality criterion of fitting this function to the actual function 𝑓𝑓. The 
effectiveness of the statistical learning method with the specified 𝑓𝑓 is measured by 
the mean square error of estimation (MSE): 
 
 𝑀𝑀𝑀𝑀𝑀𝑀 =  1 

𝑛𝑛
∑  (𝑦𝑦𝑖𝑖 −  𝑓𝑓(𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 ))2, (4) 

 
where 
𝑓𝑓(𝑥𝑥𝑖𝑖) – the prediction of the actual f for the i-th observation. 
 
 If the estimation error is calculated for the data from the training set, it is  
a measure of the goodness of fit of function 𝑓𝑓 to empirical data 𝑦𝑦𝑖𝑖. However, we are 
actually interested in the accuracy of the predictions we obtain when applying  
a given statistical learning method to a previously unknown set of test data. Whether 
𝑦𝑦𝑖𝑖 ≈ 𝑓𝑓(𝑥𝑥𝑖𝑖) is of no particular interest in this context; what is important is that 𝑓𝑓(𝑥𝑥0) 
is approximately equal to 𝑦𝑦0, where (𝑥𝑥0,𝑦𝑦0) is an observation from the non-processed 
test set. We select the method which provides the lowest-test MSE as opposed to the 
lowest-training MSE. If a large number of test observations was available, the average 
squared prediction error for these test observations (𝑥𝑥0,𝑦𝑦0) could be computed. We 
select the model for which the average-test MSE is as small as possible. The MSE 
measure is treated as a generalisation error. In practice, the set of observations is 
usually divided into two subsets: the training set, on which we train the statistical 
learning method, and the test set, which is used to verify the effectiveness of the 
learning method. The proportion of the division of the data set into the training and 
the test part tends to be problematic, as on the one hand, it is assumed that the 
training set should be larger than the test set, but on the other hand, the test set 
cannot be too small. It is recommended that the proportion of the division into the 
training and test set is 8 to 2 (Géron, 2018). There are numerous studies comparing 
the prognostic abilities of forecasting models which use different proportions of the 
division of data sets into the training and testing part (cf. e.g. Pociecha et al., 2014). 
 Function 𝑓𝑓 can fairly flexibly match the actual function 𝑓𝑓. However, when 
applying statistical learning procedures, the problem of the overfitting of the 
𝑓𝑓 function to the data may occur. This is related to the possible overtraining 
(overfitting) of the data learning model. This is the case when the MSE based on the 
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training set is clearly smaller than the MSE based on the test set. Along with the 
increase in the flexibility of the statistical learning method, a monotonic decrease in 
the MSE on the training set is observed. On the other hand, the distribution of the 
MSE on the test set is U-shaped and with the increasing flexibility of function 𝑓𝑓, the 
MSE first decreases and then increases. These are the basic properties of statistical 
learning methods, independent of the specific data set and independent of the used 
learning method (James et al., 2013). This provides an opportunity to determine the 
optimal degree of flexibility of function 𝑓𝑓 relative to the training set. The basic 
method of determining this optimum is cross-validation (Koronacki & Ćwik, 2005). 
It consists in separating the training set into mutually complementary subsets, and 
the models are trained in various combinations of these subsets and evaluated using 
the remaining, unused subsets; in result, the optimal model is determined. 
 The search for a compromise between the accuracy of prediction and the 
interpretation of the statistical learning model is an issue related to the one described 
above. Statistical learning methods involve functions which fairly flexibly adapt to 
the data from the training set. Linear regression is an example of an inflexible 
function, while e.g. spline functions are more flexible. The more restrictive 
functions, and therefore demonstrating less flexibility, allow for a deeper substantive 
interpretation of the obtained results. Flexible functions, on the other hand, can lead 
to such complicated estimates of the shape of the actual function f that it is difficult 
to interpret the relationship between the assumed predictors and the dependent 
variable. The relationship between the flexibility and interpretability of statistical 
learning methods is presented by James et al. (2013) as in Figure 1. 
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Figure 1. The relationship between interpretability and flexibility of statistical learning 
methods 

 
Source: James et al. (2013, p. 25). 

 
 The authors indicate that the relation between the flexibility and interpretability 
of statistical learning methods is approximately inversely proportional. The Lasso 
regression is fully interpretable as it allows for the joint selection of explanatory 
variables and the assessment of their impact on the dependent variable (Kubus, 2014 
or Tibshirani, 1996). Generalised additive models (GAM) are interpretable and at 
the same time more flexible, as they allow non-linear relationships between 
variables. Fully non-linear models, including bagging or boosting and the support 
vector method (SVM) are highly flexible, but difficult to interpret in terms of 
content. To sum up, if the aim of using statistical learning methods is to make the 
most precise prediction possible, then the most flexible learning method should be 
selected. If the interpretation of the relationship between the response variable and 
the explanatory variables is important, then the more classic methods should be 
applied (James et al., 2013). 
 Statistical learning methods are used to solve both regression and classification 
problems. If the result (response) variable is a quantitative (directly measurable) 
variable, then the explanatory variables’ (predictors’) influence on it is examined by 
regression. If the result variable is of a qualitative (directly non-measurable) nature, 
then the relationship between it and the predictors is examined by means of the 
classification method (Hastie et al., 2009). 
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 A wide range of statistical learning methods are presented in the literature. There 
is no one best method in statistics and no method dominates all the others for all 
possible data sets. For a particular dataset, one method may work best, but another 
method may prove more efficient in relation to a similar and yet different data set. 
Therefore, statisticians face an important task of selecting the most effective method 
which – when applied for a given data set – gives the best results. In conclusion, the 
choice of the most appropriate statistical learning method is one of the most 
challenging decisions in statistical research practice (James et al., 2013). 

5. Statistical learning paradigm 

The previously characterised premises and principles of learning from data allow for 
the formulation of a statistical learning paradigm. The statistical learning paradigm 
will be presented against the classical paradigm of statistical inference. The starting 
point of the mathematical statistics paradigm is the probability theory and its basic 
concepts, including the random event, the axioms of probability theory, the random 
variable and its distribution. They are followed by the theorems of the probability of 
events, Bayes’ theorem, the formalisation of particular types of distributions of  
a random variable and their characteristics in the form of distribution parameters for 
one- and multi-dimensional variables. The key elements of statistical inference 
include the concept of the distribution of statistics from a sample, the principles of 
estimation parameters and the principles of the verification of statistical hypotheses 
(Kot et al., 2011). The essence of the mathematical statistics paradigm is to start from 
the theory of probability and statistical inference and to check to what extent the 
empirical data can fit into the theoretical framework of mathematical statistics. 
 The statistical learning paradigm involves the opposite – the starting point is the 
available data set. The theory is based on the ‘let the data speak for itself’ and ‘we 
learn from the data’ concepts, which is consistent with neo-positivist beliefs, 
according to which all knowledge is based on empirical data, whereas anything that 
is not based on empirical facts is rejected. Neo-positivists assumed that experience is 
the source of all knowledge about the real world (Kołakowski, 2004). 
 The statistical inference paradigm is based on the concept of general population 
and sample. The condition for the correctness of inference about a population based 
on a sample is the random selection of the sample. The sampling method focuses 
strongly on sampling procedures so that the sample is representative of the entire 
population. The statistical learning paradigm, on the other hand, ignores the notions 
of population and sample. Instead, it assumes that we have a sufficiently large set of 
empirical data on the basis of which we can effectively make predictions and infer 
about the reality which these data come from. In the practice of applying statistical 



14 Przegląd Statystyczny. Statistical Review 2021 | 1 

 

 

learning procedures, it is often presumed that the training set has the properties of  
a random sample, but its actual randomness is not verified. Perceiving the training 
and test set automatically as random samples is in fact an unjustified transfer of the 
features of the statistical inference paradigm onto the statistical learning paradigm. 
 In the era of powerful computers, it is possible to collect, process and store large 
data sets, known as Big Data. However, such sets do not have the characteristics of 
random samples; they are said to be noisy, i.e. partially random and contain 
unreliable information which needs to undergo various data cleaning processes. It 
should be mentioned here that data from a random sample, selected in accordance 
with the rules of the sampling method, are not subject to ‘cleaning’ as, by definition, 
their appearance in the sample is determined by the probability of their occurrence 
in the population. However, the application of statistical learning procedures should 
not be limited to Big Data as they are known to be used in training sets with less than 
one hundred observations (James et al., 2013). 
 The essence of the statistical learning paradigm is the creation of self-learning 
systems, i.e. systems which improve automatically through experience. In the case of 
statistical learning in the supervised version, it involves providing the algorithm with 
a set of input-output pairs (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) in order to find unknown function 𝑓𝑓 by mapping 
input data to output data, with the accuracy of the minimised mean square error of 
the estimate or mean prediction error. The actual function 𝑓𝑓 in the statistical 
learning paradigm is understood as a black box – it can be a parameterised or non-
parameterised function, it can even be a non-algorithmic procedure. 
 The purpose of statistical learning is to get closer to the real function by 
estimating it on the training set in which function 𝑓𝑓 is taught how to recognise the 
actual function 𝑓𝑓 as accurately as possible. The statistical learning effect is tested on  
a test set and its optimisation is performed in the process of cross-validation. The 
basic difference between the process of statistical estimation and the process of 
statistical learning is that in the former we estimate the parameters of a pre-
determined function, and in the latter the form of this function and its parameters 
are selected by the learning method. 
 The statistical learning paradigm includes classical linear regression models, 
logistic regression, discriminant analysis, polynomial models, splined functions, 
generalised additive models, kernel classifiers, regression and classification trees, 
bagging and boosting methods, random forests, neural networks, support vectors 
machines, the k-means method, and other lesser-known learning procedures. As the 
list above suggests, the range of statistical learning tools is much wider than that of 
the classical mathematical statistics tools. 
 The concept and the theory of probability plays a key role in the paradigm of 
statistical inference. In the statistical learning paradigm, its role is secondary as there 
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are serious doubts whether the training set could be considered as a random data set. 
In this sense, the statistical learning paradigm is getting closer to the descriptive 
statistics paradigm. 
 The literature also emphasises the difference in terms of the research goals that 
can be achieved through both paradigms. Statistical research conducted within the 
mathematical statistics paradigm focuses primarily on explaining the relationships 
between the studied variables, i.e. on the implementation of analytical goals; thus, 
the forecasts built on their basis are often imprecise. Empirical research conducted 
within the statistical learning paradigm involves building on their basis forecasts 
which would be as accurate as possible; nevertheless, their analytical and 
interpretative role could be limited. 
 In conclusion, however, it should be emphasised that the statistical learning 
paradigm is a more universal research platform, as it has in fact absorbed the 
statistical inference paradigm at the expense of weakening its original assumptions. 
The statistical learning paradigm offers a great opportunity to use the computing 
power of modern computers and large data sets produced by contemporary socio- 
-economic life. 
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