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Estimation of Value-at-Risk using Weibull distribution – 
portfolio analysis on the precious metals market 

Dominik Krężołeka 
 
Abstract. In this paper, we present a modification of the Weibull distribution for the Value-at-
Risk (VaR) estimation of investment portfolios on the precious metals market. The reason for 
using the Weibull distribution is the similarity of its shape to that of empirical distributions of 
metals returns. These distributions are unimodal, leptokurtic and have heavy tails. A portfolio 
analysis is carried out based on daily log-returns of four precious metals quoted on the London 
Metal Exchange: gold, silver, platinum and palladium. The estimates of VaR calculated using 
GARCH-type models with non-classical error distributions are compared with the empirical 
estimates. The preliminary analysis proves that using conditional models based on the 
modified Weibull distribution to forecast values of VaR is fully justified. 
Keywords: risk analysis, Value-at-Risk, metals market, GARCH-type models, two-sided Weibull 
distribution 
JEL: C32, C58, G11, G17 

1. Introduction 

The last decade saw a growing interest in other forms of investment than those 
offered by the capital market, which is mainly the effect of the uncertainty and 
unpredictability of the global economy trends. The crisis of 2008–2009 caused some 
investors to transfer their capital to other, alternative markets, in order to minimise 
the risk involved in their investment activity. One of these alternative markets is the 
metals market. The level of the volatility of metals returns depends on the moods 
observed on the market and is directly related to the uncertainty of the trends of 
many economic indicators and the occurrence of unpredictable random events that 
may affect these trends. Moreover, uncertainty produces risk that the future return 
will be below the expected level. Risk is therefore a random variable and its level is 
determined by measures defined for this variable. 

2. Value-at-Risk 

In the literature there are numerous studies on risk measurement, many of which 
concern Value-at-Risk (VaR). VaR has been proposed as a measure of risk by the 
RiskMetrics Group (the leading provider of risk management and corporate governance 
products and services to financial market participants). Daníelsson et al. (2013) 
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examined certain properties of VaR, which showed that the VaR risk measure is 
subadditive in the respective tail region of the return distribution. The authors also 
observed that the VaR estimates calculated using the historical simulation method 
can lead to a violation of the subadditivity assumption. As a result, they suggested 
estimating VaR by means of the semi-parametric extreme value theory (EVT). 
Alexander and Sarabia (2012) proposed to estimate risk related to VaR and to adjust 
its estimates to the estimation error and model specification. Chinhamu et al. (2015) 
predicted the values of VaR using EVT and the generalised Pareto distribution 
(GPD). Other researchers analysed the quality of VaR forecasts using GARCH-type 
models, e.g. Chkili et al. (2014), who applied non-linear FIAPARCH models.  
Yu et al. (2018) measured values of VaR using GARCH-type models and EVT jointly 
with copula models. The results of the backtesting showed that the GARCH-EVT 
and copula models were able to increase the accuracy of VaR estimations. In 
contrast, Cheung and Yuen (2020) introduced an uncertainty model for the 
distribution of returns and examined the impact of this uncertainty on VaR through 
the worst-case scenario approach. The researchers proved that the selection of a loss 
model is essential when applying an uncertainty model. 
 Value-at-Risk is defined as a statistical measure which indicates (in an explicit 
manner) the amount of a potential loss of market value of a financial asset, for which 
the probability of reaching or exceeding this value within a specified time horizon is 
equal to the tolerance level determined by the decision-maker (Doman & Doman, 
2009; Dowd, 1999; Trzpiot, 2004). Another definition of VaR sees it as a measure of 
the maximum loss that an individual can incur within a certain time horizon for an 
investment realised under normal market conditions, within a predefined tolerance 
level (Krawczyk, 2017). Assuming random variable 𝑋𝑋, the mathematical definition of 
VaR is as follows: 
 
 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑋𝑋) = 𝑖𝑖𝑖𝑖𝑖𝑖{𝑥𝑥|𝐹𝐹𝑋𝑋(𝑥𝑥) ≥ 𝛼𝛼} = 𝐹𝐹𝑋𝑋−1(𝛼𝛼), (1) 
 
where 𝐹𝐹𝑋𝑋−1(𝛼𝛼) is the quantile function of random variable 𝑋𝑋, and 𝛼𝛼 is the level of the 
quantile of the probability distribution of this random variable. In particular, 
random variable 𝑋𝑋 may represent return 𝑟𝑟𝑡𝑡 of any financial asset at time 𝑡𝑡. 
 The advantage of defining VaR through the quantile function is the possibility to 
apply any probability distribution of a random variable to estimate its value. Thus, 
the selection of a suitable probability distribution is crucial. Empirical studies on 
financial data show that time series are characterised by a high level of volatility, 
clustering of variance, significant skewness and leptokurtosis, and the presence of 
outliers. These features explicitly exclude the possibility of estimating VaR through 
symmetrical distributions, such as normal or Student’s 𝑡𝑡-distribution. Therefore, in 
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empirical analyses, it is necessary to use probability distributions which take into 
consideration the above-mentioned characteristics. 

3. Two-sided Weibull distribution 

In this study, we propose the Weibull distribution as the theoretical tool for 
estimating VaR. This distribution belongs to the family of extreme distributions; 
therefore, it considers the presence of outliers in time series, which results in a high 
level of asymmetry, kurtosis and heavy tails. Technically, random variable 𝑋𝑋 is 
described by the Weibull distribution if its density function takes the following form: 
 

 𝑖𝑖(𝑥𝑥; 𝑘𝑘, 𝜆𝜆) = �
𝑘𝑘
𝜆𝜆
�𝑥𝑥
𝜆𝜆
�
𝑘𝑘−1

𝑒𝑒�
𝑥𝑥
𝜆𝜆�
𝑘𝑘

if    𝑥𝑥 ≥ 0
0 if    𝑥𝑥 < 0

, (2) 

 
where 𝑘𝑘 > 0 is the shape parameter and 𝜆𝜆 > 0 is the scale parameter. The density 
function given by formula (2) can also be defined as 
 

 𝑖𝑖(𝑥𝑥; 𝑘𝑘,𝑏𝑏) = �𝑏𝑏𝑘𝑘𝑥𝑥
𝑘𝑘−1𝑒𝑒−𝑏𝑏𝑥𝑥𝑘𝑘 if    𝑥𝑥 ≥ 0

0 if    𝑥𝑥 < 0
, (3) 

 
where 𝑏𝑏 = 𝜆𝜆−𝑘𝑘 is the scale parameter. 
 As mentioned above, the Weibull distribution is applied in EVT and therefore can 
be used to describe rare events which significantly affect the estimates of the tail risk 
measure for a relatively low level of the quantile. Formulas (2)–(3) demonstrate that 
the density function of the Weibull distribution is equal to zero for negative values of 
random variable 𝑋𝑋. Chen and Gerlach (2013) proposed a certain generalisation of 
the classical (one-sided) Weibull distribution over the entire set of real numbers by 
introducing a standardised two-sided Weibull distribution, for which the density 
function has the form of 
 

 𝑖𝑖dW(𝑥𝑥;𝑘𝑘1, 𝜆𝜆1,𝑘𝑘2,𝜆𝜆2) = �
𝑏𝑏𝑝𝑝 �
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, (4) 

 
where 𝑘𝑘1,𝑘𝑘2 > 0 are shape parameters and 𝜆𝜆1, 𝜆𝜆2 > 0 are scale parameters. In 
addition, 
 

 𝑏𝑏𝑝𝑝2 = 𝜆𝜆13
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and 𝜆𝜆1
𝑘𝑘1

+ 𝜆𝜆2
𝑘𝑘2

= 1. 

  
 The estimates of VaR using two-sided Weibull distribution can be obtained by 
using the quantile function: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 = 𝐹𝐹−1(𝛼𝛼;𝑘𝑘1, 𝜆𝜆1,𝑘𝑘2, 𝜆𝜆2) =
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≤ 𝛼𝛼 < 1

. (6) 

 
 Considering quantile function for returns 𝑟𝑟𝑡𝑡, a one-day-ahead VaR forecast of  
𝛼𝛼-quantile is defined as 
 
 𝛼𝛼 = 𝑃𝑃(𝑟𝑟𝑡𝑡+1 < 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼|I𝑡𝑡), (7) 
 
where 𝑟𝑟𝑡𝑡+1 is the return at time 𝑡𝑡 + 1, 𝛼𝛼 is the level of the quantile, and I𝑡𝑡 is the 
information set at time 𝑡𝑡. Consequently, resulting from the above, VaR is defined as 
the 𝛼𝛼-quantile of a conditional distribution of 𝑟𝑟𝑡𝑡. 

4. Empirical study 

Metals are commodities used in many areas of human activity. These include heavy 
industry (military, construction and infrastructure), aerospace (spacecraft, orbital 
probes, telescopes) and the automotive industry (production of cars and car com-
ponents). Metals are used in the production of household appliances, they are also 
used as alloys in various steel compounds, mainly to improve their quality and 
expand their physical properties. Metals are not only related to industry, but they are 
also used in the jewellery trade (mainly precious metals), medicine (including 
aesthetic), biotechnology and in gastronomy (gold and silver). From an investment 
point of view, metals, being commodities quoted on stock exchanges, can be the 
subject of financial investments (direct and indirect). The above refers primarily to 
precious metals, which are an alternative form of investing if compared to the 
classical capital market assets, such as stocks or bonds. 
 The metals market is not a popular area of interest among researchers, although 
the number of papers on risk analysis in this area has clearly increased in the recent 
years. However, research is mainly concerned with gold. Zijing and Zhang (2016) 
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analysed the volatility and risk of precious metals returns using GARCH-type 
models with a random error described by the GED distribution, while Włodarczyk 
(2017) analysed the impact of asymmetry and long memory effects on forecasting 
conditional volatility and the risk of gold and silver using linear and non-linear 
GARCH models. Chen and Qu (2019) analysed the risk and volatility of precious 
metals returns using copula and dynamic conditional correlation (DCC) models. In 
turn, Krężołek (2020) has conducted extensive research on risk modelling of the base 
and precious metals markets. The author showed in his research, among other 
things, that fat-tailed distributions (including alpha-stable distributions) and 
ARMA-GARCH-type models should be used for risk modelling. Other methods 
were proposed by Wang et al. (2019), who predicted the volatility and risk of copper 
prices by comparing complex hybrid networks with traditional artificial neural 
network techniques. The results demonstrated that the proposed hybrid models were 
able to achieve a favourable predictive effect both in forecasting the levels of risk and 
volatility in copper prices. 
 In this study we use daily log-returns of four precious metals: gold, silver, 
platinum and palladium for the construction of investment portfolios. The data 
come from the London Metal Exchange (LME) from the period of January 2015– 
July 2020, which has further been divided into three sub-periods: 
• sub-period 1 (2015): portfolio construction; 
• sub-period 2 (2016–2017): model estimation; 
• sub-period 3 (2018–2020): forecasting of VaR. 
 The main goal of this research is to estimate the Value-at-Risk of investment 
portfolios using selected models of conditional volatility (GARCH-type models) 
with error terms described by the following non-classical probability models: 
Student’s 𝑡𝑡-distribution, skewed Student’s 𝑡𝑡-distribution, GED, skewed GED and the 
two-sided Weibull distribution. Four investment portfolios have been constructed, 
for which the values of VaR (for the quantile of 0.01 and 0.05) have been estimated, 
according to the proposed theoretical model. The quality of the forecasts has been 
assessed using the test of exceedance proposed by Kupiec (1995) and the 
independence test introduced by Christoffersen (1998). Figure 1 presents returns 
and squares of returns of all the studied precious metals, while Table 1 presents the 
descriptive statistics of returns by sub-periods. 
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Figure 1. Log-returns (left) and squares of log-returns (right) of selected precious metals 
between January 2015 and July 2020 

  

  

  

  
Source: author’s work based on data from LME. 

 
 The first and second sub-period saw a comparatively stable level of variance, while 
in the third sub-period a relatively significant clustering of volatility was observed 
(early 2020), which resulted from the socio-economic condition in the worldwide 
economy caused by the COVID-19 pandemic. Moreover, the data show that gold 
returns, compared to other metals, did not react strongly to the information from 
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the market during the pandemic period. This results from the fact that gold is 
perceived as a ‘safe haven’ in times of increasing uncertainty in the global economy 
(Salisu et al., 2021). However, some studies indicate that during the pandemic, for 
some assets, gold lost its ‘safe haven’ property (Cheema et al., 2020). 
 
Table 1. Descriptive statistics of log-returns for three sub-periods 

Statistics Gold Silver Platinum Palladium 

Sub-period 1 

Mean  ................................................................  –0.00044 –0.00051 –0.00115 –0.00134 
Standard deviation  .....................................  0.00858 0.01488 0.01228 0.01862 
Coefficient of variation in %  ....................  –1966.40 –2922.26 –1066.04 –1392.01 
Skewness ........................................................  0.00002 –0.06384 –0.07000 0.01858 
Kurtosis  ...........................................................  1.16474 1.94523 0.41096 1.11559 
Minimum ........................................................  –0.03280 –0.05967 –0.03641 –0.06474 
Maximum  .......................................................  0.02712 0.05112 0.04046 0.05992 

Sub-period 2 

Mean  ................................................................  0.00040 0.00039 0.00008 0.00124 
Standard deviation  .....................................  0.00819 0.01309 0.01200 0.01573 
Coefficient of variation in %  ....................  2053.50 3324.77 14880.94 1271.04 
Skewness ........................................................  0.46418 –0.32880 0.08377 –0.23870 
Kurtosis  ...........................................................  3.86023 2.96838 0.74131 1.02741 
Minimum ........................................................  –0.03300 –0.06882 –0.04139 –0.07233 
Maximum  .......................................................  0.04867 0.05258 0.03814 0.04602 

Sub-period 3 

Mean  ................................................................  0.00061 0.00049 –0.00004 0.00101 
Standard deviation  .....................................  0.00821 0.01548 0.01568 0.02275 
Coefficient of variation in % .....................  1354.91 3157.36 –42793.61 2242.77 
Skewness ........................................................  –0.06169 –0.76277 –1.29900 –0.99925 
Kurtosis  ...........................................................  4.68469 14.09777 15.30709 24.14889 
Minimum ........................................................  –0.04196 –0.13719 –0.13300 –0.21994 
Maximum  .......................................................  0.04605 0.08243 0.10163 0.19665 

Source: author’s calculations based on data from LME. 

 
 In the first sub-period, compared to the others, the returns of all precious metals 
had a negative average value. Regardless of the sub-period, a high level of volatility is 
observed. Additionally, the empirical distributions of returns are skewed and 
leptokurtic in all the sub-periods (especially in the third one). Based on the data 
from the first sub-period, investment portfolios of three components have been 
constructed in such a way that each portfolio contains a different combination of 
components: 
• P1 – gold, silver, platinum; 
• P2 – gold, silver, palladium; 
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• P3 – gold, platinum, palladium; 
• P4 – silver, platinum, palladium. 
 Optimal portfolios have been determined with the assumption that there is no 
possibility of short selling, whereas the optimisation criterion involves the 
minimisation of the portfolio’s risk (measured by variance). Weights of metals in 
optimal portfolios are presented in Table 2, whereas the expected return and risk for 
equally weighted and optimal portfolios are presented in Table 3 and Figure 2. 
 
Table 2. Weights of components in optimal portfolios 

Metal 
P1opt. P2opt. P3opt. P4opt. 

in % 

Gold  .................................................... 100.00 96.72 96.72 . 
Silver  ................................................... 0.00 0.00 . 20.79 
Platinum  ............................................ 0.00 . 0.00 73.09 
Palladium  .......................................... . 3.28 3.28 6.13 

Source: author’s calculations based on data from LME. 

 
Table 3. The risk and expected return for equally weighted and optimal portfolios  

in sub-period 1 

Portfolio Risk Expected return 

Equally weighted 

P1eq.  .....................................................................................................    0.01071 –0.00070 
P2eq.  .....................................................................................................  0.01161 –0.00076 
P3eq.  .....................................................................................................  0.01112 –0.00098 
P4eq.  .....................................................................................................  0.01283 –0.00100 

Optimal 

P1opt.  ....................................................................................................  0.00858 –0.00044 
P2opt.  ....................................................................................................  0.00856 –0.00047 
P3opt.  ....................................................................................................  0.00856 –0.00047 
P4opt.  ....................................................................................................  0.00010 –0.00010 

Individual assets 

Gold  ...................................................................................................  0.00858 –0.00044 
Silver  ..................................................................................................  0.01488 –0.00051 
Platinum  ...........................................................................................  0.01228 –0.00115 
Palladium  .........................................................................................  0.01862 –0.00134 

Source: author’s calculations based on data from LME. 
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Figure 2. The risk and expected return for equally weighted and optimal portfolios,  
and for individual assets 

 

Source: author’s work based on data from LME. 

 
 As a result of optimisation, the level of risk decreased for all portfolios and, in 
addition, the expected loss was reduced. Optimal portfolios P2opt. and P3opt. have the 
same characteristics because the optimisation resulted in the same components for 
these two portfolios (in the further part of the analysis, these two portfolios are 
denoted as one, namely P2.3opt.). Moreover, individual investments show a higher 
level of risk than optimal portfolios. Gold remains the only exception, for which 
both a low level of risk and a relatively low level of the expected loss are observed. 
 In the next step of the analysis, involving data from the second sub-period, the 
parameters of conditional volatility models for optimal portfolio returns have been 
estimated at GARCH(1,1) and APARCH(1,1) for different error distributions. The 
conditional variance equations for the GARCH (Bollerslev, 1986) and APARCH 
models (Ding et al., 1993) are denoted by the following formulas: 
 
 𝜎𝜎𝑡𝑡2 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖𝑉𝑉𝑡𝑡−𝑖𝑖2𝑞𝑞

𝑖𝑖=1 +∑ 𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2𝑝𝑝
𝑗𝑗=1 , (8) 

 
 𝜎𝜎𝑡𝑡𝛿𝛿 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖(|𝑉𝑉𝑡𝑡−𝑖𝑖|− 𝛾𝛾𝑖𝑖𝑉𝑉𝑡𝑡−𝑖𝑖)𝛿𝛿

𝑞𝑞
𝑖𝑖=1 +∑ 𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗𝛿𝛿𝑝𝑝

𝑗𝑗=1 , (9) 
 
where 𝛼𝛼0 ≥ 0, 𝛼𝛼𝑖𝑖 ≥ 0 for 𝑖𝑖 > 0, 𝛽𝛽𝑗𝑗 ≥ 0, ∑ (𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖) < 1𝑚𝑚𝑚𝑚𝑥𝑥(𝑝𝑝,𝑞𝑞)

𝑖𝑖=1 , 𝜀𝜀𝑡𝑡~𝑁𝑁(0,1)  
and 𝜀𝜀𝑡𝑡 is iid. Based on the characteristics of the time series of metals returns 
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(Krężołek, 2020), the following error distributions for conditional models are 
proposed: 
• Student’s 𝑡𝑡-distribution: 
 

 𝑖𝑖st.(𝜀𝜀𝑡𝑡,𝜎𝜎𝑡𝑡2;𝜃𝜃) =
Γ�𝑣𝑣+12 �

σtΓ�
𝑣𝑣
2��𝜋𝜋(𝑣𝑣−2)

�1 + 𝜀𝜀𝑡𝑡2

(𝑣𝑣−2)𝜎𝜎𝑡𝑡2
�
𝑣𝑣+1
2 , (10) 

 
where 𝑣𝑣 is the number of degrees of freedom, and Γ(𝑘𝑘) = ∫ 𝑥𝑥𝑘𝑘−1𝑒𝑒−1 𝑑𝑑𝑥𝑥+∞

0  is  
a gamma function with parameter 𝑘𝑘; 
• Skewed Student’s 𝑡𝑡-distribution: 
 

 𝑖𝑖sst.(𝑥𝑥,𝑣𝑣) = 2
𝜁𝜁+1𝜁𝜁

{𝑔𝑔(𝜁𝜁(𝑉𝑉𝑥𝑥 + 𝑏𝑏);𝑣𝑣)𝐼𝐼𝑥𝑥<−𝑏𝑏𝑎𝑎
+ 𝑔𝑔 �𝑚𝑚𝑥𝑥+𝑏𝑏
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; 𝑣𝑣� 𝐼𝐼𝑥𝑥≥−𝑏𝑏𝑎𝑎
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where 𝑉𝑉 =
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meter, and 𝑔𝑔(∙) is the density function of a standard Student’s 𝑡𝑡-distribution with  
𝑣𝑣 degrees of freedom; 
• GED distribution: 
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, (12) 

 
where 𝑣𝑣 is the number of degrees of freedom, and Γ(𝑘𝑘) = ∫ 𝑥𝑥𝑘𝑘−1𝑒𝑒−1 𝑑𝑑𝑥𝑥+∞

0  is  
a gamma function with parameter 𝑘𝑘; 
• Skewed GED distribution: 
 

 𝑖𝑖sGED(𝑥𝑥) = 𝑘𝑘1−
1
𝑘𝑘

2𝜎𝜎
Γ �1

𝑘𝑘
�
−1

exp �− 1
𝑘𝑘

|𝑢𝑢|𝑘𝑘

(1+sgn(𝑢𝑢)𝜁𝜁)𝑘𝑘𝜎𝜎𝑘𝑘
�, (13) 

 
where 𝑢𝑢 = 𝑥𝑥 −𝑚𝑚 (𝑚𝑚 – the mode of random variable 𝑋𝑋), 𝜎𝜎 is the scale parameter, 
𝜁𝜁 is the skewness parameter, 𝑘𝑘 is the kurtosis parameter, sgn(∙) is the sign function, 
𝑣𝑣 is the number of degrees of freedom, and Γ(𝑘𝑘) = ∫ 𝑥𝑥𝑘𝑘−1𝑒𝑒−1 𝑑𝑑𝑥𝑥+∞

0  is a gamma 
function with parameter 𝑘𝑘. 
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 In addition, the standard two-sided Weibull distribution has also been applied, 
with the density function given by formula (4). The final model of the conditional 
volatility for a given optimal portfolio has been selected using the Akaike 
Information Criterion (AIC). The values of the AIC criterion are presented in 
Table 4. 
 
Table 4. AIC information criterion for GARCH and APARCH models for optimal portfolios 

Model P1opt. P2.3opt. P4opt. 

GARCHst.(1,1)  ................................  –5452.99a –5457.55 –4823.82 
GARCHsst.(1,1)  ...............................  –5451.01 –5457.98 –4823.37 
GARCHGED(1,1)  .............................  –5449.08 –5455.38 –4824.32 
GARCHsGED(1,1)  ............................  –5447.11 –5453.39 –4825.39 
GARCHdW(1,1)  ...............................  –5447.98 –5458.43a –4829.65a 

APARCHst.(1,1)  ..............................  –5455.49b –5460.55b –4820.54 
APARCHsst.(1,1)  ............................  –5453.62 –5458.63 –4820.06 
APARCHGED(1,1)  ...........................  –5450.34 –5455.45 –4820.72 
APARCHsGED(1,1)  ..........................  –5448.39 –5453.51 –4821.83 
APARCHdW(1,1)  ............................  –5453.86 –5419.51 –4829.76b 

a The lowest value of AIC for GARCH models. b The lowest value of AIC for APARCH models.  
Source: author’s calculations based on data from LME. 

 
 The GARCH and APARCH models with error terms described by Student’s  
𝑡𝑡-distribution were selected for the first portfolio P1opt.. For portfolio P2.3opt., the most 
convenient GARCH model is the one with an error term described by the two-sided 
Weibull distribution and the APARCH model with an error term described by 
Student’s 𝑡𝑡-distribution. The GARCH and APARCH models with error terms 
described by two-sided Weibull distribution were selected for the last portfolio P4opt.. 
 In the last phase of the study, one-day-ahead VaR forecasts are calculated for the 
data from the third sub-period. For this purpose, models of conditional volatility 
selected on the basis of the AIC criterion have been used. The verification of the 
number of exceedances has been carried out on the average VaR forecasts from the 
third sub-period for all optimal portfolios using the Kupiec (LRPOF) and 
Christoffersen (LRIND) tests. All results are presented in Table 5 (VaR0.01) and  
6 (VaR0.05). 
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Table 5. Average one-day-ahead VaR0.01 forecasts within the third sub-period  
(Kupiec test and Independence test) 

Volatility model VaR0.01 % of failure 
Kupiec test Independence test 

LRPOF 𝑒𝑒-value LRIND 𝑒𝑒-value 

P1opt. 

Empirical  .......................................  –0.02968 0.00978 0.00202 0.96419 0.82214 0.36346 
GARCHst.(1,1)  ................................  –0.03196 0.00733 0.32334 0.56961 1.15428 0.28265 
APARCHst.(1,1)  ..............................  –0.03041 0.00978 0.00202 0.96419 1.73445 0.18784 

P2.3opt. 

Empirical  .......................................  –0.02817 0.00978 0.00202 0.96419 0.82214 0.36346 
GARCHdW(1,1)  ...............................  –0.02834 0.00978 0.00202 0.96419 0.82214 0.36346 
APARCHst.(1,1)  ..............................  –0.02761 0.01222 0.19098 0.66211 2.51775 0.11257 

P4opt. 

Empirical  .......................................  –0.04378 0.00978 0.00202 0.96419 0.82214 0.36346 
GARCHdW(1,1)  ...............................  –0.04715 0.00978 0.00202 0.96419 1.15428 0.28265 
APARCHdW(1,1)  ............................  –0.04337 0.01222 0.19098 0.66211 2.51775 0.11257 

Source: author’s calculations based on data from LME. 

 
Table 6. Average one-day-ahead VaR0.05 forecasts within the third sub-period  

(Kupiec test and Independence test) 

Volatility model VaR0.05 % of failure 
Kupiec test Independence test 

LRPOF 𝑒𝑒-value LRIND 𝑒𝑒-value 

P1opt. 

Empirical  .......................................  –0.01474 0.04890 0.01050 0.91840 0.71170 0.39888 
GARCHst.(1,1)  ................................  –0.01538 0.04156 0.64838 0.42069 1.78352 0.18172 
APARCHst.(1,1)  ..............................  –0.01489 0.04645 0.11074 0.73931 1.17532 0.27831 

P2.3opt. 

Empirical  .......................................  –0.01335 0.04890 0.01050 0.91840 0.71170 0.39888 
GARCHdW(1,1)  ...............................  –0.01494 0.04156 0.64838 0.42069 1.78352 0.18172 
APARCHst.(1,1)  ..............................  –0.01403 0.04890 0.01050 0.91840 0.92672 0.33572 

P4opt. 

Empirical  .......................................  –0.02177 0.04890 0.01050 0.91840 0.71170 0.39888 
GARCHdW(1,1)  ...............................  –0.02245 0.04645 0.11074 0.73931 0.01589 0.89969 
APARCHdW(1,1)  ............................  –0.02293 0.04645 0.11074 0.73931 0.01589 0.89969 

Source: author’s calculations based on data from LME. 

 
 The empirical forecasts of VaR for optimal portfolios differ depending on the 
model and the quantile level. VaR forecasts estimated using GARCH models, 
regardless of the assumed probability distribution for the error, were overestimated, 
while forecasts estimated using APARCH models were usually underestimated. 
Using the convergence criterion as the minimum value of the root mean square 
error (RMSE), the APARCH models allowed the estimation of the forecasts of VaR 
at a level relatively close to the empirical estimates. Referring to the results obtained 
in the context of the probability distribution for the error term, the models estimated 
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by using two-sided Weibull distribution provided correct and accurate predictions 
of VaR. This was also confirmed by the results of the Kupiec and Christoffersen 
tests. 

5. Conclusions 

In this study we proposed the application of the two-sided Weibull distribution to 
forecast the values of VaR for investment portfolios on the precious metals market. 
A selection of conditional volatility models was used. The choice to apply the 
Weibull distribution resulted from the observed properties of precious metals’ 
returns, including high-level volatility, clustering of variance, asymmetry and 
kurtosis, as well as the existence of outliers, which significantly affect the values of 
probability measured in the tail of the distribution. GARCH and APARCH models 
with non-classical error distributions were selected to describe the conditional 
volatility. The analysis was carried out for daily log-returns of four precious metals 
quoted on the LME between January 2015 and July 2020. This period was divided 
into three sub-periods, namely the construction of portfolios, model estimation and 
the forecasting of VaR. VaR was estimated at the quantile level of 0.01 and 0.05 for 
portfolio returns. 
 The results of the analysis show that the optimisation of portfolios on the precious 
metals market led to a simultaneous reduction in the level of risk and in the value of 
expected loss. The application of the AIC information criterion allowed the selection 
of conditional volatility models for each of the portfolios; these models had error 
terms described by Student’s 𝑡𝑡-distribution and two-sided Weibull distributions. In 
the last phase of the research, one-day-ahead VaR forecasts were calculated on the 
basis of selected models. It was observed that, regardless of the error distribution, 
GARCH models overestimated and APARCH models underestimated the empirical 
values of VaR. The study also proved that the VaR estimates were accurate due to the 
use of models with an error term described by the two-sided Weibull distribution, 
which was confirmed by the Kupiec and Christoffersen tests. In conclusion, the two-
sided Weibull distribution is an appropriate theoretical tool to determine forecasts of 
Value-at-Risk for investment portfolios on the precious metals market. 
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