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Abstract. We optimise a postal delivery problem with time and capacity constraints imposed 
on vehicles and nodes of the logistic network. Time constraints relate to the duration of routes, 
whereas capacity constraints concern technical characteristics of vehicles and postal operation 
outlets. We consider a method which can be applied to a brownfield scenario, in which 
capacities of outlets can be relaxed and prospective hubs identified. As a solution, we apply  
a genetic algorithm and test its properties both in small case studies and in a simulated 
problem instance of a larger (i.e. comparable with real-world instances) size. We show that the 
genetic operators we employ are capable of switching between solutions based on direct 
origin-to-destination routes and solutions based on transfer connections, depending on what is 
more beneficial in a given problem instance. Moreover, the algorithm correctly identifies cases 
in which volumes should be shipped directly, and those in which it is optimal to use transfer 
connections within a single problem instance, if an instance in question requires such  
a selection for optimality. The algorithm is thus suitable for determining hubs and satellite 
locations. All considerations presented in this paper are motivated by real-life problem 
instances experienced by the Polish Post, the largest postal service provider in Poland, in its 
daily plans of delivering postal packages, letters and pallets. 
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1. Introduction 

We consider a realistic variant of a postal delivery problem with time and capacity 
constraints, which is a special case of a general vehicle routing problem (VRP) (see 
Toth & Vigo, 2002). Duration of routes is constrained since volumes need to be 
shipped on time (Spliet & Gabor, 2015). The capacity of vehicles is constrained, as 
Borčinová (2017) or Ralphs et al. (2003) notice, so only a limited volume of postal 
cargo can be shipped within each vehicle. Keskin et al. (2019) also assert that the 
capacity of postal operations outlets – nodes of the network – is constrained both in 
terms of vehicles that can be served by an outlet, and in terms of volumes that can be 
processed there. 
 Within any logistic plan, streams of volumes (demands) can be delivered directly 
or they can be shipped using some outlets as transfer locations, in which volumes are 
processed, merged and shipped to their final destinations. We are interested in  
a technology capable of identifying such outlets within the network, so that they can 
be recommended as prospective hubs when the network expands. It should be 
remembered that within a brownfield type of analysis, such prospective hubs do not 
have to overlap with outlets in which currently most of the volume is processed. 
 We use a genetic algorithm and argue that with a natural representation of 
solutions and with relatively simple specifications of genetic operators, subject to the 
representation in question, we are capable of obtaining such technology as that 
tested in small case studies and in a real-life problem instance. In particular, the 
employed genetic operators are capable of switching between direct and transfer 
connections, depending on what is optimal in a given problem instance, and also of 
selecting which volumes should be shipped directly and which should be shipped 
using transfer connections within a single problem instance – if the instance in 
question requires such a selection for optimality. All considerations presented in this 
paper are motivated by real-life problem instances which we analysed for the Polish 
Post (Poczta Polska), the largest, state-owned provider of postal services in Poland. 

2. Problem Statement 

The problem discussed in this paper can be considered as a version of a VRP which 
contains elements of various VRP specifications, e.g. VRPs with split pickups and 
split deliveries (see Casazza et al., 2018; Wassan & Nagy, 2014), VRPs with time 
windows (see Benjamin & Beasley, 2013; Bräysy & Gendreau, 2005), VRPs with 
capacity constraints (see Baldacci et al., 2012) and VRPs with multiple depot 
locations (see Crevier et al., 2007; Nagy & Salhi, 2005). 
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 This problem differs from the typical ones, most importantly due to technical 
capacity constraints imposed on nodes of the network, and because of the fact that 
transported volumes can be split or merged in the nodes of the network in an 
arbitrary way. Additionally, we assume that an overall constraint is imposed on the 
length of the route (expressed here by the number of locations that can serve as 
transfer nodes within each route), whereas it is typical for VRPs that the length of 
the routes, i.e. sequences of locations visited by vehicles, is not constrained. More 
specifically, we assume that the route between the origin and the destination 
locations of a postal shipment can take the form of either a direct connection or  
a transfer connection, with one facility at most in which the vehicle stops along the 
route. Using direct connections can be beneficial, since they tend to avoid heavy 
traffic, and as a consequence smaller costs are incurred by vehicles and drivers. 
Moreover, if a substantial volume is processed on such a connection, i.e. a large 
vehicle (or vehicles) can be fully loaded, the number of utilised vehicles decreases, 
and so does the unit cost of the shipment. 
 On the other hand, transfer connections make it possible to split the stream into  
a given number of sub-streams and distributing them over the network, possibly 
merging with streams originating from different locations. It is also beneficial, since 
it reduces the number of vehicles needed to serve the deliveries and may help 
preventing vehicles from getting caught in heavy traffic at some locations. However, 
when a volume is shipped using a transfer location, it needs to be unloaded and 
processed by the staff and machinery of a transfer outlet, then re-loaded into either 
the same or another vehicle, and finally delivered to its destination location. 
Processing streams within postal operations outlets requires time and incurs costs. 
 The incorporation of these technical features of operation outlets into the 
definition of the analysed problem is crucial when we are interested in a brownfield 
analysis and the identification of prospective hubs. The solver must balance the 
above-mentioned elements of the problem. 
 The version of the postal delivery problem which we consider in this article is 
related to a number of other problems and approaches in the field of logistics and 
optimal planning, both in the context of the identification of transfer connections 
and in the context of the divisibility of the delivery. As regards the former, a useful, 
although a slightly outdated summary of formulations and solution heuristics used 
in point-to-point delivery systems (including postal systems) is proposed by Leung 
at al. (1990). Also de Camargo et al. (2013), Çetiner et al. (2010) and Karimi and 
Setak (2018) investigate how transfer locations are determined on the basis of 
demands and the topology of the postal delivery network. In the context of the 
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divisibility of the product stream, Kerivin et al. (2008) present an up-to-date 
formulation of a splittable pickup and delivery problem with reloads, Archetti  
and Speranza (2012) also consider a framework with split deliveries, whereas  
Baumung et al. (2015), for example, focus on designing optimal plans for a postal 
delivery network with parcels and letter mail. 
 The set of orders (streams, demands) that need to be processed will be denoted  
by 𝑆𝑆, and a single generic stream by 𝑠𝑠 ∈ 𝑆𝑆. The execution of a stream consists in 
delivering a given positive volume of divisible cargo from the origin location to the 
destination location, using a logistic network with its operating characteristics like 
distances and travel times between nodes, capacity of vehicles, capacities of the 
nodes, time windows in which the nodes operate, costs of the utilisation of vehicles, 
and costs of volume processing within the nodes. The objective is to deliver all 
streams on time and at the smallest possible cost. In the further parts of the paper we 
will provide a more formal description of the analysed problem. 

2.1. Logistic network 

A logistic network is specified by an ordered pair (𝑁𝑁,𝐸𝐸), where 𝑁𝑁 = {1,2, … ,𝑛𝑛} 
denotes an 𝑛𝑛-element set of nodes (locations of postal operations outlets), and  
𝐸𝐸 denotes a set of directed edges. In the case of the company whose problem is 
analysed here, there is a direct connection between each pair of nodes (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸, as 
long as 𝑖𝑖 ≠ 𝑗𝑗, hence 𝐸𝐸 = 𝑁𝑁2\{(𝑖𝑖, 𝑖𝑖), 𝑖𝑖 ∈ 𝑁𝑁}. The term direct connection between  
a pair of locations, say 𝑖𝑖 ∈ 𝑁𝑁 and 𝑗𝑗 ∈ 𝑁𝑁, does not necessarily mean that the physical 
route between location 𝑖𝑖 and location 𝑗𝑗 does not go through any 𝑝𝑝 ∈ 𝑁𝑁 location (or 
locations). It means, however, that when delivering the stream of volume from 𝑖𝑖 to 𝑗𝑗, 
we do not stop in postal operations outlets located in such nodes. 

2.2. Postal operations outlets 

Each postal operations outlet has the following technical characteristics: 
a) a time window in which the outlet operates: 𝑡𝑡𝑤𝑤𝑖𝑖 = [𝑜𝑜𝑝𝑝𝑜𝑜𝑛𝑛𝑖𝑖 , 𝑐𝑐𝑐𝑐𝑜𝑜𝑠𝑠𝑜𝑜𝑖𝑖], where 
𝑜𝑜𝑝𝑝𝑜𝑜𝑛𝑛𝑖𝑖 , 𝑐𝑐𝑐𝑐𝑜𝑜𝑠𝑠𝑜𝑜𝑖𝑖  are timestamps (points in time in a day), defined with the precision 
of up to a minute; 

b) the capacity of the outlet, in terms of the number of vehicles it can process, 
𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑜𝑜ℎ𝑖𝑖 > 0; 

c) the capacity of the outlet, in terms of the volume it can process, 𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑜𝑜𝑐𝑐𝑖𝑖 > 0; 
d) the unit cost of processing volume 𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐 > 0; 
e) time needed to process a unit of volume 𝑡𝑡𝑐𝑐𝑜𝑜𝑐𝑐 > 0. 
 In practice, the values of 𝑜𝑜𝑝𝑝𝑜𝑜𝑛𝑛𝑖𝑖  and 𝑐𝑐𝑐𝑐𝑜𝑜𝑠𝑠𝑜𝑜𝑖𝑖 are similar for the respective  
𝑖𝑖 ∈ 𝑁𝑁 outlets, but as they do not have to be identical, they are indexed by 𝑖𝑖. They 



20 Przegląd Statystyczny. Statistical Review 2021 | 3 

 

 

represent, respectively, the earliest and the latest time at which outlet 𝑖𝑖 is operational 
throughout the day, i.e. the earliest when any volume can enter it (the unloading of 
volumes from vehicles can start), and the latest any volume has to leave it (the 
loading of all volumes into vehicles has to finish). When a vehicle enters a postal 
operations outlet, what happens first is unloading the volume from it. The volume 
contained in a vehicle is the sum of the volumes of streams which were delivered by 
this vehicle1 to the outlet. Each stream needs to be processed in an outlet, which 
takes time and incurs costs. Streams whose destination is a given outlet are processed 
in a simplified way, i.e. without a vehicle assignment, since they are not delivered to 
any further nodes of the network. But still, the time needed to process the stream 
without a vehicle assignment in its destination node is accounted for, along with the 
cost of processing. 
 The cargo of a stream finishing in an outlet is delivered to final destinations (post 
offices) outside of the model within the last mile.2 If the time needed to implement 
the last mile around node 𝑖𝑖 is denoted by 𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙 (it involves uploading the volumes 
onto vehicles which perform the last mile, delivering the volumes to their final 
destinations, i.e. post offices, and unloading them there) and the deadline for the 
delivery of stream 𝑠𝑠 is denoted by 𝑡𝑡�̅�𝑠 (the time by which the stream must reach the 
post office within the last mile), then the last possible departure time of this stream 
from location 𝑖𝑖 is not 𝑐𝑐𝑐𝑐𝑜𝑜𝑠𝑠𝑜𝑜𝑖𝑖, but min�𝑐𝑐𝑐𝑐𝑜𝑜𝑠𝑠𝑜𝑜𝑖𝑖 , 𝑡𝑡�̅�𝑠 − 𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙�. Indeed, streams whose 
destination is location 𝑖𝑖 must leave this location at the 𝑡𝑡�̅�𝑠 − 𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙 time at the latest, and 
streams for which location 𝑖𝑖 is a transfer node can be processed until the 𝑐𝑐𝑐𝑐𝑜𝑜𝑠𝑠𝑜𝑜𝑖𝑖 time, 
and leave it by 𝑡𝑡�̅�𝑠 − 𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙 < 𝑐𝑐𝑐𝑐𝑜𝑜𝑠𝑠𝑜𝑜𝑖𝑖. 
 Analogically, streams which originate in a given postal operations outlet are 
delivered to this outlet from outside the network within the first mile. If the time 
needed to implement the first mile around node 𝑖𝑖 is denoted by 𝑡𝑡𝑖𝑖

𝑓𝑓𝑙𝑙, and the starting 
time of the implementation of the first mile for stream 𝑠𝑠 is denoted by 𝑡𝑡𝑠𝑠, then the 
effective earliest time at which this stream can enter outlet 𝑖𝑖 for processing is not 
𝑜𝑜𝑝𝑝𝑜𝑜𝑛𝑛𝑖𝑖, but max�𝑜𝑜𝑝𝑝𝑜𝑜𝑛𝑛𝑖𝑖 , 𝑡𝑡𝑖𝑖

𝑓𝑓𝑙𝑙 + 𝑡𝑡𝑠𝑠�. Indeed, streams which originate in location 𝑖𝑖 can 
leave this location at 𝑡𝑡𝑖𝑖

𝑓𝑓𝑙𝑙 + 𝑡𝑡𝑠𝑠, and streams for which location 𝑖𝑖 is a transfer  
node can be processed starting from the 𝑜𝑜𝑝𝑝𝑜𝑜𝑛𝑛𝑖𝑖 time, and arrive there from 
 𝑡𝑡𝑖𝑖
𝑓𝑓𝑙𝑙 + 𝑡𝑡𝑠𝑠 > 𝑜𝑜𝑝𝑝𝑜𝑜𝑛𝑛𝑖𝑖 . Note that the first mile correction applies only to streams which 

originate in node 𝑖𝑖, and the last mile correction applies only to streams whose 
destination is location 𝑖𝑖 (i.e. it does not apply to the streams which use location 𝑖𝑖 as  
a transfer node). 

 
1 A vehicle can ship the entire volume of a given order or a fraction of it. 
2 In our study the last mile is neglected. It is assumed that it is optimised locally outside of the main model. 
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2.3. Vehicles 

We assume that vehicles are available on demand in each location. This is consistent 
with the common practice of many postal operators who often find it profitable to 
outsource the maintenance of their fleet of vehicles. This implies that the objective 
function abstracts from the possible cost which arises if a fleet of vehicles needs to be 
expanded (i.e. vehicles need to be purchased), but involves solely the costs of the 
operations of the fleet, so the costs incurred by the daily operations of the postal 
operator. Each vehicle has its technical characteristics, namely: 
a) the capacity in terms of the number of postal pallets it can carry 𝑣𝑣𝑜𝑜ℎ𝑐𝑐𝑜𝑜𝑐𝑐𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 > 0. 

Although the number of pallets must be an integer, we consider fractional 
numbers as well, which represent a pallet which is not fully loaded; 

b) the capacity in terms of the mass of the volume it can carry 𝑣𝑣𝑜𝑜ℎ𝑐𝑐𝑜𝑜𝑐𝑐𝑉𝑉𝐺𝐺𝑖𝑖 > 0; 
c) the cost of vehicle utilisation per kilometre 𝑣𝑣𝑜𝑜ℎ𝐶𝐶𝑜𝑜𝑠𝑠𝑡𝑡𝑉𝑉𝐶𝐶 > 0; 
d) the cost of vehicle utilisation per hour 𝑣𝑣𝑜𝑜ℎ𝐶𝐶𝑜𝑜𝑠𝑠𝑡𝑡𝐶𝐶 > 0; 
e) the cost of a driver per hour 𝑣𝑣𝑜𝑜ℎ𝐶𝐶𝑜𝑜𝑠𝑠𝑡𝑡𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶 > 0. 

2.4. Execution of streams 

Let 𝑘𝑘𝑠𝑠 ∈ 𝑁𝑁 denote the origin node, and 𝑐𝑐𝑠𝑠 ∈ 𝑁𝑁 the destination node of stream 𝑠𝑠 ∈ 𝑆𝑆. 
The volume associated with stream 𝑠𝑠, which flows over the edge (𝑖𝑖, 𝑗𝑗), will be 
denoted by 𝑣𝑣𝑠𝑠𝑖𝑖𝑠𝑠. Naturally, 𝑣𝑣𝑠𝑠𝑖𝑖𝑠𝑠 ≥ 0 and 𝑣𝑣𝑠𝑠𝑖𝑖𝑠𝑠 ≤ 𝐶𝐶𝑠𝑠, where 𝐶𝐶𝑠𝑠 > 0 denotes the 
volume (demand) of stream 𝑠𝑠. Since 𝑘𝑘𝑠𝑠 and 𝑐𝑐𝑠𝑠 are the origin node and the 
destination node of stream 𝑠𝑠, we know that 𝑣𝑣𝑠𝑠𝑘𝑘𝑠𝑠𝑠𝑠 > 0 for at least one 𝑗𝑗 ∈ 𝑁𝑁\{𝑘𝑘𝑠𝑠}, 
and 𝑣𝑣𝑠𝑠𝑖𝑖𝑙𝑙𝑠𝑠 > 0 for at least one 𝑖𝑖 ∈ 𝑁𝑁\{𝑐𝑐𝑠𝑠}. If the flow of volume from the origin node 
𝑘𝑘𝑠𝑠 to the destination node 𝑐𝑐𝑠𝑠 is a direct one, then 𝑣𝑣𝑠𝑠𝑘𝑘𝑠𝑠𝑙𝑙𝑠𝑠 > 0. If a transfer connection 
is used (with one transfer node), we have 0 < 𝑣𝑣𝑠𝑠𝑘𝑘𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠 = 𝑣𝑣𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 ≤ 𝑣𝑣𝑠𝑠 for some 
indices 𝑝𝑝 ∈ {1,2, … ,𝑚𝑚𝑠𝑠}, where 1 ≤ 𝑚𝑚𝑠𝑠 ≤ 𝑛𝑛 − 2 denotes the number of transfer 
connections which are used for stream s, and, naturally, 𝑤𝑤𝑠𝑠𝑠𝑠 ∈ 𝑁𝑁\{𝑘𝑘𝑠𝑠, 𝑐𝑐𝑠𝑠}. It can also 
be the case that none such 𝑤𝑤𝑠𝑠𝑠𝑠 node exists in the solution (i.e. 𝑚𝑚𝑠𝑠 = 0), which 
means that stream 𝑠𝑠 is processed using a (single) direct connection. It is also possible 
that a given stream is processed using only transfer connections, in which case 
𝑣𝑣𝑠𝑠𝑘𝑘𝑠𝑠𝑙𝑙𝑠𝑠 = 0. 

2.5. The search space 

An order can be processed in the form of a direct connection or in the form of  
a transfer connection. There is one way of processing an order in the form of a direct 
connection, whereas in relation to a transfer connection (or connections), an order 
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can be processed in ∑ �𝑛𝑛 − 2
𝑘𝑘 �𝑛𝑛−2

𝑘𝑘=1 = 2𝑛𝑛−2 − 1 ways, therefore altogether there are 
2𝑛𝑛−2 possibilities. Since deliveries from each node of the network are carried out to 
all other nodes, there are 𝑛𝑛2 − 𝑛𝑛 orders placed. Hence, there are 2𝑛𝑛(𝑛𝑛−1)(𝑛𝑛−2) 
possible solutions, without taking into account time and capacity constraints. We 
have 𝑛𝑛 ≈ 40, which yields 259280 ways in which orders can be processed, and this  
is without vehicle assignment. This precludes any approach based on direct 
enumeration of solutions. 

3. The Algorithm 

To optimise the problem outlined in the previous section, we employ a stochastic 
heuristic procedure which belongs to the family of genetic algorithms (see Boussaïd 
et al., 2013; Dréo et al., 2006 or Katoch et al., 2021), which is one of many possible 
approaches that are used in case of logistic problems (see Arnold & Sörensen, 2019; 
Baker & Ayechew, 2003; Baldacci et al., 2010; Cordeau et al., 2002; Laporte et al., 
2000, or Prins, 2002). To employ such a method, a solution must be encoded in an 
appropriate way, as e.g. Kadri and Boctor (2018) demonstrate.  
 In the following parts of the paper, we present a simplified narrative, i.e. our point 
is made without a detailed discussion of the possible formulations, in the form of  
a mixed-integer program (MIP). The implementation of the problem we deal with in 
the form of an MIP, which is then solved with techniques such as branch and bound, 
cutting plane, etc., would require the introduction of many additional variables, like 
index binaries showing if any volume is shipped through a given edge for each 
stream or not, time-related variables, etc. (see Granada-Echeverri et al., 2019; Rieck 
& Zimmermann, 2010 or Theurich et al. (2021). Also, as shown by Boland et al. 
(2017), in such a case the reformulation of the problem in the form of a time-
extended graph is possible. 

3.1. Representation of solutions 

Problem formulation presented in the previous section can be translated into  
a mathematical programming form with variables 𝑣𝑣𝑠𝑠𝑖𝑖𝑠𝑠 ≥ 0, which denote volumes 
of stream 𝑠𝑠 ∈ 𝑆𝑆 assigned to edges (𝑖𝑖, 𝑗𝑗) for 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, 𝑖𝑖 ≠ 𝑗𝑗, and 𝑣𝑣𝑜𝑜ℎ𝑖𝑖𝑠𝑠 ∈ ℤ+,  
which denote a number of vehicles operating on edge (𝑖𝑖, 𝑗𝑗). This would yield s 
olutions of the form �𝑣𝑣𝑠𝑠𝑖𝑖𝑠𝑠 ,𝑣𝑣𝑜𝑜ℎ𝑖𝑖𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆, 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, 𝑖𝑖 ≠ 𝑗𝑗� belonging to search space  
�𝑆𝑆 × ℝ+

𝑛𝑛(𝑛𝑛−1),ℤ+
𝑛𝑛(𝑛𝑛−1)�. Although a genetic algorithm could, in principle, be applied 

to such a solution representation, there are more natural, concise and efficient ways 
in which solutions can be represented and genetic operations performed on them. 
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 By ‘natural’ we mean that the representation of solutions resembles a constructive 
nature of a genetic algorithm, i.e. the fact that it constructs new solutions from the 
olds ones (in the process of a crossover). A mathematical programming formulation 
is generic and it does not reflect the inner workings of any optimisation technique, 
including that of a genetic algorithm. We will employ an approach in which the 
representation of solutions resembles the physical process of the construction of 
routes within a logistic plan. 
 By concise we mean that only relevant information is stored in the structure 
(object) which represents the solution. For example, we cannot rule out that in most 
situations (problem instances), at each stage of the search space exploration, most 
variables 𝑣𝑣𝑠𝑠𝑖𝑖𝑠𝑠 will be equal to zero, since most routes do not make sense from the 
economic point of view. Moreover, a set of such variables can vary at different stages 
of the optimisation for the algorithm runs which coordinate the search towards 
different local minima, therefore most of such variables cannot be set to zero  
a priori. As a consequence, potentially large objects need to be stored in memory, 
with significant access time to their elements, capable of representing many and 
diverse solutions, although only a fraction of the solutions is effectively processed, 
i.e. visited in the process of the search space exploration.3 We will employ an 
approach in which the representation of solutions is minimal, i.e. only the relevant 
information is stored. 
 Finally, the criterion of efficiency is related to the fact that crossover and mutation 
operators either produce feasible solutions, in which case it has to be a tailor-made 
operator, compatible with constraints imposed in the problem in question, or  
a repair operator must be applied to the result of the work of the operator, so that the 
produced solutions, possibly infeasible at first, are projected4 on the feasible region 
of the search space. It is also possible that the algorithm allows search space 
explorations through infeasible regions, but, in either case, final solutions produced 
by the optimiser must be feasible, for example due to increasing penalty applied to 
the objective function for infeasibility. For the problem in question, due to  
a multitude of the imposed feasibility constraints and due to the way in which 
crossovers and mutations are typically specified for problems formulated as  
mixed integer mathematical programmes using variables like 𝑣𝑣𝑠𝑠𝑖𝑖𝑠𝑠 and 𝑣𝑣𝑜𝑜ℎ𝑖𝑖𝑠𝑠, no 
matter which approach is adopted, the production of feasible solutions can be 
computationally expensive,5 especially if based on stochastic trials until a feasible 
solution is obtained, or can substantially restrict the way in which new solutions are 

 
3 Moreover, sparse matrices do not prove an appropriate approach due to efficiency reasons. See below. 
4 The term projection is used here in a casual way, without a strict mathematical meaning of a projection 

operator. 
5 Crossovers are inherently stochastic procedures, which means that producing a feasible solution by 

chance can take substantial computational time. 
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constructed from the old ones, when tailored-made feasibility-preserving operators 
are employed. The caveat is that such feasibility-preserving operators tend to lead to 
a shrinkage of the subset of the feasible region that can be effectively explored by the 
solver. 
 In both the above-described cases, the efficiency of the search space exploration 
deteriorates – either due to a computational burden or a low diversity of the 
exploration which, at the end of the day, also translates into an increased 
computational burden: with less diversity in the search space exploration, more 
iterations are needed to explore the search space effectively. In the further parts of 
the paper, we will take advantage of the natural way in which solutions are 
represented (as discussed above), so that efficient feasibility-preserving operators of 
reproduction and mutation can be specified. Our representation of the solution is, 
informatively, equivalent to a specific representation in the form of a mathematical 
programme, i.e. a bijective correspondence between these two representations can 
easily be obtained. 
 Let 𝑥𝑥𝑠𝑠 denote the representation of the way in which stream 𝑠𝑠 ∈ 𝑆𝑆 is executed. If 
the delivery of stream 𝑠𝑠 involves a direct connection, then 
 
 𝑑𝑑(𝑥𝑥𝑠𝑠) = �(𝑖𝑖, 𝑗𝑗),𝑣𝑣𝑠𝑠𝑠𝑠�, (1) 
 
where (𝑖𝑖, 𝑗𝑗) = (𝑘𝑘𝑠𝑠, 𝑐𝑐𝑠𝑠) and 0 < 𝑣𝑣𝑠𝑠𝑠𝑠 ≤ 𝑣𝑣𝑠𝑠 represents the volume of 𝑠𝑠 which is 
delivered using a direct connection. Note that (𝑖𝑖, 𝑗𝑗) = (𝑘𝑘𝑠𝑠, 𝑐𝑐𝑠𝑠) does not have to be 
stored in 𝑥𝑥𝑠𝑠 explicitly, since the structures (𝑘𝑘𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆) and (𝑐𝑐𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆) must be stored 
anyway. If the delivery of 𝑠𝑠 does not involve a direct connection, then6 𝑑𝑑(𝑥𝑥𝑠𝑠) = ∅  
and 𝑣𝑣𝑠𝑠𝑠𝑠 = 0. If the delivery of stream 𝑠𝑠 involves at least one transfer connection, then 
 

 𝑡𝑡(𝑥𝑥𝑠𝑠) = ���𝑖𝑖,𝑤𝑤𝑠𝑠𝑠𝑠, 𝑗𝑗�,𝑝𝑝 ∈ {1,2, … ,𝑚𝑚𝑠𝑠}� , �𝑣𝑣𝑠𝑠𝑠𝑠,𝑝𝑝 ∈ {1,2, … ,𝑚𝑚𝑠𝑠}��, (2) 

 
where, again, (𝑖𝑖, 𝑗𝑗) = (𝑘𝑘𝑠𝑠, 𝑐𝑐𝑠𝑠), 𝑤𝑤𝑠𝑠𝑠𝑠 ∈ 𝑁𝑁\{𝑘𝑘𝑠𝑠, 𝑐𝑐𝑠𝑠} with 𝑤𝑤𝑠𝑠𝑠𝑠𝑎𝑎 ≠ 𝑤𝑤𝑠𝑠𝑠𝑠𝑏𝑏 for any 𝑝𝑝𝑎𝑎,𝑝𝑝𝑏𝑏 ∈
{1,2, … ,𝑚𝑚𝑠𝑠}, 𝑝𝑝𝑎𝑎 ≠ 𝑝𝑝𝑏𝑏, and 0 < 𝑣𝑣𝑠𝑠𝑠𝑠 ≤ 𝑣𝑣𝑠𝑠 represents the volume of 𝑠𝑠 which is 
delivered using a transfer connection that passes through node 𝑤𝑤𝑠𝑠𝑠𝑠, i.e. the vehicle 
travelling from 𝑘𝑘𝑠𝑠 to 𝑤𝑤𝑠𝑠𝑠𝑠 stops in the postal operations outlet located in 𝑤𝑤𝑠𝑠𝑠𝑠, and the 
stream 𝑣𝑣𝑠𝑠𝑠𝑠 is processed in 𝑤𝑤𝑠𝑠𝑠𝑠. Otherwise 𝑡𝑡(𝑥𝑥𝑠𝑠) = ∅, and each 𝑣𝑣𝑠𝑠𝑠𝑠 = 0. 
 A solution is represented by 𝑥𝑥 = (𝑥𝑥𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆). Such a representation is natural, since 
routes themselves are stored, along with volumes flowing through the edges. It is also 
concise, since only used connections are physically represented. As we will see, it also 
allows the implementation of efficient reproduction and selection operators. 

 
6 We use symbol ∅ to denote any null, empty or nonexistent data structure. 
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 To give an example, let us consider a small problem with three nodes 𝑐𝑐 = {1,2,3}, 
and three streams 𝑠𝑠1, 𝑠𝑠2 and 𝑠𝑠3, with origins and destinations given by �𝑘𝑘𝑠𝑠1 , 𝑐𝑐𝑠𝑠1� =
(1,2), �𝑘𝑘𝑠𝑠2 , 𝑐𝑐𝑠𝑠2� = (1,3), and �𝑘𝑘𝑠𝑠3 , 𝑐𝑐𝑠𝑠3� = (3,1), and associated volumes equal to 
𝑣𝑣𝑠𝑠1 = 10, 𝑣𝑣𝑠𝑠2 = 20 and 𝑣𝑣𝑠𝑠3 = 5. Let us assume that stream 𝑠𝑠1 is executed using  
a direct connection only, therefore we have 𝑑𝑑�𝑥𝑥𝑠𝑠1� = ((1,2), 10) and 𝑡𝑡�𝑥𝑥𝑠𝑠1� = ∅. 
Similarly, let us assume stream 𝑠𝑠2 is executed using a direct connection (volume  
of 12) and a transfer connection (volume of 8), therefore we have 𝑑𝑑�𝑥𝑥𝑠𝑠2� =
((1,3), 12) and 𝑡𝑡�𝑥𝑥𝑠𝑠2� = ((1,2,3), 8). Finally, let us assume that stream 𝑠𝑠3 is 
executed using a transfer connection only, therefore we have 𝑑𝑑�𝑥𝑥𝑠𝑠3� = ∅ and 
𝑡𝑡�𝑥𝑥𝑠𝑠3� = ((3,2,1), 5). 

3.2. Initial population 

For genetic optimisation, a population of solutions is needed, which we denote by 
𝑉𝑉𝑘𝑘 = {𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1,2, … , |𝑉𝑉|}, where 𝑘𝑘 ≥ 0 is an iteration index of the algorithm (with 
𝑉𝑉0 being the initial population), and |𝑉𝑉| denotes the size of the population, which is 
kept constant through the iterations. The initial population consists of |𝑉𝑉| solutions, 
each of which is constructed according to the procedure outlined below, which is 
sequentially applied to each of the 𝑚𝑚 streams. 
 Firstly, the number of transfer connections is drawn from set  
{0,1,2, … , min(⌈𝑣𝑣𝑠𝑠⌉,𝑛𝑛 − 2)}, according to probabilities proportional to 2−𝑘𝑘, 
respectively. If the sampled number of transfer connections is bigger that 0, we 
sample, uniformly and without replacement, respective routes for transfer 
connections �𝑘𝑘𝑠𝑠,𝑤𝑤𝑠𝑠𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑠𝑠� with 𝑤𝑤𝑠𝑠𝑠𝑠𝑖𝑖 ∈ 𝑁𝑁\{𝑘𝑘𝑠𝑠, 𝑐𝑐𝑠𝑠} for 𝑖𝑖 = 1,2, … , |𝑡𝑡(𝑥𝑥𝑠𝑠)|. Secondly, if 
|𝑡𝑡(𝑥𝑥𝑠𝑠)| < 𝑛𝑛 − 2, a direct connection (𝑘𝑘𝑠𝑠, 𝑐𝑐𝑠𝑠) is added to 𝑥𝑥𝑠𝑠 with the probability of  
1 or 𝑝𝑝𝑠𝑠, respectively. Finally, the volume 𝑣𝑣𝑠𝑠 gets distributed over the connections of 
𝑥𝑥𝑠𝑠. Since there are, by construction, |𝑡𝑡(𝑥𝑥𝑠𝑠)| + |𝑑𝑑(𝑥𝑥𝑠𝑠)| ≥ 1 connections within 𝑥𝑥𝑠𝑠, 
volume 𝑣𝑣𝑠𝑠 is partitioned into volumes 𝑣𝑣𝑠𝑠𝑖𝑖, 𝑖𝑖 = 1,2, … , |𝑡𝑡(𝑥𝑥𝑠𝑠)| + |𝑑𝑑(𝑥𝑥𝑠𝑠)|, such that 
𝑣𝑣𝑠𝑠𝑖𝑖 > 0 and ∑ 𝑣𝑣𝑠𝑠𝑖𝑖 = 𝑣𝑣𝑠𝑠

|𝑡𝑡(𝑥𝑥𝑠𝑠)|+|𝑠𝑠(𝑥𝑥𝑠𝑠)|
𝑖𝑖=1 . This makes the explicit construction of 𝑡𝑡(𝑥𝑥𝑠𝑠) 

and 𝑑𝑑(𝑥𝑥𝑠𝑠) possible, and therefore the construction of 𝑥𝑥𝑠𝑠 as well. The procedure is 
applied for each 𝑠𝑠 ∈ 𝑆𝑆, which yields generic solution 𝑥𝑥𝑖𝑖. The procedure is repeated 
for 𝑖𝑖 = 1,2, … , |𝑉𝑉|. 

3.3. Genetic operators 

A genetic algorithm usually consists in the sequential application of the following 
three genetic operators: selection, reproduction and mutation. Selection is respons-
ible for the stochastic promotion of high quality solutions to the reproduction phase 
(see Vajda et al., 2008), which in turn combines structural features of solutions 
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producing new solutions, possibly of higher quality than the old ones (see Kora & 
Yadlapalli, 2017 or Umbarkar & Sheth, 2015).7 Mutation, by introducing random 
disturbances into offspring produced by reproduction, is mainly responsible for 
increasing the diversity of the search space exploration and for the prevention of 
premature convergence, as Lim et al. (2017) and Squillero and Tonda (2016) 
demonstrate. Our implementation of the genetic algorithm follows the idea, hence 
we have 𝑉𝑉𝑘𝑘+1 = 𝐶𝐶�𝑅𝑅�𝑆𝑆(𝑉𝑉𝑘𝑘)��, where 𝑆𝑆 stands for selection, 𝑅𝑅 for reproduction, 
and 𝐶𝐶 for mutation operators. 

3.3.1. Selection 

A tournament selection is employed as a selection operator (see Bäck et al., 2018). It 
boils down to selecting |𝑉𝑉| times the two solutions 𝑥𝑥, 𝑦𝑦 ∼ 𝑈𝑈(𝑉𝑉𝑘𝑘) from 𝑉𝑉𝑘𝑘, i.e. two 
uniform draws from 𝑉𝑉𝑘𝑘, with the replacement and the promotion of 𝑥𝑥 to the 
reproduction phase if 𝑓𝑓(𝑥𝑥) > 𝑓𝑓(𝑦𝑦), and the promotion of 𝑦𝑦 otherwise. We augment, 
however, the typical formulation of a tournament selection by the rule of elitism, 
which assumes that the 𝛼𝛼 ∈ (0,1) share of the best solutions from 𝑉𝑉𝑘𝑘 is 
automatically promoted to the recombination phase, and they constitute share 
(0,1) ∋  𝛽𝛽 ≥ 𝛼𝛼 of parental pool 𝑆𝑆(𝑉𝑉𝑘𝑘). If 𝛽𝛽 > 𝛼𝛼, then the (𝛽𝛽 − 𝜆𝜆)|𝑉𝑉| solutions, 
which are integer by construction, randomly drawn from the 𝛼𝛼 share of 𝑉𝑉𝑘𝑘, are 
duplicated. The above shows how 𝑆𝑆(𝑉𝑉𝑘𝑘) is constructed. 

3.3.2. Reproduction 

After the choice of the selection operator, we obtain population 𝑆𝑆(𝑉𝑉𝑘𝑘) =
�𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑘𝑘 ,𝑝𝑝𝑘𝑘+1, … ,𝑝𝑝|𝑃𝑃|−1,𝑝𝑝|𝑃𝑃|�, which contains |𝑃𝑃|

2
 ordered tuples of solutions in 

the form of (𝑝𝑝𝑘𝑘 ,𝑝𝑝𝑘𝑘+1) for 𝑘𝑘 = 1,3, … , |𝑉𝑉| − 1. Each such pair of solutions – parents 
(𝑝𝑝𝑘𝑘 ,𝑝𝑝𝑘𝑘+1) produces a new pair of solutions – offspring (𝑜𝑜𝑘𝑘,𝑜𝑜𝑘𝑘+1), according to  
a 1-stream-interchange procedure, which we define below. 
 First, index 𝑞𝑞 is drawn uniformly from set {1,2, … ,𝑚𝑚}, the elements of which 
correspond to streams 𝑠𝑠 ∈ 𝑆𝑆. The letter 𝑚𝑚 denotes the number of streams in a given 
problem instance, i.e. |𝑆𝑆| = 𝑚𝑚. So far it has not been important to emphasize, but 
the solution 𝑥𝑥 = (𝑥𝑥𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆) comes in the form of an ordered set, a sequence, 
therefore streams 𝑠𝑠 ∈ 𝑆𝑆 are indexed and we can equivalently represent the solution 
as 𝑥𝑥 = (𝑥𝑥𝑘𝑘 ,𝑘𝑘 = 1,2, … ,𝑚𝑚), where 𝑥𝑥𝑘𝑘 represents the way in which the 𝑘𝑘-th sequence 
is executed in solution 𝑥𝑥. 

 
7 Obviously, the recombination can also produce offspring worse than ‘parents’, in particular with the 

objective function below the average in the population, but such offspring, in terms of the expected 
value, will not be promoted by the selection operator in the next iteration. 
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 Secondly, the execution of the 𝑞𝑞-th stream in solution 𝑝𝑝𝑘𝑘, denoted by 𝑥𝑥𝑞𝑞(𝑝𝑝𝑘𝑘) and 
represented by 𝑑𝑑 �𝑥𝑥𝑞𝑞(𝑝𝑝𝑘𝑘)� and 𝑡𝑡 �𝑥𝑥𝑞𝑞(𝑝𝑝𝑘𝑘)�, is interchanged with the execution of the 

𝑞𝑞-th stream in solution 𝑝𝑝𝑘𝑘+1, denoted by 𝑥𝑥𝑞𝑞(𝑝𝑝𝑘𝑘+1) and represented by 𝑑𝑑 �𝑥𝑥𝑞𝑞(𝑝𝑝𝑘𝑘+1)� 

and 𝑡𝑡 �𝑥𝑥𝑞𝑞(𝑝𝑝𝑘𝑘+1)�. Such an interchange operation can be represented as: 
 

 �𝑑𝑑 �𝑥𝑥𝑞𝑞(𝑝𝑝𝑘𝑘)� , 𝑡𝑡 �𝑥𝑥𝑞𝑞(𝑝𝑝𝑘𝑘)� � ↔ �𝑑𝑑 �𝑥𝑥𝑞𝑞(𝑝𝑝𝑘𝑘+1)� , 𝑡𝑡 �𝑥𝑥𝑞𝑞(𝑝𝑝𝑘𝑘+1)��,  

 
or, in short, as 𝑥𝑥𝑞𝑞(𝑝𝑝𝑘𝑘) ↔ 𝑥𝑥𝑞𝑞(𝑝𝑝𝑘𝑘+1). The above demonstrates how 𝑅𝑅�𝑆𝑆(𝑉𝑉𝑘𝑘)� is 
constructed. 

3.3.3. Mutation 

Mutation introduces changes in each stream 𝑥𝑥𝑠𝑠 of each solution 𝑥𝑥 ∈  𝑅𝑅�𝑆𝑆(𝑉𝑉𝑘𝑘)� 
independently, with an exogenous probability of 𝑝𝑝𝑙𝑙 ∈ (0,1). We assume three 
possible changes, employed with equal probabilities. The first change consists in 
removing a random connection from stream 𝑥𝑥𝑠𝑠. The connection to be removed is 
chosen uniformly from {1,2, … , |𝑡𝑡(𝑥𝑥𝑠𝑠)| + |𝑑𝑑(𝑥𝑥𝑠𝑠)|}. Indeed, if |𝑑𝑑(𝑥𝑥𝑠𝑠)| = 1, then 
index 1 represents a direct connection, and indices 2,3, … , |𝑡𝑡(𝑥𝑥𝑠𝑠)| + |𝑑𝑑(𝑥𝑥𝑠𝑠)| 
represent consecutive transfer connections. If |𝑑𝑑(𝑥𝑥𝑠𝑠)| = 0, indices 1,2, … , |𝑡𝑡(𝑥𝑥𝑠𝑠)| +
|𝑑𝑑(𝑥𝑥𝑠𝑠)| represent transfer connections. 
 The removal of a connection implies that some volume, say 𝑣𝑣, needs to be 
distributed over the remaining |𝑡𝑡(𝑥𝑥𝑠𝑠)| + |𝑑𝑑(𝑥𝑥𝑠𝑠)|− 1 connections. It can happen 
that |𝑡𝑡(𝑥𝑥𝑠𝑠)| + |𝑑𝑑(𝑥𝑥𝑠𝑠)|− 1 = 0, so in other words, that 𝑥𝑥𝑠𝑠 contained exactly one 
route, which was removed. In such a case, a random connection is added to 𝑥𝑥𝑠𝑠, 
either a direct or a transfer one, with probabilities 𝑝𝑝𝑠𝑠 and 1 − 𝑝𝑝𝑠𝑠, respectively, and 
the volume from the removed connection is assigned to it. If |𝑡𝑡(𝑥𝑥𝑠𝑠)| + |𝑑𝑑(𝑥𝑥𝑠𝑠)|−
1 ≥ 1, then there is at least one route which is left after the removal of the sampled 
route. 
 The second possible change involves adding a random route to stream 𝑥𝑥𝑠𝑠. The 
added route can either be a direct connection, if 𝑥𝑥𝑠𝑠 does not have one, or a transfer 
connection, if |𝑑𝑑(𝑥𝑥𝑠𝑠)| < 𝑛𝑛 − 2. If 𝑥𝑥𝑠𝑠 does not already have a direct connection and it 
is possible to add a transfer connection, then the choice is made randomly with the 
probability of 𝑝𝑝𝑠𝑠′ and 𝑝𝑝𝑡𝑡 = 1− 𝑝𝑝𝑠𝑠′, respectively. If a transfer connection is  
added, then the node for the connection is drawn uniformly from 𝑁𝑁\ �{𝑘𝑘𝑠𝑠, 𝑐𝑐𝑠𝑠} ∪

�𝑤𝑤𝑠𝑠𝑠𝑠,𝑝𝑝 = 1,2, … ,𝑚𝑚𝑠𝑠�� . If 𝑥𝑥𝑠𝑠 already has a direct connection, then a transfer 
connection is added. When a direct or transfer connection is added, a random 
proportion of the volume of some other connection is shifted to it. The connection 
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from which the volume is shifted is chosen uniformly. If the shifted volume equals 
the entire volume of the connection in question, it is then removed from 𝑥𝑥𝑠𝑠.  
If a volume is perfectly divisible, this does not happen, but when it has to be 
modelled as an integer value, such a situation can happen. 
 The third possible change reallocates the volume within the existing connections. 
More specifically, two connections are drawn at random, and their volumes are 
interchanged. In the way described above genetic operators are implemented. 

4. Numerical Experiments 

In this section, we present and discuss a selection of case studies. Our aim here is to 
verify the desired features of the algorithm, and to provide some insight into the 
ability of the algorithm to guide brownfield analyses for realistic-size problem 
instances. 
 Case studies are divided into the following two groups: 
a) stylised problem instances – to verify if the algorithm is capable of selecting direct 

and transfer connections appropriately; 
b) practical problem instances – to observe convergence and to compare the 

generated solution with a benchmark. The way to verify the solution is to check if 
it is satisfactory from the practical point of view. A possible practical benchmark 
is a solution in which all volumes are shipped directly from the origins to the 
depots. 

4.1. Stylised case studies 

To give an example of stylised case studies, we will demonstrate how it can be 
experimentally confirmed that the algorithm is capable of producing good-quality 
solutions in three cases: 
a) when streams should be executed directly; 
b) when merging of streams is optimal; 
c) when there are distinct areas in which shipments should be executed separately. 
 Case a). Assume that the objective function is given by the total length of all 
routes of all streams counted separately, i.e. without merging volumes: 
 

 𝑓𝑓(𝑥𝑥) = ∑ �𝜒𝜒𝑠𝑠𝑠𝑠𝑑𝑑(𝑘𝑘𝑠𝑠,𝑙𝑙𝑠𝑠) + 𝜒𝜒𝑠𝑠𝑡𝑡 �∑ 𝑑𝑑�𝑘𝑘𝑠𝑠,𝑤𝑤𝑠𝑠𝑠𝑠� + 𝑑𝑑�𝑤𝑤𝑠𝑠𝑠𝑠,𝑙𝑙𝑠𝑠�
𝑙𝑙𝑠𝑠
𝑠𝑠=1 �� ,𝑠𝑠∈𝑆𝑆   (3) 

where: 
 

 𝜒𝜒𝑠𝑠𝑠𝑠 = �1, 𝑑𝑑(𝑥𝑥𝑠𝑠) ≠ ∅
0, 𝑑𝑑(𝑥𝑥𝑠𝑠) = ∅ and 𝜒𝜒𝑠𝑠𝑡𝑡 = �1, 𝑡𝑡(𝑥𝑥𝑠𝑠) ≠ ∅

0, 𝑡𝑡(𝑥𝑥𝑠𝑠) = ∅ , (4) 
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i.e. 𝜒𝜒𝑠𝑠𝑠𝑠 and 𝜒𝜒𝑠𝑠𝑡𝑡 are indicator variables which show if 𝑥𝑥𝑠𝑠 involves a direct connection 
(𝜒𝜒𝑠𝑠𝑠𝑠), or at least one transfer connection (𝜒𝜒𝑠𝑠𝑡𝑡), and 𝑑𝑑(𝑖𝑖,𝑠𝑠) denotes the distance 
between locations 𝑖𝑖 ∈ 𝑁𝑁 and 𝑗𝑗 ∈ 𝑁𝑁. In such a case, the optimal solution boils down 
to using only direct connections, no matter how the network is organised. We also 
assume that 𝑣𝑣𝑠𝑠 = 𝑣𝑣 for all 𝑠𝑠 ∈ 𝑆𝑆 and that 𝑣𝑣𝑜𝑜ℎ𝐶𝐶𝑐𝑐𝑝𝑝 = 𝑣𝑣 for all vehicles, but due to the 
specification of 𝑓𝑓, having 𝑣𝑣𝑜𝑜ℎ𝐶𝐶𝑐𝑐𝑝𝑝 > 𝑣𝑣 does not change the fact that the optimal 
solution involves only direct connections. For the graphical presentation of the 
results, we assumed that depots of respective streams are located in points (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), 
𝑖𝑖 = 1,2, … ,𝑛𝑛, on a circle with the center in (0,0), i.e. for 𝑥𝑥𝑖𝑖 = 𝐶𝐶𝑐𝑐𝑜𝑜𝑠𝑠(𝜙𝜙𝑖𝑖) and  
𝑦𝑦𝑖𝑖 = 𝐶𝐶𝑠𝑠𝑖𝑖𝑛𝑛(𝜙𝜙𝑖𝑖), where 𝜙𝜙𝑖𝑖 = 𝑖𝑖 2𝜋𝜋

𝑛𝑛+1
. The centre of the circle serves as a single 

destination point for all streams, as shown in Figure 1. 
 
Figure 1. Location of origin nodes – the circle, and of the destination node – the center, 

convergence of optimisation 

 

 

Source: authors’ calculations based on stylised data described in Case a). 

 
Figure 2. Best suboptimal solution generated by the algorithm 

  

Source: authors’ calculations based on stylised data described in Case a). 
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 For 𝑛𝑛 = 100, which is large enough from the practical perspective, we know that 
the optimal value of the objective function is 𝑓𝑓 = 99, hence it is easy to observe how 
the algorithm converges. Figure 1 plots the value of the objective function over 
10,000 iterations for 10 independent runs. The dashed horizontal line presents the 
level of the optimal solution. In all runs, the algorithm converges closely to the 
optimal value. Figure 1 shows 10,000 iterations with 𝑓𝑓 converging to, respectively: 
101.52, 100.13, 100.64, 100.32, 102.06, 100.20, 100.68, 100.82, 101.08 and 100.39. 
 Figure 2 plots the best sub-optimal solution generated by the algorithm, with 
𝑓𝑓(𝑥𝑥) = 100.13, which is within 1.1% from the optimal solution. The left panel 
presents the solution with outlets aligned as in the input data of the problem. We 
know that there are transfer connections in this solution, but the alignment of  
the locations makes them hard to see. Therefore, on the right panel, we also present 
the same sub-optimal solution, but with a different alignment of nodes, so that we 
can observe that there are five transfer connections still left in the solution.8 
 The conclusion is that the employed genetic operators allow the selection of 
solutions based on direct connections if the problem instance in question requires 
such coordination. 
 Case b1). Assume that the locations of all the outlets are the same as in Case a), 
and also that the volume of each stream stays the same, i.e. 𝑣𝑣𝑠𝑠 = 𝑣𝑣 for all 𝑠𝑠 ∈ 𝑆𝑆. 
Assume also that the objective function is modified, so that it is beneficial to merge 
volumes: 
 

 𝑓𝑓(𝑥𝑥) = ∑ 𝑣𝑣𝑜𝑜ℎ𝑖𝑖𝑠𝑠𝑑𝑑(𝑖𝑖,𝑠𝑠)(𝑖𝑖,𝑠𝑠)∈𝑁𝑁2

𝑖𝑖≠𝑠𝑠
, (5) 

 
where 𝑣𝑣𝑜𝑜ℎ𝑖𝑖𝑠𝑠 represents the number of vehicles assigned to the (𝑖𝑖, 𝑗𝑗) edge, i.e. the 
minimal number of vehicles capable of loading volume 𝑣𝑣𝑖𝑖𝑠𝑠 = ∑ 𝑣𝑣𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠∈𝑆𝑆  which flows 
through this edge. To make the merging of volumes possible, the capacities of 
vehicles are increased to a value larger than 𝑣𝑣. We assume that 𝑣𝑣𝑜𝑜ℎ𝐶𝐶𝑐𝑐𝑝𝑝 = 3𝑣𝑣 for 
each vehicle. Now it seems reasonable to set up local hubs and coordinate the direct 
flows to the destination point from the hubs. 
 
 
 

 

 
8 Within 25,000 iterations, all the runs converged to the optimal solution. 
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Figure 3. Convergence of the objective function and solution based on direct connections only 

  

Source: authors’ calculations based on stylised data described in Case b1). 

 
 For clarity, in Figures 3 and 4 we present the results for 𝑛𝑛 = 10, but an analogical 
behaviour of the algorithm is observed for greater values of 𝑛𝑛.9 Figure 3 shows the 
trajectory of the objective function over 10,000 iterations for 10 independent runs 
of the algorithm, where the dashed horizontal line represents the value of the 
objective function when only direct connections are used, with 𝑓𝑓 = 9 (the left 
panel), along with a solution which uses only direct connections (the right panel). 
Figure 4 presents two types of solutions generated by the algorithm, one of which  
is optimal with 𝑓𝑓(𝑥𝑥) = 7.10 (the right panel), while the other is sub-optimal with 
𝑓𝑓(𝑥𝑥) = 7.42 (the left panel). As arrows on the figure suggest, we assumed that  
𝑣𝑣 = 5. 
 
Figure 4. The suboptimal solution and the optimal solution with coordination of volumes  

in selected nodes 

  

Source: authors’ calculations based on simulated data described in Case b1). 

 
9 Since emergent properties of solutions, i.e. the selection of direct connections, when needed, and the 

selection of transfer connections with the coordinated merging of volumes, when needed, come as  
a consequence of the way in which genetic operators were implemented, they do not depend on the size 
of the problem. Efficiency is bigger for smaller test cases, therefore in the current section we also include 
the presentation of a real-life size of the problem. 
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 Case b2). Now let us assume that the locations of nodes are given as presented in 
the left panel of Figure 5. Location of origin nodes is the same as in Case a) and b1), 
with the exception of the location of the single destination node, which was shifted 
from (0,0) to (0,4). Let us assume that 𝑣𝑣𝑜𝑜ℎ𝐶𝐶𝑐𝑐𝑝𝑝 =  100𝑣𝑣, which in practical terms 
means that the capacities of vehicles are unlimited. The objective is defined as in 
Case b1). The right panel of Figure 5 presents the trajectory of the objective function 
over 5,000 iterations for 10 independent runs of the algorithm. The dashed 
horizontal line represents the value of the objective function when only direct 
connections are used. 
 
Figure 5. Location of origins and destinations and the convergence of the objective function 

 
 

Source: authors’ calculations based on stylised data described in Case b2). 

 
 Figure 6 presents the optimal solution generated by the algorithm with  
𝑓𝑓(𝑥𝑥) = 23.25. For clarity, we present an example of a solution for 𝑛𝑛 = 20, but an 
analogical behaviour of the algorithm is observed for larger values of 𝑛𝑛. The figure 
shows that the algorithm is capable of coordinating the execution of streams by 
setting up four hubs – for regions NE, NW, SE and SW, to which volumes are 
shipped from nearby locations and from which merged volumes are shipped by 
single vehicles directly to the destination location. Please note that streams 
originating in locations selected as hubs are shipped directly to their destination 
points. The conclusion from Cases b1) and b2) is that the employed genetic 
operators are capable, whenever necessary, of selecting hubs in which volumes are 
merged and from which they are transferred directly to their destinations. 
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Figure 6. A solution in which four locations are selected as hubs where volume is aggregated 
and transported to the destination location by direct connections 

 

Source: authors’ calculations based on stylised data described in Case b2). 

 
 Case b3). This case is analogical to b2), but we introduce two regions – one 
consists of locations on the circle centred at (0,0), as in the a) and b1) Cases, and the 
other is analogical to the b2 Case, but with the circle centred in (4,0) and the single 
destination in (2,0). In Figure 7, locations are presented on the left panel and the 
convergence of the objective on the right one (the dashed line represents the 
benchmark solution with 𝑓𝑓 = 28.14). Figure 8 presents both the optimal and the 
suboptimal solutions, the latter being very close to the optimal solution as far as the 
value of 𝑓𝑓 is concerned (𝑓𝑓 = 17.47 for the optimal solution, and 𝑓𝑓 = 17.49 for the 
suboptimal one). Note that although the difference in the objective is small in the 
two presented instances, the implied logistic organisation of the East region is 
substantially different, especially as far as the status of node 16 is concerned (which 
was given the status of a hub node in the right case, but no such status in the left 
one). Also the hub status in the NE region is interchanged between nodes 12 and 13. 
 
Figure 7. Location of depots and destinations, convergence of the objective function 

  

Source: authors’ calculations based on stylised data described in Case b3). 
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Figure 8. Two solutions with a very similar value of the objective function,  
yet with a substantially different organisation of the East region 

  

Source: authors’ calculations based on stylised data described in Case b3). 

4.2. Practical case study 

To show some sample results of a brownfield analysis supported by our algorithm, 
let us consider a problem in which locations correspond to 26 chosen facilities from 
the logistic network of an existing postal service provider (left panel of Figure 9), 
with distances and travel times calculated on the basis of real measurements, with 
realistic assumptions regarding demands and technical characteristics of vehicles 
and outlets, and with the objective defined as the cost of the execution of the plan.10 
The cost is calculated by a simulation of the execution of the solution and the 
calculation of the following variables: 𝑐𝑐 – total volume processed, i.e. 𝑐𝑐 = ∑ 𝑣𝑣(𝑖𝑖)𝑖𝑖∈𝑁𝑁 , 
where 𝑣𝑣(𝑖𝑖) denotes the total volume processed in outlet 𝑖𝑖 ∈ 𝑁𝑁, 𝐶𝐶 – total distance 
travelled by vehicles, 𝑇𝑇 – total time in which the vehicles travelled, 𝑇𝑇𝐷𝐷 – total time of 
the work of drivers (which is longer than 𝑇𝑇 since it includes situations when drivers 
have to wait for the volume to be processed in transfer nodes). These variables are 
then crossed with cost characteristics 𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐, 𝑣𝑣𝑜𝑜ℎ𝐶𝐶𝑜𝑜𝑠𝑠𝑡𝑡𝑉𝑉𝐶𝐶, 𝑣𝑣𝑜𝑜ℎ𝐶𝐶𝑜𝑜𝑠𝑠𝑡𝑡𝐶𝐶 and 
𝑣𝑣𝑜𝑜ℎ𝐶𝐶𝑜𝑜𝑠𝑠𝑡𝑡𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶. The right panel of Figure 9 presents the trajectory of the objective 
function for 1,000 iterations for 10 independent runs of the algorithm. The dotted 
line at 𝑓𝑓 = 312,300 represents the cost of the benchmark solution. We present  
a sample solution which is at least 5% better than the benchmark. This suboptimal 
solution obtains 𝑓𝑓 = 294,000. Figure 10 presents the outflows and inflows of the 
volume for the respective nodes of the network, for the benchmark solution (in blue) 
and for the presented solution (in red). Please note that for each node, both the 
outflow and the inflow of volume is larger for the suboptimal solution than for the 
benchmark one, in which outflows and inflows correspond to volumes originating 
and finishing in the respective nodes. The residual outflow and inflow (the net flow) 
equals the sum of the total outflow from a node decreased by the outflow which 

 
10 Due to property rights, all data were transformed, so that units do not represent any meaningful 

quantities. 
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originates in the node and the total inflow of the node decreased by the inflow which 
finishes in that node. The net flow grows due to the utilisation of transfer 
connections and the merging of volumes. 
 Net flows are shown in Figure 11 as nominal values (the upper panel), as 
percentages of outflows and inflows of the suboptimal solution (the middle panel), 
and as percentages of outflows and inflows of the benchmark solution (the lower 
panel). When the net flow is big in absolute terms, as well as relatively to the outflow 
which originates in the node and relatively to the inflow which finishes in the node, 
the node is identified as a hub. Note that, for example, nodes 13 and 14, which, 
relatively to some other nodes in the network, are not the origin or destination of 
any great volume of shipments, are considered as prospective hubs, whereas nodes 
22 and 23, where a substantial amount of volume originates and finds destination, 
are considered so to a lesser extent. 
 
Figure 9. Location of points and trajectory of the objective function 

  

Source: authors’ calculations based on a subset of scaled real data. 

 
Figure 10. Inflows and outflows of volume for respective facilities  

for the benchmark solution (in blue) and for the suboptimal one (in red) 

  

Source: authors’ calculations based on a subset of scaled real data. 
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Figure 11. Net flows assigned to outlets in terms of nominal values (upper panel), [%]  
of outflows and inflows of the suboptimal solution (the middle panel), [%]  
of outflows and inflows of the benchmark solution (lower panel) 

 

  

  

Source: authors’ calculations based on a subset of scaled real data. 

5. Conclusions 

We studied a realistic variant of a postal delivery problem with pickups and deliveries, 
split pickups and deliveries, time constraints and capacity constraints, the latter 
imposed both on vehicles and operations outlets. Our main conclusion is that the 
implementation of the genetic algorithm we used (with a relatively simple 
specification of genetic operators) makes it possible to select streams which should be 
delivered directly and those which should be merged with other streams along the 
routes, and allows the determination of transfer nodes within the network. The 
implementation with such features, when used in a real-life case study with relaxed 
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constraints on the capacities of outlets, allows the determination which outlets will be 
able to serve as prospective hubs when the network expands. From the practical point 
of view, such a conclusion means that the algorithm in question can be helpful in the 
brownfield type of analyses of postal companies, especially large ones, which operate 
on a country-wide infrastructure. Strong trends that we nowadays observe on the 
market of postal shipments, which are driven e.g. by a substantial surge in the 
volumes of orders that consumers place via the Internet (vs. stationary shopping), 
which will most probably continue and strengthen in the future, pose a serious 
challenge for the operator. On the other hand, such a situation opens the way for the 
development of optimisation techniques in the process of both tactical and strategic 
planning. Our research focused on one aspect of this kind of planning, namely on the 
identification of prospective hubs within the postal network, and on the approach to 
this problem. We assumed that transfer connections could pass through arbitrary 
transfer locations, which allowed the identification of hub locations. The next step 
would be to introduce an optimisation model in which hub locations would be fixed 
and transfer connections could be executed only through them, whereas peripheral 
locations would never serve as transfer nodes. We plan to add such second part of the 
model to obtain a closed, two-step procedure for postal optimisation. Moreover, in 
the model presented in this study, we accounted only for the overall time feasibility 
constraints, i.e. the time of logistic operations and transport which did not exceed the 
time windows in which outlets operate. The second part of the model would need to 
take into consideration time constraints resulting from vehicles’ queuing in the 
network nodes and from the necessity of waiting in a hub location for the volumes 
originating from peripheral locations to be merged there. The above would be  
a meaningful follow-up to the study presented in this paper. 
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