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Forecasting currency covariances using machine learning 
tree-based algorithms with low and high prices1 
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Abstract. We combine machine learning tree-based algorithms with the usage of low and high 
prices and suggest a new approach to forecasting currency covariances. We apply three 
algorithms: Random Forest Regression, Gradient Boosting Regression Trees and Extreme 
Gradient Boosting with a tree learner. We conduct an empirical evaluation of this procedure on 
the three most heavily traded currency pairs in the Forex market: EUR/USD, USD/JPY and 
GBP/USD. The forecasts of covariances formulated on the three applied algorithms are 
predominantly more accurate than the Dynamic Conditional Correlation model based on 
closing prices. The results of the analyses indicate that the GBRT algorithm is the best-
performing method. 
Keywords: machine learning, tree-based ensembles, volatility models, high-low range, covari-
ance forecasting 
JEL: C22, C45, C53, C58, C63, G17 

1. Introduction 

Multivariate volatility models can be used in many financial applications, such as 
asset pricing, portfolio optimisation, risk management, the estimation of systemic 
risk in banking, Value-at-Risk estimation or asset allocation. Volatility models of 
financial instruments that are commonly used are largely based on closing prices 
only. However, the use of daily low and high prices leads to more accurate estimates 
and forecasts of variances (e.g. Chou, 2005; Fiszeder & Perczak, 2016; Lin et al., 2012; 
Molnár, 2016) and covariances (e.g. Chou et al., 2009; Fiszeder, 2018; Fiszeder et al., 
2019; Fiszeder & Fałdziński, 2019). Daily low and high prices are almost always 
available alongside closing prices in financial series. Therefore, making use of them 
in volatility models is important from a practical viewpoint. The review of 
multivariate range-based models can be found in Petropoulos et al. (in press). 
 Recently, the importance of machine learning (ML) algorithms in the forecasting 
of financial time series has increased considerably (see e.g. de Prado, 2018). ML 
models, unlike classic (nonlinear) time series analysis, do not require prior 
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assumptions about the underlying structure of data (Zhang, 2003) and are able to 
capture recurring nonlinear patterns in time series (see e.g. Fischer et al., 2019). 
These factors cause machine learning algorithms to outperform most traditional 
stochastic methods in financial market forecasting (Fiszeder & Orzeszko, 2021; Ryll 
& Seidens, 2019). The most popular ML approaches in the field of finance are 
Artificial Neural Network (ANN) and Support Vector Machine (SVM). On average, 
recurrent neural networks outperform feed-forward neural networks as well as 
support vector machines (Ryll & Seidens, 2019). However, most models based on 
ANN and SVM are treated as ‘black box’ algorithms. A black box model is a system 
that does not reveal its internal mechanisms, and therefore in machine learning it 
describes models that cannot be understood by looking at their parameters (e.g. an 
artificial neural network). Interpretable or Explainable Machine Learning refers to 
methods and models that make the behaviour and predictions of machine learning 
systems understandable to humans, which is essential in business forecasting and 
decision-making (Bejger & Elster, 2020). As an alternative to ANN and SVM 
models, we want to evaluate the performance of tree-based ensemble algorithms in 
the forecasting of financial time series. Although ensemble learning algorithms are 
also referred to as black boxes, if a part of an ensemble is a decision tree, the 
interpretability of the model and predictions becomes much greater. The decision 
mechanism (model) of a single decision tree is entirely transparent and interpretable 
(Barredo Arrieta et al., 2019) due to its intrinsic properties. Among others things, it 
enables the ranking of the relative significance of predictor variables through 
variable importance metrics (VIMs) (Biau & Scornet, 2016; Breiman, 2001). In an 
ensemble of trees, these measures could be used for the global and local 
interpretability of predictions. 
 The aim of the paper is to suggest a new approach to forecasting currency 
covariances based on the combination of machine learning tree-based algorithms 
with the use of low and high prices. The methods we selected are based on the 
regression tree concept and Classification and Regression Trees (CART) split 
criterion (Breiman et al., 1984). We apply the Random Forest Regression (RFR) 
algorithm (Breiman, 2001), the Gradient Boosting Regression Trees (GBRT) 
algorithm (Friedman, 2001), and the Extreme Gradient Boosting with tree learner 
(XGBoost, described in Chen & Guestrin, 2016). Although the most popular ML 
approaches in the field of finance are ANN and SVM learning methods (Henrique et 
al., 2019; Ryll & Seidens, 2019), we decided to apply the three above-mentioned 
algorithms instead, for the following reasons: 
• models based on ANN and SVM are treated as ‘black box’ algorithms with no 

clear interpretation of hyperparameters and the importance of features, while 
tree-based methods are interpretable through VIMs (an intrinsic property of tree-
based models) and a well-defined hyperparameter meaning; 
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• they can handle heterogeneous data (ordered or categorical variables, or a mix of 
both) with minimal preprocessing; 

• they can handle highly correlated predictor variables; 
• as all tree-based methods, they intrinsically implement feature selection; 
• they either do not overfit (RFR) or are easy to control against overfitting (GBRT, 

XGBoost); 
• tree-based methods are still rarely used in forecasting financial markets, despite 

the fact that they proved to be among the best in competitions such as M4, M5, or 
those organised by the Kaggle portal. 

 The applications of the RFR, GBRT, and XGBoost algorithms in the forecasting of 
financial markets are presented in the works of Ghosh et al. (in press), Islam et al. 
(2021), Khaidem et al. (2016), Krauss et al. (2017), Kumar and Thenmozhi (2006), 
Waldow et al. (2021), Yang (2021) and Yang et al. (2021). However, most of those 
studies are devoted to the forecasting of stock prices or exchange rates. To the best of 
our knowledge, this study presents the first application of the forecasting of currency 
covariances. We empirically evaluate the usability of the algorithms on the three 
most heavily traded currency pairs in the Forex market: EUR/USD, USD/JPY, and 
GBP/USD. The forecasts of covariances formulated on the three applied algorithms 
are predominantly more accurate than the Dynamic Conditional Correlation 
benchmark model based on closing prices.  
 The remaining part of the paper is organised in the following way: Section 2 
describes applied models and methods, in Section 3 we present the data and an 
outline of the study, Section 4 evaluates the forecasts of the covariance of returns 
from the RFR, GBRT, XGBoost algorithms and the DCC model, and Section 5 
contains the conclusions of the study. 

2. Theoretical background 

2.1. Tree-based ensemble algorithms 

The building block of the machine learning algorithms which we use is a weak 
learner of a regression tree (e.g. Breiman et al., 1984; Quinlan, 1992). A regression 
tree is a supervised learning method used to learn a function that combines a set of 
variables intending to predict another variable. The general idea of a tree learner is to 
partition feature space 𝑋𝑋 into a set of rectangles and then fit a simple model (like  
a constant 𝑐𝑐) in each one (Hastie et al., 2009). 
 The prediction function of a tree is defined as: 
 
 𝑓𝑓(𝑥𝑥) = ∑ 𝑐𝑐𝑚𝑚𝐼𝐼(𝑥𝑥,𝑅𝑅𝑚𝑚)𝑀𝑀

𝑚𝑚=1 , (1) 
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where 𝑀𝑀 is the number of leaves in the tree; 𝑅𝑅𝑚𝑚 is a region in the feature space 
(corresponding to leaf 𝑚𝑚), 𝑐𝑐𝑚𝑚 is a constant corresponding to region 𝑚𝑚, 𝐼𝐼 is the 
indicator function (returning 1 if 𝑥𝑥 ∈ 𝑅𝑅𝑚𝑚, 0 otherwise). The value of 𝑐𝑐𝑚𝑚 is 
determined in the training phase of the tree. For regression, we partition the 
predictor space to find a set of regions 𝑅𝑅 that minimise the RSS, given by: 
 
 ∑ ∑ �𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑅𝑅𝑚𝑚�

2
𝑖𝑖∈𝑅𝑅𝑚𝑚

𝑀𝑀
𝑚𝑚=1 , (2) 

 
where 𝑦𝑦�𝑅𝑅𝑚𝑚 is the mean response for the training observations within the 𝑚𝑚-th 
region. 
 As it is infeasible to consider every possible partition of the feature space into  
𝑀𝑀 regions, a top-down, greedy algorithm known as recursive partitioning (e.g., 
CART for a binary tree, Breiman et al., 1984) is used to train the single tree. The 
essential element of CART is a split criterion, dependent on an impurity measure.  
A regression tree split criterion computes the (renormalised) difference between the 
empirical variance in the node before and after a cut is performed. 

2.1.1. Random Forest ensemble algorithm 

A single regression tree is typically a weak prediction model which is unstable (high 
variance learner). To reduce prediction variance and prevent bias from increasing, 
one can combine the prediction of many weak learners (Schapire, 1990), creating an 
ensemble of learners. A Random Forest (Breiman, 2001; Ho, 1998) is an ensemble 
(or forest) of decision trees grown from a randomised variant of a tree induction 
algorithm.  
 The Random Forest exploits two sources of randomness to reduce the correlation 
of residuals of base learners, which decreases the general prediction error. The first 
of them is a bootstrap, where each tree is constructed on the basis of a bootstrap-
resampled training data set, thanks to which the trees are different from each other. 
The second is a split-variable randomisation: each time a split is to be performed, the 
search for the split variable is limited to a random 𝑚𝑚 subset of the 𝑝𝑝 predictors, 
which leads to the decorrelation of trees. When the forest’s element is a regression 
tree, such a learning mechanism is called Random Forest Regression. 
 The RFR prediction is the unweighted average over predictions (1) of the set of 𝐾𝐾 
trees: 
 
 𝐹𝐹(𝑥𝑥) = 1

𝐾𝐾
∑ 𝑓𝑓𝑘𝑘(𝑥𝑥)𝐾𝐾
𝑗𝑗 , (3) 
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 If 𝑚𝑚 = 𝑝𝑝, we have an ancestor of random forests, bootstrap aggregation, or  
a bagging ensemble method (Breiman, 2004). 

2.1.2. Gradient Boosting Regression Trees 

Boosting (Schapire, 1999) is also a technique which additively combines many weak 
learners to an ensemble. It is a form of a more general concept of additive expansion 
learning. Boosting algorithms evolved from Adaboost, the first successful boosting 
algorithm (Freund, 1995; Freund & Schapire, 1997), to its generalisation as  
a Gradient Boosting that handles various loss functions (Friedman, 2001; Friedman 
et al., 2000). The GBRT algorithm involves two main steps – fitting (shallow) 
decision tree ℎ to the ‘residuals’ from the model, given current tree model 𝐹𝐹, and 
updating 𝐹𝐹 by adding ℎ and updating the residuals. Those steps are repeated until an 
error on the test set starts to arise. The natural idea is to generalise boosting for any 
differentiable loss function (for example, not sensitive to outliers). In our study, we 
use the Huber loss function of the following form: 
 

 𝐿𝐿(𝑦𝑦,𝐹𝐹) = �
1
2

(𝑦𝑦 − 𝐹𝐹)2 |𝑦𝑦 − 𝐹𝐹| ≤ 𝛿𝛿,

𝛿𝛿 �|𝑦𝑦 − 𝐹𝐹| − 𝛿𝛿
2
� |𝑦𝑦 − 𝐹𝐹| > 𝛿𝛿.

  (4) 

 
 The most important differences between GBRT and RFR are the folowing: trees 
are grown sequentially, which means that each tree is grown using information from 
the previously grown trees; the method is more sensitive to overfitting, and the 
number of trees should be controlled ex-post. 

2.1.3. Extreme Gradient Boosting algorithm 

XGBoost is a scalable machine learning system for tree boosting. It was implemented 
and described by Chen and Guestrin (2016). XGBoost is widely recognised  
by practitioners (e.g. Kaggle competitors) and has implementations in many 
programming languages (R, Python, Java, Scala, Julia, Perl, and others). The method 
is based on the GBRT idea, but the computational implementation offers more 
hyperparameters to tune. There is a technical difference in optimising a loss function 
between GBRT and XGBoost, as GBRT divides the optimisation problem into two 
parts (the determination of the direction of the minimisation step, the optimisation 
of the step length). XGBoost tries to determine both in one step directly. It means 
that at each iteration, both algorithms need to calculate the gradient at the current 
estimate. Still, XGBoost also needs to calculate the Hessian matrix, so the XGBoost 
loss function must be twice differentiable. 
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2.2. Range-based covariance estimator for exchange rates 

In the suggested approach to covariance forecasting, we apply the estimator of the 
covariance of returns calculated on the basis of low and high prices. This estimator 
has an advantage over that based only on the closing prices, because it uses 
information about the price changes during the day. Let us consider two exchange 
rates of currencies 𝐴𝐴 and 𝐵𝐵 in terms of currency 𝐶𝐶, denoted as 𝐴𝐴/𝐶𝐶 and B/𝐶𝐶, 
respectively. In the absence of triangular arbitrage opportunities, the return of the 
cross rate can be written as: 
 
 ∆ln A/𝐵𝐵 = ∆ln A/𝐶𝐶 − ∆ln B/𝐶𝐶. (5) 

 
 Then, the range-based estimator of covariance for the currency pairs can be 
represented as: 
 
cov(∆ln A/𝐶𝐶,∆ln B/𝐶𝐶) = 0.5[var(∆ln A/𝐶𝐶) + var(∆ln B/𝐶𝐶)− var(∆ln A/𝐵𝐵)]. (6) 

 
 As a variance estimator, we use the Parkinson (1980) estimator given as: 
 
 var𝑃𝑃𝑃𝑃 = [𝑙𝑙𝑙𝑙(𝐻𝐻𝑃𝑃/𝐿𝐿𝑃𝑃)]2/(4ln2), (7) 

 
where 𝐻𝐻𝑃𝑃 and 𝐿𝐿𝑃𝑃 are the daily high and low prices, respectively. 
 More details about the applied range-based covariance estimator and its 
properties can be found in Fiszeder and Orzeszko (2021), who employ this estimator 
in a new methodology for dynamic modeling and forecasting covariance matrices 
based on support vector regression. 

2.3. The DCC model 

In this section, we describe the DCC model of Engle (2002). It is one of the most 
popular multivariate volatility models (see e.g. Bauwens et al., 2012) and is often 
used as a benchmark model in empirical studies. Let us assume that 𝛆𝛆𝑃𝑃 (𝑁𝑁 × 1 
vector) is the innovation process for the conditional mean and can be written as: 
 
 𝛆𝛆𝑃𝑃|𝜓𝜓𝑃𝑃−1~𝑁𝑁(0, 𝐜𝐜𝐜𝐜𝐜𝐜𝑃𝑃), (8) 
 
where 𝜓𝜓𝑃𝑃−1 is the set of all information available at time 𝑡𝑡 − 1, 𝑁𝑁 is the multivariate 
normal distribution, and 𝐜𝐜𝐜𝐜𝐜𝐜𝑃𝑃 is the 𝑁𝑁 × 𝑁𝑁 symmetric conditional covariance 
matrix. 
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 The DCC(𝑃𝑃,𝑄𝑄) model can be presented as: 
 
 𝐜𝐜𝐜𝐜𝐜𝐜𝑃𝑃 = 𝐃𝐃𝑃𝑃𝐜𝐜𝐜𝐜𝐜𝐜𝑃𝑃𝐃𝐃𝑃𝑃, (9) 
 
 𝐜𝐜𝐜𝐜𝐜𝐜𝑃𝑃 = 𝐐𝐐𝑃𝑃∗−1𝐐𝐐𝑃𝑃𝐐𝐐𝑃𝑃∗−1, (10) 
 
 𝐐𝐐𝑃𝑃 = �1− ∑ 𝜁𝜁𝑖𝑖

𝑄𝑄
𝑖𝑖=1 − ∑ θ𝑗𝑗𝑃𝑃

𝑗𝑗=1 �𝐒𝐒 +∑ 𝜁𝜁𝑖𝑖(𝐳𝐳𝑃𝑃−𝑖𝑖𝐳𝐳′𝑃𝑃−𝑖𝑖)
𝑄𝑄
𝑖𝑖=1 + ∑ θ𝑗𝑗𝐐𝐐𝑃𝑃−𝑗𝑗𝑃𝑃

𝑗𝑗=1 , (11) 
 

where 𝐃𝐃𝑃𝑃 = diag(ℎ1𝑃𝑃
1/2,ℎ2𝑃𝑃

1/2. . . ,ℎ𝑁𝑁𝑃𝑃
1/2), conditional variances ℎ𝑘𝑘𝑃𝑃 (for 𝑘𝑘 = 1,2, … ,𝑁𝑁) 

are described as univariate GARCH models (equations (12–13)), 𝐳𝐳𝑃𝑃 is the 
standardised 𝑁𝑁 × 1 residual vector assumed to be serially independently distributed 
given as 𝐳𝐳𝑃𝑃 = 𝐃𝐃𝑃𝑃

−1𝛆𝛆𝑃𝑃, 𝐜𝐜𝐜𝐜𝐜𝐜𝑃𝑃 is the time varying 𝑁𝑁 × 𝑁𝑁 conditional correlation matrix 
of 𝐳𝐳𝑃𝑃, 𝐒𝐒 is the unconditional 𝑁𝑁 × 𝑁𝑁 covariance matrix of 𝐳𝐳𝑃𝑃 (it can also be estimated 
with other parameters of the model, but this makes estimation more difficult) and 
𝐐𝐐𝑃𝑃∗ is the diagonal 𝑁𝑁 × 𝑁𝑁 matrix composed of the square root of diagonal elements 
of 𝐐𝐐𝑃𝑃. Parameters 𝜁𝜁𝑖𝑖 (for 𝑖𝑖 = 1,2, … ,𝑄𝑄 and θ𝑗𝑗  (for 𝑗𝑗 = 1,2, … ,𝑃𝑃) are nonnegative 
and satisfy the ∑ 𝜁𝜁𝑖𝑖

𝑄𝑄
𝑖𝑖=1 + ∑ θ𝑗𝑗 < 1𝑃𝑃

𝑗𝑗=1  condition. 
 The univariate GARCH(𝑝𝑝,𝑞𝑞) model applied in the DCC model can be written as: 
 
 𝜀𝜀𝑘𝑘𝑃𝑃|𝜓𝜓𝑃𝑃−1~𝑁𝑁(0,ℎ𝑘𝑘𝑃𝑃),     𝑘𝑘 = 1,2, … ,𝑁𝑁, (12) 
 
 ℎ𝑘𝑘𝑃𝑃 = 𝛼𝛼𝑘𝑘0 +∑ 𝛼𝛼𝑘𝑘𝑖𝑖𝜀𝜀𝑘𝑘 𝑃𝑃−𝑖𝑖

2𝑞𝑞
𝑖𝑖=1 + ∑ 𝛽𝛽𝑘𝑘𝑗𝑗ℎ𝑘𝑘 𝑃𝑃−𝑗𝑗

𝑝𝑝
𝑗𝑗=1 , (13) 

 
where 𝛼𝛼𝑘𝑘0 > 0,𝛼𝛼𝑘𝑘𝑖𝑖 ≥ 0,𝛽𝛽𝑘𝑘𝑗𝑗 ≥ 0 (for 𝑘𝑘 = 1,2, … ,𝑁𝑁;  𝑖𝑖 = 1,2, … , 𝑞𝑞;  𝑗𝑗 = 1,2, … , 𝑝𝑝), 
weaker conditions for nonnegativity of the conditional variance can be assumed (see 
Nelson & Cao, 1992). The requirement for covariance stationarity of 𝜀𝜀𝑘𝑘𝑃𝑃 is 
∑ 𝛼𝛼𝑘𝑘𝑖𝑖
𝑞𝑞
𝑖𝑖=1 +∑ 𝛽𝛽𝑘𝑘𝑗𝑗

𝑝𝑝
𝑗𝑗=1 < 1. 

 Parameters of the DCC model can be estimated by the quasi-maximum likelihood 
method using a two-stage approach. Let the parameters of model 𝚯𝚯 be written in two 
groups, i.e. 𝚯𝚯′ = (𝚯𝚯′1,𝚯𝚯′2), where 𝚯𝚯1 is the vector of the parameters of conditional 
means and variances, and 𝚯𝚯2 is the vector of the parameters of the correlation part 
of the model. The log-likelihood function can be written as the sum of two parts: 
 
 𝐿𝐿(𝚯𝚯) = 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉(𝚯𝚯1) + 𝐿𝐿𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶(𝚯𝚯2|𝚯𝚯1), (14) 

 
where 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉(𝚯𝚯1) represents the volatility part: 
 
 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉(𝚯𝚯1) = −1

2
∑ (𝑁𝑁ln(2𝜋𝜋) + 𝑙𝑙𝑙𝑙|𝐃𝐃𝑃𝑃|2 + 𝛆𝛆′𝑃𝑃𝐃𝐃𝑃𝑃

−2𝛆𝛆𝑃𝑃)𝑛𝑛
𝑃𝑃=1 , (15) 



8 Przegląd Statystyczny. Statistical Review 2021 | 3 

 

 

while 𝐿𝐿𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶(𝚯𝚯2|𝚯𝚯1) can be viewed as the correlation component: 
 
 𝐿𝐿𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶(𝚯𝚯2|𝚯𝚯1) = −1

2
∑ (ln|𝐜𝐜𝐜𝐜𝐜𝐜𝑃𝑃| + 𝐳𝐳′𝑃𝑃𝐜𝐜𝐜𝐜𝐜𝐜𝑃𝑃−1𝐳𝐳𝑃𝑃 − 𝐳𝐳′𝑃𝑃𝐳𝐳𝑃𝑃)𝑛𝑛
𝑃𝑃=1 . (16) 

 
 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉(𝚯𝚯1) can be written as the sum of the log-likelihood functions of 𝑁𝑁 univariate 
GARCH models: 
 

 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉(𝚯𝚯1) = −1
2
∑ �𝑙𝑙ln(2𝜋𝜋) + ∑ �𝑙𝑙𝑙𝑙(ℎ𝑘𝑘𝑃𝑃) + 𝜖𝜖𝑘𝑘𝑘𝑘

2

ℎ𝑘𝑘𝑘𝑘
�𝑛𝑛

𝑃𝑃=1 �𝑁𝑁
𝑘𝑘=1 . (17) 

 
 In the first stage, the parameters of univariate GARCH models can be estimated 
separately for each of the assets and the estimates of ℎ𝑘𝑘𝑃𝑃 can be obtained. In the 
second stage, residuals transformed by their estimated standard deviations are used 
to estimate the parameters of the correlation part (𝚯𝚯2) conditioning on the 
parameters estimated in the first stage (𝚯𝚯�1). 

3. Data and description of the research 

We evaluate the accuracy of the proposed procedure of covariance forecasting based 
on data from the Forex market, for the purpose of which we examine three most 
heavily traded currency pairs, namely EUR/USD, USD/JPY and GBP/USD. Daily 
data for the period from 2 January 2004 to 30 December 2016 are used. A total 
sample of 3,365 observations is split into a training set (period: 14 Janury 2004 to  
31 December 2014, size: 2,846 observations, the first eight observations are truncated 
during the construction of the analytical dataset) and a test set (period: 2 January 
2015 to 30 December 2016, holdout set size: 519 observations). 
 The target variable is the covariance of returns of currency pairs given in (6). This 
estimator is more efficient than the one based on closing prices only. The set of 
predictors contains the following time series: – target_lag_1 until target_lag_8, 
min_A/C_lag1, min_B/C_lag1, max_A/C_lag1, max_B/C_lag1, close_A/C_lag1, 
close_B/C_lag1, lnzwr_A/C_lag1 and lnzwr_B/C_lag1. We also add categorical 
predictors commonly used in training time series models: month, weekofyear, 
dayofweek, dayofyear, dayofmonth. Categorical variables are integer-coded (which is 
a better option for the tree-based methods than one-hot encoding). 
 We implement machine learning pipelines for the random forest, GBRT and 
XGBoost in the Python 3.6.3 environment, and use standard libraries for data 
processing and machine learning, i.e. numpy, scikit-learn, pandas and datetime. 
Additionally, we use the XGBoost library and the scikit-learn wrapper interface for 
XGBoost. The training set, containing about 85% of the samples, is used to tune 
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hyperparameters using the time series k-fold cross-validator (TimeSeriesSplit 
method). Standard cross-validation techniques assume that samples are independent 
and identically distributed, and would result in an unreasonable correlation between 
training and testing instances (yielding poor estimates of the generalisation error) on 
time series data. In the TimeSeriesSplit method, successive training sets are supersets 
of those that come before them. It also adds all surplus data to the first training 
partition, which is always used to train the model. The preliminary tuning of hyper-
parameters is done by searching the space of the parameters (RandomizedSearchCV 
or GridSearchCV methods) with the above described k-fold cross-validation. In  
a random forest, the additional calibration of the min_samples_split, max_depth, 
min_impurity_decrease and min_samples_leaf split hyperparameters is performed. 
In the case of boosting (GBRT), the ex-post control for overfitting (the value of the 
n_estimators hyperparameter) is done (see the Figure). 
 
Figure. Train and test set deviance against boosting iterations 

 

Source: authors’ calculations. 

 
 For tree-based supervised learning, the critical model’s elements are impurity 
measures, which determine the split quality and a loss function, influencing the 
quality of predictions. In regression on time series data, the MSE and RMSE 
impurity measures are applied. As a loss function, we utilise the Huber loss function 
in the GBRT model, and the square loss in XGBoost. 
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 The three ensemble models are tuned, trained, and applied on the out-of-sample 
instances to generate forecasts. Parameters of the DCC model are estimated each day 
on a rolling sample of a fixed size of 500 observations (approximately 2 years). 

4. Comparison of covariance forecasts 

This section compares out-of-sample one-day-ahead forecasts of the covariance of 
returns from three machine learning algorithms (RFR, GBRT and XGBoost), with 
the forecasts from the DCC model. We evaluate forecasts for a two-year period from 
2 January 2015 to 30 December 2016. 
 The sum of products of 15-minute returns (the realised covariance) is employed 
as a proxy of the daily covariance for the evaluation of the forecasts. We assess the 
forecasts from the models based on two primary measures, i.e. the mean squared 
error (MSE) and the mean absolute error (MAE). In order to evaluate the statistical 
significance of the results, the Diebold-Mariano test (Diebold & Mariano, 1995) is 
applied. We perform a pairwise comparison with respect to the DCC benchmark 
model. The forecasting performance results are presented in the Table. 
 
Table. Evaluation of covariance forecasts for selected exchange rates 

Method 
Forecast evaluation criteria 

MSE DM test 
p-value 

MAE DM test 
p-value 

EUR/USD-JPY/USD 

DCC  .......................................   0.2016 – 0.1741 – 
RFR  .........................................  0.1935 0.0420 0.1455 0.0000 
GBRT  ......................................  0.1889 0.0004 0.1477 0.0000 
XGBoost  ...............................  0.1925 0.0445 0.1464 0.0000 

EUR/USD–GBP/USD 

DCC  .......................................   0.3122 – 0.1662 – 
RFR  .........................................  0.2905 0.1416 0.1870 0.0130 
GBRT  ......................................  0.2799 0.0258 0.1536 0.1060 
XGBoost  ...............................  0.2903 0.0729 0.1833 0.0199 

JPY/USD–GBP/USD 

DCC  .......................................   0.7503 – 0.1717 – 
RFR  .........................................  0.6408 0.0132 0.1407 0.0085 
GBRT  ......................................  0.6476 0.0141 0.1373 0.0053 
XGBoost  ...............................  0.6349 0.0158 0.1486 0.0545 

Note: the evaluation period is from 2 Janury 2015 to 30 December 2016, the realised covariances are used 
as the real values of covariance and estimated as the sum of products of 15-min. returns. The lowest values 
of the MSE and MAE are marked in bold. The p-values of the Diebold-Mariano test are presented for pairs of 
models: the selected algorithm and the DCC benchmark. A p-value lower than the significance level means 
that the forecasts of covariance from the selected method with a lower evaluation measure are significantly 
more accurate. 
Source: authors’ calculations.  
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 Under the MSE criterion, the forecasts of covariance from all the three machine 
learning algorithms are more accurate than the forecasts based on the DCC model. 
According to the Diebold-Mariano test, the advantage of these algorithms is 
statistically significant at the level of 10%, except the EUR/USD-GBP/USD relation 
for RFR. Under the MAE measure, the forecasts based on the analysed machine 
learning methods are again significantly more accurate than the forecasts from the 
DCC model for the EUR/USD-JPY/USD and JPY/USD-GBP/USD relations. For 
EUR/USD-GBP/USD, the lowest value of the criterion occurs for the GBRT 
algorithm, but this result is not statistically significant. Predominantly, both of the 
loss functions indicate the GBRT algorithm as the best performing method. 

5. Conclusions 

The machine learning ensemble method is a method that combines a set of weak 
learners to create a (more potent) learner that performs better than any of the 
individual ones. Ensemble methods help reduce bias and/or variance. We use  
a decision tree as a base, weak learner. We examine the performance of three popular 
tree-based ensemble algorithms: random forest (regression), GBRT and XGBoost. 
These algorithms exploit two different approaches to ensemble learning. Random 
forest trains individual estimators independently over bootstrapped subsets of data 
(bagging) and incorporates the second level of randomness. When optimising each 
node split, only a random subsample (without replacement) of the attributes will be 
evaluated, with the purpose of the further decorrelating of the estimators. Both 
GBRT and XGBoost utilise a boosting technique that is different from a random 
forest. In boosting, individual trees are fitted sequentially, observations are weighted 
differently in each iteration, and poor-performing trees are excluded. All the three 
algorithms belong to a group of machine learning algorithms which are most 
popular and widely-used in many fields. It is worth noticing that a variant of the 
gradient boosting algorithm, LightGBM, has won the M5 forecasting competition 
(Makridakis et al., 2020). Tree-based ensembles are also becoming increasingly 
popular in financial forecasting (Henrique et al., 2019; de Prado, 2018).  
 Daily low and high prices contain important information about the variability of 
the prices of financial instruments, but they are very seldom used for the estimation 
of volatility models. We combine machine learning tree-based algorithms with the 
usage of low and high prices and suggest a new approach to forecasting currency 
covariances. We conduct an empirical evaluation of this procedure on the basis of 
three most heavily traded currency pairs in the Forex market: EUR/USD, USD/JPY 
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and GBP/USD. The forecasts of covariances formulated on the three applied  
algorithms are in most part more accurate than the DCC model, used as  
a benchmark model based on closing prices. The results of the analyses indicate that 
the GBRT algorithm is the best-performing method. 
 Research on tree-based machine learning methods in covariance forecasting can 
be further developed, for example in the area of the analysis of the importance of 
predictors or studies on the interpretability of the optimal values of hyper-
parameters. Other issues, such as modifying a loss function in boosting-based 
methods and examining the performance of random forest and gradient boosting 
variants (e.g. quantile regression forests, dynamic random forests, and the 
LightGBM algorithm) seem worth further investigation as well. 
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