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Comparison of methods used for filling partially unobserved 
contingency tables 

Michał Kot,a Bogumił Kamińskib 
 
Abstract. In this article, we investigate contingency tables where the entries containing small 
counts are unknown for data privacy reasons. We propose and test two competitive methods 
for estimating the unknown entries: our modification of the Iterative Proportional Fitting 
Procedure (IPFP), and one of the Monte Carlo Markov Chain methods called Shake-and-Bake. 
We use simulation experiments to test these methods in terms of time complexity and the 
accuracy of searching the space of feasible solutions. To simplify the estimation procedure, we 
propose to pre-process partially unknown contingency tables with simple heuristics and 
dimensionality-reduction techniques to find and fill all trivial entries. Our results demonstrate 
that if the number of missing cells is not very large, the pre-processing is often enough to find 
fillings for the unknown values in contingency tables. In the cases where simple heuristics are 
insufficient, the Shake-and-Bake technique outperforms the modified IPFP in terms of time 
complexity and the accuracy of searching the space of feasible solutions. 
Keywords: contingency tables, Markov Chain Monte Carlo, Iterative Proportional Fitting 
Procedure 
JEL: C15, C44 

1. Introduction 

The study of dependencies between variables is one of the key aspects of data 
analysis. The procedure of verifying associations between variables depends on the 
type of variables. In the case of ordinal or nominal variables, it is common to 
investigate this relationship by their joint frequency distribution provided by  
a multidimensional contingency table. The elements of such a table (referred to as 
entries or cells) contain the frequency of joint occurrences of the outcomes of all the 
underlying variables. Contingency tables, which are the focus of this article, are 
considered to be a simple and effective technique to analyse data (Payne & Payne, 
2011), and are utilised in e.g. social sciences (Payne & Payne, 2011), medical research 
(Zelterman & Louis, 2019) or biology (Bailey, 1995). 
 In practical applications, due to confidentiality reasons, data aggregated in the 
form of a contingency table can be incomplete, and thus not useful. This problem 
occurs because certain combinations of features included in a contingency table may 
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be so rare that they can potentially disclose personal or sensitive data (Slavković, 
2010; Slavković & Lee, 2010). In such a case, the end user of the data presented in the 
form of a contingency table is provided with information only on the marginal 
distributions of features along with cell sizes big enough to ensure data privacy. The 
problem with audiences being too small to be reported, common in marketing, is  
a good example of the above. For instance, Nielsen does not report TV ratings for 
audiences of sizes below the assumed level (Eastman & Ferguson, 2012), and neither 
Facebook nor Google show advertisements to custom audiences unless their size 
requirement is met (Facebook.com, n.d.; Google.com, n.d.). Such practice results 
from the fact that data providers striving to comply with the General Data 
Protection Regulation (GDPR) face a trade-off between securing data privacy and 
ensuring data utility (Slavković, 2010). 
 We encountered the same problem during the construction of an agent-based 
model for the calculation of the cross-media reach of advertising (Kot & Kamiński, 
2021). When designing the model, we assumed that the synthetic population of 
agents reflects the existing population of Poland in terms of the agents’ socio-
demographic features. Since certain dimensions are correlated with others, sampling 
each feature independently would lead to a bias in the model. Therefore, the 
necessary condition for the agents’ sampling procedure was to obtain a contingency 
table of features where the probabilities of all combinations would be known. Since 
we lacked a complete contingency table, we began to seek a solution to this problem. 
 The literature points to the Iterative Proportional Fitting Procedure (IPFP) as the 
solution to the problem of estimating unknown entries of contingency tables based 
on known marginal distributions (Bacharach, 1965; Deming & Stephan, 1940). The 
IPFP allows the estimation of the sizes of the empty cells that match marginal 
restrictions by the iterative adjustment of the sizes of missing entries across all the 
dimensions of the problem, until the marginal totals converge to the target ones. The 
starting point for the estimation is the construction of a matrix of the initial sizes of 
all entries, which reflect the prior information available to the researcher. A detailed 
discussion on the mechanics of the IPFP can be found in Lovelace et al. (2015). 
 Recent state-of-the-art methods of estimating contingency tables are presented in 
the literature on issues related to data disclosure. Research in this field was initiated 
by Diaconis and Sturmfels (1998). In their article, the authors proposed generating 
contingency tables using the Markov moves. They start with the initial contingency 
table meeting the known marginal requirements. Then, the Markov moves applied 
to this table introduce pairwise integer changes to the cells’ sizes, resulting in the 
emergence of a new contingency table, where the marginal requirements remain 
fulfilled. The new table is accepted if all its entries are non-negative. A finite 
collection of Markov moves linking contingency tables with the same marginals is 
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called a Markov basis (Dobra, 2003). However, the Markov basis in an explicit form 
is usually applied to only a few problems because of high computational costs related 
to its generation (Aoki et al., 2012). Instead of generating the entire Markov basis, 
Dobra (2012) proposes constructing a Markov chain of locally connected 
contingency tables. The resulting Markov chain is a subset of all the feasible tables. 
In this approach, it is possible to introduce additional constraints regarding the 
lower and upper boundaries of the cells. 
 Despite the indisputable advantages of the above-mentioned methods, we want to 
emphasize that three aspects of our problem make it different from the issues usually 
solved by them. 
 Firstly, the primary motivation of our research was to use completed contingency 
tables in the process of sampling the population of artificial agents. To meet this end, 
we were looking for a method to efficiently generate tables that were uniformly 
distributed on a set of feasible contingency tables. Sampling a population of agents 
from the set of contingency tables which differed from each other in terms of the 
estimated values of the unknown cells improved the results of the simulation study. 
It is because the conclusions drawn from the simulation results are valid for any 
feasible combination of features in the population, not only for a series of local, 
similar contingency tables. 
 The second unique feature of our problem was that only some elements of the 
contingency table were unknown. Other elements with a sufficiently high count were 
observed and had to remain fixed. 
 The final aspect of our problem was that we had no prior knowledge regarding 
the missing cells’ entry size, except that they were non-negative and of a smaller or 
equal size to the known value (referred to as threshold). Thus, in our case, the set of 
feasible solutions was limited by the knowledge of the following features of the 
problem under study: (1) the marginal distributions of variables captured by the 
contingency table, (2) the sizes of entries with a sufficiently high count, and (3) the 
minimal required size of cells to become observable. In the next two paragraphs we 
will discuss how the unique structure of our problem affected the utility of the 
discussed algorithms. 
 In the case of the classic version of the IPFP, all entries in the contingency table 
are subject to change in each iteration of the algorithm. Therefore, no fixed cells are 
allowed, except for entries of the value of 0. The algorithm of Diaconis and 
Sturmfels, which could potentially be used in our case, has two shortcomings. Firstly, 
all the steps of the procedure are complicated and time-consuming, as they require 
solving several instances of optimisation problems. Secondly, as the method uses 
local Markov moves, it does not provide information whether the whole Markov 
basis was visited after a given number of steps. 
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 At the same time, we are aware that our specific problem is not the only area that 
these methods may be applied to, i.e. they can be implemented to efficiently solve  
a wider spectrum of problems. 
 Since the use of the classic IPFP or the Markov moves would not allow the 
achievement of the goals listed in the previous paragraph, we decided to test other 
solutions which allowed the coverage of the searched area of the solution space and 
the time complexity. In the process of examining the competitive methods, we will 
use a simulation approach described in Section 3. Firstly, we will generate 
contingency tables with unobserved cells. Secondly, we will pre-process the 
contingency table by searching for all trivial cells’ sizes (which in a few cases will 
allow the whole contingency table to be solved). Finally, if a contingency table still 
contains unobserved cells, we will try to address the situation with the methods listed 
in the next two paragraphs. 
 The first method we will test involves our modification of the IPFP algorithm, 
which has the capacity to find feasible solutions in a contingency table with fixed 
entries (a description of this modification is presented in detail in Section 2.3). 
 The second tested method is the Markov Chain Monte Carlo technique known as 
Shake-and-Bake (SB) (Boender et al., 1991), capable of approximating the 
distribution of the solution set by an asymptotic sampling of uniform points on  
a boundary of a convex polytope. 
 Despite being similar in terms of generating floating-point solutions, there are 
significant differences between the two competitive methods. In the modified IPFP, 
we are able to control the matrix of the initial weights only, which enables us to force 
specific entries’ sizes to 0, but we cannot ensure that all the entries will meet the 
upper boundary requirement. On the other hand, in the SB, we do not assume the 
existence of any fixed relation between variables. Moreover, to reveal the size of  
a cell, we can apply prior knowledge regarding the minimum and maximum feasible 
value (or more generally, some more complex prior knowledge). 
 In order to test the coverage of the searched area of the solution space, we need  
a reference solution with all possible fillings of a given contingency table. For 
objective reasons, we can provide such a solution only for smaller-scale problems 
through the introduction of a pre-processing stage based on dimensionality 
reduction methods. We propose to consider exhaustive enumeration of the missing 
entries of a contingency table as the solution to a set of linear equations. To find all 
the possible non-negative integer solutions, we will use constraint programming. It 
is worth emphasizing that exhaustive enumeration and sampling are, along with the 
computation of sharp integer bounds and counting, the directions in which the 
research on contingency tables is currently heading (Dobra & Fienberg, 2010). 
 Our results show how to effectively sample solutions for partially unknown 
multidimensional contingency tables. This procedure is efficient mostly thanks to 
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two elements of our analysis: the array pre-processing, based on heuristics and 
inspirations from the hypergraph theory, which results in a significant reduction of 
the problem’s size and time complexity, and a detailed comparison of our 
modification of the IPFP and SB algorithms in terms of their ability to cover the 
space of feasible solutions and time required to return a given volume of samples. 
 The further part of the article consists of: Section 2, where we formulate the 
problem and describe the details of the tested algorithms, Section 3, where the 
planning of the simulation experiments and the results of the simulations’ run in 
relation to benchmark methods are shown, and Section 4, in which we discuss the 
potential limitations of the used methods and propose the directions for their future 
development. 

2. Formulation of the problem and the methods used 

In the first part of this section, we formulate the research problem in detail. In the 
second part, we discuss the pre-processing of the problem. In the third part, we 
present the method of searching for all the solutions which served as a reference 
point for the two competitive methods applied in small-scale problems. Finally, we 
describe the methods that can be used to solve the research problem: in Section 2.4, 
we present our modification of the standard IPFP approach, and in Section 2.5 the 
SB algorithm. 

2.1. Formulation of the research problem 

We assume that a population of an 𝑁𝑁 size is split by 𝐾𝐾 features, with 𝑘𝑘𝑖𝑖  states each. 

The split generates a Cartesian product (contingency table) with ∏𝑘𝑘𝑖𝑖
𝑖𝑖=1

𝐾𝐾
 entries. For 

simplicity, we assume that feature 𝑖𝑖 takes values from set 𝑉𝑉𝑖𝑖 = {1,2, . . . ,𝑘𝑘𝑖𝑖}. By 
𝑝𝑝𝑚𝑚 we denote the size of cell 𝑚𝑚 ∈ 𝑉𝑉1 ×. . .× 𝑉𝑉𝐾𝐾. We assume that all 𝑝𝑝𝑚𝑚 are non-
negative. We also assume that we know all the marginal totals, which for dimension 
𝑖𝑖 are denoted by 𝑝𝑝𝑣𝑣𝑖𝑖 for 𝑣𝑣 ∈ 𝑉𝑉𝑖𝑖. We assume that cells are observable if and only if 
their size is greater than threshold level 𝑇𝑇 that is known to the researcher. Therefore, 
in terms of dimensions, the table of observable cells is identical to the complete table, 
with entries 𝑞𝑞𝑚𝑚 structured as in the following equation: 
 

 𝑞𝑞𝑚𝑚 = �𝑝𝑝𝑚𝑚 𝑖𝑖𝑖𝑖 𝑝𝑝𝑚𝑚 > 𝑇𝑇
0,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 . (1) 

 
 Similarly, we denote the marginal distributions of the known cells for value 𝑣𝑣 ∈ 𝑉𝑉𝑖𝑖 
in dimension 𝑖𝑖 as 𝑞𝑞𝑣𝑣𝑖𝑖, and by subtracting them from 𝑝𝑝𝑣𝑣𝑖𝑖, we obtain marginal 
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boundaries for unobserved cell sizes 𝑟𝑟𝑣𝑣𝑖𝑖 = 𝑝𝑝𝑣𝑣𝑖𝑖 − 𝑞𝑞𝑣𝑣𝑖𝑖. An example of the calculation 
of 𝑟𝑟𝑣𝑣𝑖𝑖, 𝑝𝑝𝑣𝑣𝑖𝑖 and 𝑞𝑞𝑣𝑣𝑖𝑖 can be found in Table 1. The goal of the algorithm we want to 

develop is to find all values of 𝑝𝑝
^
𝑚𝑚 that solve the system of linear equations: 

 

 

� 𝑝𝑝
^
𝑚𝑚 = 𝑟𝑟𝑣𝑣𝑖𝑖

𝑚𝑚∈𝑅𝑅𝑉𝑉𝑖𝑖

𝑝𝑝
^
𝑚𝑚 ≥ 0

𝑝𝑝
^
𝑚𝑚 ≤ 𝑇𝑇

𝑝𝑝
^
𝑚𝑚 ∈ ℤ

. (2) 

 
 In Equation (2), 𝑅𝑅𝑉𝑉𝑖𝑖 is a set of indices in 𝑚𝑚 ∈ 𝑉𝑉1 ×. . .× 𝑉𝑉𝐾𝐾 such that  
∀𝑚𝑚 ∈ 𝑅𝑅𝑉𝑉𝑖𝑖:𝑞𝑞𝑚𝑚 = 0 and in the i-th dimension they are of 𝑣𝑣 value. Based on the 

example shown in Table 1, the unknown elements are 𝑝𝑝
^
2,2, 𝑝𝑝

^
2,3, 𝑝𝑝

^
3,2 and 𝑝𝑝

^
3,3.  

 
Table 1. Example of the 𝑝𝑝𝑣𝑣𝑖𝑖 , 𝑞𝑞𝑣𝑣𝑖𝑖  and 𝑟𝑟𝑣𝑣𝑖𝑖 calculation for 𝑇𝑇 = 15  

    𝑝𝑝𝑣𝑣1 𝑞𝑞𝑣𝑣1 𝑟𝑟𝑣𝑣1 

 30 20 20 70 70   0 

 25 𝑝𝑝
^
2,2 𝑝𝑝

^
2,3 40 25 15 

 20 𝑝𝑝
^
3,2 𝑝𝑝

^
3,3 35 20 15 

𝑝𝑝𝑣𝑣2 75 30 40    

𝑞𝑞𝑣𝑣2 75 20 20    

𝑟𝑟𝑣𝑣2   0 10 20    

Source: authors’ calculations. 
Note. values 𝑝𝑝2,2, 𝑝𝑝2,3, 𝑝𝑝3,2, and 𝑝𝑝3,3 are not observed. 

 
The marginal restrictions for this example are presented in Equation (3): 
 

 

𝑝𝑝
^
2,2 + 𝑝𝑝

^
2,3 = 15 

𝑝𝑝
^
3,2 + 𝑝𝑝

^
3,3 = 15

𝑝𝑝
^
2,2 + 𝑝𝑝

^
3,2 = 10

𝑝𝑝
^
2,3 + 𝑝𝑝

^
3,3 = 20

 . (3) 

2.2. Pre-processing of the problem 

To reduce the search space of the calculations, we introduce a pre-processing stage 

to be run before attempting to identify 𝑝𝑝
^
𝑚𝑚. Its main purpose is to find all trivial 
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solutions to a given problem and therefore to accelerate the calculations. During the 
pre-processing stage, we iteratively search through the table of observable cells for: 
• single missing cells in some dimensions (i.e. the cases where �𝑅𝑅𝑉𝑉𝑖𝑖� = 1), where we 

input 𝑒𝑒𝑣𝑣 in these dimensions; 
• dimensions in which unknown entries exist and the marginal sum is 0, where we 

input 0 in each missing entry; 
• dimensions in which the number of missing cells multiplied by the threshold 

value is equal to the marginal sum of the unknown cells (i.e. �𝑅𝑅𝑉𝑉𝑖𝑖� · 𝑇𝑇 = 𝑒𝑒𝑣𝑣𝑖𝑖), 
where we input the threshold value in each missing entry. 

 
 Moreover, we extend the pre-processing stage described above to further simplify 
the calculations. Inspired by the hypergraph theory (Bretto, 2013), we treat the set of 
the remaining missing cells {𝑚𝑚: 𝑞𝑞𝑚𝑚 = 0} as vertices of a hypergraph. The hyperedges 
of the hypergraph are defined by sets 𝑅𝑅𝑉𝑉𝑖𝑖. We seek a set of vertices 𝑉𝑉 that separates 
the underlying total hypergraph into independent subhypergraphs. We assume set 𝑉𝑉 
to be minimal, i.e. the removal of any element of 𝑉𝑉 results in 𝑉𝑉 no longer separating 
the hypergraph. Then, the potential values of the cells in the separated 
subhypergraphs are conditioned on the values of the separating vertices in 𝑉𝑉. This 
approach significantly limits the solution space. Below we provide examples of how 
this procedure simplifies the problem and accelerates the computation process. 
 The first example of such a situation is presented in Table 2, where the threshold 
level is equal to 𝑇𝑇 = 20. Without the separation, it can be computed that an 
algorithm should find feasible solutions among 441 potential combinations. One can 
notice that the 𝑝𝑝32 vertex can be used to separate the problem into two distinct 
problems that are easier to solve. Furthermore, only 𝑝𝑝32 = 10 allows all marginal 
constraints to be met and thus the size of the feasible set is reduced to  
42 combinations. 
 
Table 2. A contingency matrix where 𝑝𝑝32 is a separating vertex 

𝑝𝑝11 𝑝𝑝12 30 30 80 

𝑝𝑝21 𝑝𝑝22 30 30 80 

30 𝑝𝑝32 𝑝𝑝33 𝑝𝑝34 60 

30 30 𝑝𝑝43 𝑝𝑝44 80 

80 60 80 80 300 

Source: authors’ calculations. 

 
 The second example is presented in Table 3, where the threshold level is equal to 
𝑇𝑇 = 30. It can be computed that without the separation, it would require finding 
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feasible solutions among 1,224,912 potential combinations. The assumption that 
𝑝𝑝4,3 = 10 (which, as above, can be proven to be the only admissible entry) results in 
an 80%-reduction of a combination set, to 122,491×2 elements, which in practice is 
much easier to compute. 
 Please note that in certain situations the pre-processing stage can solve the array 
and fill all missing entries; if it is not able to solve the array, the missing cells form  
a subarray of at least 2 elements across each dimension (the smallest possible is a 2×2 
subarray). 
 
Table 3. A contingency matrix where 𝑝𝑝43  is the separating vertex 

𝑝𝑝11 𝑝𝑝12 𝑝𝑝13 40 40 40 150 

𝑝𝑝21 𝑝𝑝22 𝑝𝑝23 40 40 40 150 

𝑝𝑝31 𝑝𝑝32 𝑝𝑝33 40 40 40 150 

40 40 𝑝𝑝43 𝑝𝑝44 𝑝𝑝45 𝑝𝑝46 120 

40 40 40 𝑝𝑝54 𝑝𝑝55 𝑝𝑝56 150 

40 40 40 𝑝𝑝64 𝑝𝑝65 𝑝𝑝66 150 

150 150 120 150 150 150 870 

Source: authors’ calculations. 

2.3. A method searching for all solutions 

In this subsection, we discuss the algorithm used as a reference for the tested 
methods, which relies on finding all feasible integer solutions to a problem expressed 
by Equation (2). Since the feasible set of solutions is in this case limited by marginal 
sums across all dimensions, one can think of solving the contingency table as of 
solving a set of linear equations. In practice, to solve the linear system, we use 
software that can be used to solve constraint programming problems called 
MiniZinc (Nethercote et al., 2007). 
 Since the exhaustive enumeration of all solutions is highly time-consuming even 
for specialised software, we will use it as a reference for small-scale problems only. 
 An example presented in Table 4 is used to show the impact of different threshold 
levels on the estimation process. As we have previously assumed, the threshold level 
is known, i.e. the researcher is aware that all the sizes of unknown entries are smaller 
than some fixed value 𝑇𝑇. If the threshold was unknown, the presented problem 
would have 9 feasible solutions presented in Table 5. If the threshold level was set  
at 9, only 7 results would be valid, because answers #8 and #9 would contain 
elements greater than the threshold value. By the same token, for threshold levels 10 
and 11, there would be 8 and 9 solutions, respectively. 



M. KOT, B. KAMIŃSKI    Comparison of methods used for filling partially unobserved contingency tables 9 

 

 

Table 4. A contingency matrix without known cells 

𝑝𝑝11 𝑝𝑝12 8 
𝑝𝑝21 𝑝𝑝22 12 

9 11 20 

Source: authors’ calculations. 

 
Table 5. Solutions to the problem presented in Table 4 

ID 𝑝𝑝11 𝑝𝑝12 𝑝𝑝21 𝑝𝑝22 

#1 0 8 9   3 

#2 1 7 8   4 

#3 2 6 7   5 

#4 3 5 6   6 

#5 4 4 5   7 

#6 5 3 4   8 

#7 6 2 3   9 

#8 7 1 2 10 

#9 8 0 1 11 

Source: authors’ calculations. 

2.4. Modified IPFP method 

To present how we have modified the classic IPFP, we should start with discussing 
the mechanics of the classic version of this algorithm based on an example for the 
2×2 contingency table presented in Table 6. Consider an unknown contingency table 
and assume that the target row and the column totals are (25, 35) and (20, 40), 
respectively. We have no prior knowledge about the entry sizes, thus we initially 
assume them to be equal to 1. The first step of each IPFP iteration creates multipliers 
to adjust the sum of the row elements in an entry table to the marginal totals. Then, 
the IPFP repeats the procedure with the column totals. In an extended case of  
a multidimensional array, multipliers are created along each dimension and the 
procedure follows the two-dimensional example. In consecutive iterations, the same 
procedure is repeated until the algorithm converges, i.e. the values in the cells 
change from iteration to iteration by less than the assumed tolerance level. The 
convergence of the IPFP algorithm was proven by Fienberg (1970) in the case of 
strictly positive tables. As regards non-negative tables where certain cells equal 0, 
convergence was proven by Csiszár (1975). In the presented example, the IPFP 
converges after 3 iterations, and the initial and final steps are presented in Tables 6 
and 7, respectively. 
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 As mentioned before, the problem considered in this paper is different from those 
normally solved by the classic IPFP. Therefore, we had to modify its normal 
specification to be able to use this method. Initially, we know all the fixed cells’ sizes 
and the marginal totals. In the first step, we subtract the sums of the known cells 
across each dimension from the known marginal totals in order to obtain the sums 
for the unknown cells. In the second step, we create an array of the initial values – if 
the cell is known, then the initial value will be positive or otherwise equal to 0, 
resulting in an array with non-negative values. Our objective is to sample the 
possible fillings. A single run of a modified IPFP algorithm with the same initial 
weights would produce similar results. Thus, in our case, we propose applying  
a multi-start of the algorithm with random initial weights from the standard 
uniform distribution. 
 The adjustment of the cell values across all dimensions is performed in a similar 
way to the standard version of the IPFP algorithm, yet the target values are the 
marginal sizes of the unknown entries. The algorithm is completed when the 
convergence requirement is met, i.e. the highest multiplier across all dimensions 
does not exceed the assumed value. Since our initial array is non-negative and 
contains 0, the proof of the convergence of the modified IPFP algorithm follows 
from Csiszár (1975). 
 
Table 6. Example of classic IPFP mechanics – initial table 

1 1 25 

1 1 35 

20 40 60 

Source: authors’ calculations. 

 
Table 7. Example of classic IPFP mechanics – final table 

8
1
3

 16
2
3

 25 

11
2
3

 23
1
3

 35 

20 40 60 

Source: authors’ calculations. 

2.5. Shake-and-Bake simulated result 

The second competitive method that we use for solving problems with a high 
number of missing values is Shake-and-Bake, which is based on the Monte Carlo 
Markov Chain technique (Boender et al., 1991). 
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 SB generates uniform points from the boundary of convex polytope 𝐿𝐿, limited by 
a set of m linear inequalities 𝑨𝑨𝑨𝑨 ≤ 𝒃𝒃. The method also assumes lack of redundant 
equations, and the boundary of polytope 𝜕𝜕𝐿𝐿 is defined as a set of points, for which 
only one inequality constraint is active at a time as per Equation (4): 
 

 𝜕𝜕𝐿𝐿 = ∪ �𝑨𝑨:𝒂𝒂𝑖𝑖𝑇𝑇𝑨𝑨 = 𝑏𝑏𝑖𝑖 ,𝒂𝒂𝑗𝑗𝑇𝑇𝑨𝑨 = 𝑏𝑏𝑗𝑗 ,∀𝑗𝑗 ≠ 𝑖𝑖�
𝑚𝑚

𝑖𝑖=1
. (4) 

 
 The mechanics of the SB algorithm can be presented in a few steps. The beginning 
of the algorithm is an arbitrary point on the boundary of the polytope. Then, 
random feasible search direction vector 𝑑𝑑 is sampled, and the algorithm jumps from 
the starting point in a direction defined by 𝑑𝑑 to a target point. The target point is 
defined as the closest to the starting point intersection of the line defined by the 
starting point, search direction vector and one of the polytope boundaries. All 
iterations undergo the described process. The detailed presentation and discussion 
of the SB algorithm can be found in Kroese et al. (2011). 
 Note that the problem described by Equation (2) meets the conditions of the SB 
algorithm if we remove the constraint due to the fact that the solutions must be an 
integer. 
 In this section, we defined the research problem and described the pre-processing 
of an incomplete contingency table that helps to simplify the research problem. We 
introduced three methods that will be used in simulations: (1) the method which 
enumerates all feasible integer fillings used as a reference point, (2) our modification 
of the IPFP, and (3) the SB method. Despite the fact that two of the tested methods 
sample feasible float fillings, their mechanics differ significantly. The modified IPFP 
applies a multi-start approach, which in each iteration starts from different uniform 
weights and follows a procedure of iterative adjustment across all of the array’s 
marginals (as described in Section 2.4) to return a feasible solution. The SB 
approach, on the other hand, creates a convex polytope that represents the problem’s 
constraints and iteratively jumps on its boundaries to produce a sample of feasible 
fillings. What is more, the modified IPFP allows the setting of only the lower 
boundary for solutions, while in SB both the lower and upper boundaries can be set. 

3. Simulation setup and results 

In this section, we use simulations to test the ability of the modified IPFP, and the SB 
methods to cover the searched area of the solution space and time complexity. To 
compare the coverage of the feasible area, we need a reference solution – the result of 
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the method described in Section 2.3 listing all the possible integer fillings. Since the 
number of solutions grows rapidly with the increasing size of the contingency table, 
we run this test on two-dimensional arrays only, with a limited number of missing 
cells. In the first part of this section, we describe the simulation procedure, and in 
the second we present the results. 

3.1. Simulation procedure 

The method used to compare the performance of the competitive techniques firstly 
involved the sampling of the multidimensional contingency table. We assumed that 
the table would contain information about an artificial population of 𝑁𝑁 units. Each 
unit was described by 𝐾𝐾 nominal variables, with 𝑘𝑘𝑖𝑖 states in each variable. Firstly, we 
sampled a random realisation of a standard uniform distribution for each cell of the 
table, which served as the weight of a given combination of features. Then, each unit 
of the population was randomly assigned to a given cell proportionally to the 
weights, sampled in Step 1. Therefore, each unit of the population was put into  
a single cell of the contingency table. Finally, we chose threshold 𝑇𝑇 as percentile 𝑐𝑐 of 
the joint distribution stored in the contingency table, and all cells of sizes smaller or 
equal to 𝑇𝑇 were marked as missing. As a result of the above procedure, we received 
the known marginal distributions of a full array, the incomplete array of observable 
cells, and the threshold. 
 We planned the simulation procedure in such a way as to capture the coverage of 
the search area and the time required by each method to generate 1,000 solutions 
according to various parameters. We tested different parameters, including: (1) the 
marginal sizes 𝑘𝑘𝑖𝑖 of the contingency tables (the number of the distinct states of  
a nominal variable), (2) the number of dimensions (features) 𝐾𝐾, (3) the number of 
units in population 𝑁𝑁, and (4) the threshold level in the form of a percentile of joint 
distribution 𝑐𝑐. Having managed not to lose generality, we sampled only hypercube 
contingency tables with equal sizes on each margin (𝑘𝑘𝑖𝑖 = 𝑘𝑘). We split the simulation 
procedure into three independent experiments, each focusing on different aspects of 
the investigated problem. 
 The aim of the first experiment was to analyse the pre-processing procedure. The 
purpose of the second experiment was to investigate the time complexity of the two 
competitive methods. Finally, in the third experiment, we compared the coverage of 
the searched area of the feasible solutions. Table 8 presents the ranges of the 
parameters which were set for each experiment. 
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Table 8. Ranges of simulation parameters 

Parameter Experiment 1 Experiment 2 Experiment 3 

𝑘𝑘𝑖𝑖 4, 5, 6, 7, 8, 9 6, 7, 8, 9 8 

𝐾𝐾 2, 3, 4 2, 3 2 

𝑁𝑁 10* 𝑘𝑘𝑖𝑖 *𝐾𝐾 10* 𝑘𝑘𝑖𝑖 *𝐾𝐾 640 

𝑐𝑐 0.10, 0.15, 0.20, 0.25, 0.30 0.25, 0.30 0.20 

Number of simulations 11,000 2,000 1,000 

Source: authors’ calculations. 

 
 A single iteration run consisted, in the case of Experiment 1, of three steps, while 
for Experiments 2 and 3 it involved four steps. In the first step, we sampled 𝑘𝑘𝑖𝑖, 𝐾𝐾  
and 𝑐𝑐. In the second step, we sampled a contingency table for parameters 𝑘𝑘𝑖𝑖  and  
𝐾𝐾 obtained in Step 1, and trimmed the entries below the threshold level, defined  
by 𝑐𝑐. In the third step, we pre-processed the incomplete contingency table to input 
all the trivial fillings. In the fourth step, we used the modified IPFP (with initial 
weights being randomly uniform) and SB algorithms to sample 1,000 possible 
fillings of the remaining unknown entries. In Experiment 3, we also searched for all 
the possible integer fillings to investigate the coverage of the searching of two 
sampling-based methods. In each experiment, we ran a simulation several times 
(please refer to row Number of simulations in Table 8) to obtain stable results. It is 
worth remembering that the modified IPFP and SB sample floating-point numbers. 
To compare their results with the integer solutions, we rounded them and ensured 
that the rounding does not bring solutions outside of the feasible set. 
 The simulations have been conducted in Julia language (Bezanson et al., 2017), 
where we developed all the methods used in this paper: the modified IPFP, the exact 
method incorporating MiniZinc (Nethercote et al., 2007) and SB using R language 
(R Core Team, 2018), and the hitandrun package (van Valkenhoef & Tervonen, 
2019).  

3.2. Simulation results 

The results obtained in the first experiment showed a relation between the problem’s 
size (defined by the number of array dimensions) and the probability that the pre-
processing managed to solve it. We observed that a higher number of dimensions 
increases the probability that certain unknown entries could be revealed with simple 
heuristics of a pre-processing stage. For example, if the marginal size is equal to 7, 
the probability that pre-processing will solve a two-dimensional table is 0.48, while 
for three- and four-dimensional tables it is 0.85 and 1.00, respectively. At the same 
time, more complex problems with a higher number of unknown entries require  
a higher number of pre-processing rounds to be solved. On average, two-
dimensional problems require 1.58 rounds to be solved, while three- and four-
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dimensional ones require 2.35 and 2.58 rounds, respectively. Figures 1 and 2 present 
the results of Experiment 1, which confirm the two above observations. 
 
Figure 1. Probability of solving the array by pre-processing 

 
Source: authors’ calculations. 

 
Figure 2. Number of pre-processing rounds necessary to solve the array 

 
Source: authors’ calculations.  

 
 In the second experiment, we tested two competitive methods, i.e. our modified 
version of the IPFP and SB, in terms of time complexity. The results, presented in 
Figure 3, show that SB requires less time to generate 1,000 samples than the modified 
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IPFP needs to solve problems of a small or moderate size (up to 150 unknown 
entries). As the problem’s size increases, the amount of time required for the 
modified IPFP to solve the problem increases, but only up to 50 missing entries, and 
it remains on a similar level for more complex problems. In the case of SB, time 
complexity grows exponentially along the problem’s complexity. Since complex 
problems with a high number of missing counts occur less often due to the pre-
processing stage, the average time for the modified IPFP to sample 1,000 solutions 
was 2.76 seconds, while for SB it was 1.01 seconds. 
 
Figure 3. Time complexity of the modified IPFP and SB 

 

Source: authors’ calculations. 

 
 The third experiment was designed to compare the ability of both methods to 
effectively search through the space of feasible solutions. An optimal method should 
be able to meet two requirements: to sample each possible filling and to generate  
a uniform sample where all fillings occur equally often. 
 We present the results of an experiment relating to the first requirement in Figure 4. 
The modified IPFP can sample all feasible solutions for problems to which there are 
fewer than 50 solutions. SB outperforms the modified IPFP, as it can sample all 
solutions for problems with 100 feasible solutions. In the case of problems with over 
100 feasible solutions, however, none of the above methods is able to effectively 
sample all possible fillings. 
 As regards the second requirement, we propose testing the sampling uniformity 
with two metrics, the first of which is the ratio of the number of occurrences of the 
solutions sampled most often to the number of occurrences of solutions sampled 
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least often, as displayed in Figure 5. For example, if the ratio is equal to 10, a given 
algorithm samples the most frequent solution ten times as often as the least frequent 
one. In the case of the modified IPFP and SB, the first uniformity metric increases as 
the number of feasible solutions grows up to 30 and 50, respectively, and then 
sharply decreases. The shapes of both curves result from the fact that for problems 
with a low number of feasible fillings, it is more probable that both will be sampled, 
and hence the first uniformity metric accounts for low values. On the other hand, 
when the number of feasible solutions is high, each solution is sampled only a few 
times, and therefore the ratio of the most frequent occurrences to the least frequent 
ones is naturally limited. On average, SB registers the first uniformity metric 36% 
more efficiently than the modified IPFP. 
 
Figure 4. Fraction of sampled feasible solutions 

 

Source: authors’ calculations. 

 
 Secondly, we test the uniformity with Total Variation Distance 𝛿𝛿, defined as in 
Equation (5) (Levin et al., 2009), where 𝑎𝑎 and 𝑏𝑏 are probability distributions on 𝐷𝐷 
(shown in Figure 6). In our case, probability distribution 𝑎𝑎 is an empirical 
distribution returned by the sampling algorithm, and 𝑏𝑏 is a uniform distribution: 
 

 𝛿𝛿(𝑎𝑎, 𝑏𝑏) =
1
2
�|𝑎𝑎(𝑥𝑥)− 𝑏𝑏(𝑥𝑥)|
𝑥𝑥∈𝐷𝐷

. (5) 

 
 When the uniformity of the sampled solutions is measured with the total 
variation distance, the SB method outperforms the modified IPFP, regardless of the 
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size of the problem measured with the number of feasible solutions. Although the 
total variation distance grows for both methods as problems become increasingly 
more complicated, for SB it never exceeds 0.40, while for the modified IPFP it 
reaches the level of 0.85. 
 
Figure 5. Uniformity of the sampled solutions – the ratio of the most common solution  

to the least common solution 

 
Source: authors’ calculations. 

 
Figure 6. Uniformity of the sampled solutions – total variation distance 

 
Source: authors’ calculations. 
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4. Conclusions 

In this article, we investigated the problem of partially unknown contingency tables. 
In such arrays, the problem of unknown entries is caused by data privacy 
requirements, and thus cells with low counts are not reported. We presented our 
modification of the classic IPFP algorithm and proposed a simulation method 
incorporating the Shake-and-Bake algorithm. In addition to these methods, we 
developed a list of heuristics and dimensionality-reduction techniques which, if 
applied first, simplify the problem and search for all trivial fillings. We conducted  
a series of experiments to compare both methods in terms of their ability to 
effectively search through the space of feasible solutions and time complexity. 
 Our results show that with the increasing dimensionality of the contingency table, 
the probability that simple heuristics could solve all missing entries rises. In the case 
of moderately-sized problems, pre-processing required on average 2.3–2.6 rounds to 
find a solution. Wherever pre-processing was not able to solve the contingency table, 
we used two competitive methods. In terms of time complexity, our results show 
that SB outperforms the modified IPFP algorithm when solving smaller problems (of 
the number of missing entries lower or equal to 150). On average, the time required 
for SB to sample 1,000 solutions was lower by 64% than the time required for the 
modified IPFP to do the same. In terms of the ability to search through the space of 
solutions, SB was able to find 85% of the feasible solutions, while the modified IPFP 
was able to locate 78%. Moreover, SB samples are characterised by a greater 
uniformity, which was proven by two different metrics: the ratio of the most 
frequent solution to the least frequent solution and the total variation distance. We 
can therefore conclude that SB outperforms the modified IPFP algorithm, as it offers 
a lower time complexity and a more thorough search of the space of feasible 
solutions. 
 In terms of the future development of this study, we plan to improve the 
functionality of the simulated approach described herein, so as to make possible the 
sampling from the lattice (Xie et al., 2017). In addition, since the algorithms are 
designed to solve problems based on sample data, we would like to add an 
adjustment for population marginal totals (as an optional step). 
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