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On planning production and distribution with disrupted 
supply chains 

Przemysław Szufela 
 
Abstract. This paper presents a model for short-term time-horizon production and distribution 
planning of a manufacturing company located in the middle of a supply chain. The model 
focuses on an unbalanced market with broken supply chains. This reflects the state of the 
current post-COVID-19 economy, which is additionally struggling with even more uncertainty 
and disruptions due to the Russian aggression against Ukraine. The manufacturer, operating on 
the post-pandemic and post-war market, on the one hand observes a soaring demand for its 
products, and on the other faces uncertainty regarding the availability of components (parts) 
used in the manufacturing process. The goal of the company is to maximise profits despite the 
uncertain availability of intermediate products. In the short term, the company cannot simply 
raise prices, as it is bound by long-term contracts with its business partners. The company also 
has to maintain a good relationship with its customers, i.e. businesses further in the supply 
chain, by proportionally dividing its insufficient production and trying to match production 
planning with the observed demand. The post-COVID-19 production-planning problem has 
been addressed with a robust mixed integer optimisation model along with a dedicated 
heuristic, which makes it possible to find approximate solutions in a large-scale real-world 
setting. 
Keywords: production, optimisation techniques, simulation modelling, programming models, 
transportation economics 
JEL: C44, C61, L90 

1. Introduction 

The COVID-19 pandemic has changed the way markets and economies function 
across almost all industry branches. Severe disturbances in how supply chains 
operate can be currently observed all over the world. The just-in-time supply model 
is no longer feasible for many companies (Brakman et al., 2020). This complicated 
situation even worsened due to the Russian aggression against Ukraine, which 
caused damages to Ukraine’s economy, the seizure of export routes and further 
complications to the processes of production and distribution of goods, the latter 
being predominantly the consequence of global sanctions against the aggressor 
(Mbah & Wasum, 2022). 
 Another phenomenon observed across many industry sectors is decreased 
availability of consumer products such as electronics, computers, or vehicles  
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(Chen et al., 2021). The globally-observed changes in the availability of raw materials 
and semi-products of critical components have changed the way manufacturing 
companies should operate and intermediate products or final goods be provisioned 
to companies further in the supply chain, customers and resellers. 
 Several papers show that the COVID-19 pandemic, and later the war in Ukraine, 
have drastically influenced the efficiency of global supply chains. Cai and Luo (2020) 
reviewed the impact of COVID-19 on the manufacturing chain, pointing out its 
negative influence on raw materials, spare parts, intermediate products and 
workforce availability. The authors further noticed that on the one hand, companies 
had to adapt to the chain disturbances, and on the other needed new methods to 
enhance supply chain resilience. The final conclusion of their study is that in the 
post-crisis world, the manufacturing supply chain is likely to become regionalised 
and digitalised.  
 Singh et al. (2021) pointed out that the COVID-19 pandemic was continuously 
causing disturbances across all the levels of the economy. It affected the access to 
crucial resources (employees, logistics, raw materials), essential items (basic food 
commodities, perishable food items, medicines, diagnostic equipment, personal 
protection equipment), primary economic sectors (aviation, railway, agriculture, 
healthcare, FMCG) as well as sectors playing a significant role in modern economies 
(hospitality, construction, information technology, automotive and textile 
manufacturing). Similar conclusions could also be found in Queiroz et al. (2020). 
 In order to mitigate supply chain disturbances, Paul and Chowdhury (2021) 
considered a theoretical scenario of a manufacturing system where under normal 
circumstances the production was higher than the demand, but the situation 
reversed as a result of the COVID-19 pandemic, i.e. the demand surged while the 
production capacity decreased (supply disturbances). To solve this problem, the 
authors proposed a model where the reserve storage capacity was expanded and 
purchases of raw materials from more expensive suppliers were increased with the 
purpose of speeding up the production process. In their approach, the production 
plan was represented by a constrained nonlinear optimisation problem which they 
solved with gradient methods. A simplified version of this model was presented by 
Shahed et al. (2021), who based it on a profit-maximising manufacturer with a single 
supplier and a single retailer. This research pointed out the importance of  
re-implementing inventory management policies in manufacturing companies. 
 Tsolas and Hasan (2021) proposed economic survivability (understood as a point 
where a business ceases to be profitable) model to explain decisions of a company 
operating in a market with high fluctuations of raw materials availability and 
demand. The authors built a survivability-maximising optimisation model and 
showed that a company should balance the allocation of its manufacturing plants 
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across multiple regions and ensure diversified supply chain connections between 
suppliers of raw materials and the factories – even if it leads to a decrease in the 
overall profit. On the other hand, Li et al. (2020) stressed the role of intelligent 
manufacturing as a proactive method to mitigate production disruptions caused by a 
pandemic. They proposed to implement a continuous decision-making model for 
determining the optimal deployment of resources to strengthen the existing 
industrial network. 
 The literature shows that manufacturing and distribution companies are  
currently facing two types of uncertainties: on the one hand, lack of raw material  
semi-products and intermediate and key components that affect the production 
activity, and on the other huge fluctuations in demand coupled with product 
shortages in many consumer markets that is disruptive to the distribution activities. 
 For the purpose of this paper, we selected a manufacturing company that 
experienced a soaring demand for its products and at the same time faced shortages 
of critical components, which made it impossible for it to operate at full production 
capacity. The goal of the company was to maximise profits despite uncertain 
availability of intermediate products. The research presented in the paper focuses on 
a short-term decision-making horizon. By ‘short-term’ we mean that the prices 
agreed upon by the company and its customers were fixed, i.e. the company was 
bound by long-term pricing contracts. For this reason, and despite limited supply, 
the product allocation problem could not be simply addressed by raising prices, as 
the company had to take into consideration long-term relationships with its 
customers. Moreover, huge fluctuations in the demand were observed on the market 
and the availability of components critical to the production could not be 
guaranteed. Businesses struggling with this kind of problems are, for example, 
automotive dealers, medicine producers and producers of electronic devices. 
 Our paper presents a novel approach, featuring a short-term model of a market 
with fixed demand, an insufficient supply of goods and a reduced price flexibility. 
This approach has been selected in order to analyse the decision-making process in 
the current post-pandemic economy that is additionally struggling with the effects  
of the Russian aggression in Ukraine. The manufacturer chosen for the purpose of 
the study was able to manufacture only a limited number of goods that had to be 
distributed among companies located further in the supply chain. The goal of the 
manufacturer was on the one hand to minimise the potential frustration of its 
customers and on the other to maximise profits.  
 In order to show our problem in a business setting, let us consider an automotive 
manufacturer that has long-term contracts and business relations with car dealers. In 
the short term, the manufacturer cannot adjust the price list. However, since cars 
yield different profit margins, they can be distributed in many ways among different 
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dealers. The manufacturer cannot ignore that fact that each car dealer made some 
pre-orders or entered into long-term contracts when the economic situation was 
different.  However, since there generally is a significant shortage of cars, we can 
observe that several producers e.g. started manufacturing vehicles with different 
equipment than originally planned (Boston, 2022). For instance, they provide 
customers with vehicles that have different engine types or are of different colours 
than it was stated in the original order. 
 The goal of the paper is to propose an optimisation approach to address the 
problem of a manufacturer experiencing disruptions of supplies and at the same 
time soaring demand, all in a short-term decision-making horizon. In order to 
address the uncertainty of critical component availability, the study adopted the 
robust optimisation approach of Beyer and Sendhoff (2007). The model assumes 
that manufacturers of critical components might adopt a similar strategy as the 
company selected for the purposes of the study, i.e. provide the manufacturer of end 
products with slightly different components than originally requested.  
 The paper is constructed in the following way: Introduction is followed by  
Section 2, where a mathematical model formulation is proposed, Section 3 presents 
the results of numerical experiments, and Section 4 comprises the conclusions of the 
study. 

2. Problem statement and model 

As mentioned before, the profile of the company analysed in this study is one that 
uses several intermediate components (parts) to manufacture a single product. 
Companies meeting this criterion include manufactures of computing hardware, 
cars, e-scooters, electronic appliances and furniture. Our model makes allowances 
for the fact that manufactures of this kind usually have broad, long-established 
dealership networks, in the framework of which business relationships have often 
lasted for a long time and which are an important part of these companies’ values.  
As a consequence of the fact that there are shortages of goods in the market, the 
customers of such manufacturers are usually willing to accept end products that are 
slightly different than the original order. 

2.1. Managing baseline demand 

We are considering a manufacturing company with demand 𝑣𝑣𝑑𝑑𝑑𝑑 ∈ ℕ0, where  
𝑑𝑑 ∈ 𝐷𝐷 is a customer from customer base 𝐷𝐷, and 𝑛𝑛 ∈ 𝑁𝑁 is a product from product set 
𝑁𝑁 (we use ℕ0 to denote non-negative integers). The demand of customer 𝑑𝑑 ∈ 𝐷𝐷 for 
product 𝑛𝑛 ∈ 𝑁𝑁 is denoted as 𝑣𝑣𝑑𝑑𝑑𝑑, and hence the overall demand is represented by 
matrix 𝑉𝑉 = [𝑣𝑣𝑑𝑑𝑑𝑑]. 
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 In order to manufacture the goods, a set of critical components 𝐾𝐾 is required. The 
technology matrix is represented by 𝐴𝐴 = [𝑎𝑎𝑘𝑘𝑑𝑑], where [𝑎𝑎𝑘𝑘𝑑𝑑] stands for the number 
of parts of type 𝑘𝑘 to manufacture good 𝑛𝑛. 𝑏𝑏𝑘𝑘 ∈ ℕ0 is the expected (optimistic) level 
of the critical component availability. The number of available parts is known only 
approximately due to disturbances on the market, and so the unknown perturbance 
is represented by 𝜉𝜉𝑘𝑘 ∈ ℕ0, 𝜉𝜉𝑘𝑘 ≤ 𝜓𝜓𝑘𝑘 with the maximum perturbance limit of  
𝜓𝜓𝑘𝑘 ∈ ℕ0. Moreover, since there is a possibility of replacing some components with 
others, we assumed that there is a maximum total perturbation level Γ ∈ ℕ0, such 
that ∑ 𝜉𝜉𝑘𝑘𝑘𝑘∈𝐾𝐾 ≤ Γ. Hence, for the considered availability of components 𝑏𝑏, we define 
the following uncertainty set 𝐔𝐔 known in the literature (e.g. Li et al., 2011) as the 
boxed-polyhedral uncertainty: 
 
 𝐔𝐔 = �𝛏𝛏 � 𝟎𝟎 ≤ 𝛏𝛏 ≤ 𝛙𝛙 ∧  �|𝛏𝛏|�1 ≤ Γ�, (1) 
 
where we use bold font to represent the vectors of values, i.e. 𝛙𝛙 = [𝜓𝜓𝑘𝑘] and  
𝛏𝛏 = [𝜉𝜉𝑘𝑘]. Moreover, the || . ||1 notation denotes 𝐿𝐿1 norm, i.e. �|𝛏𝛏|�1 =  ∑ 𝜉𝜉𝑘𝑘𝑘𝑘∈𝐾𝐾 . 
 
 The studied manufacturer, as already mentioned, operates on a market with 
significant product shortages, and therefore has to fulfill the demand by offering 
similar but slightly different products that will be further called ‘substitutes’. The 
product substitution matrix is denoted by 𝑆𝑆 = [𝑠𝑠𝑖𝑖𝑖𝑖], where 𝑠𝑠𝑖𝑖𝑖𝑖 = 1 means that 
product 𝑖𝑖 ∈ 𝑁𝑁 can be replaced by product 𝑗𝑗 ∈ 𝑁𝑁, and 0 means that no replacement is 
possible. Please note that a product can always be a replacement for itself, and hence 
the 𝑆𝑆 matrix has 1's on the diagonal (i.e. 𝑠𝑠𝑖𝑖𝑖𝑖 = 1 for 𝑖𝑖 ∈ 𝑁𝑁). Additionally, we assume 
that substitutability is a symmetric relation (i.e. 𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖), and hence 𝑆𝑆 is symmetric. 
The company needs to decide how many goods to manufacture in order to satisfy 
the demand to the fullest possible extent. The production volume is represented by 
𝐲𝐲 = [𝑦𝑦𝑑𝑑], 𝑦𝑦𝑑𝑑 ∈ ℕ0, and the allocation of those products to customers by 𝑋𝑋 = [𝑥𝑥𝑑𝑑𝑑𝑑], 
𝑥𝑥𝑑𝑑𝑑𝑑 ∈  ℕ0. Obviously, the demand can only be fulfilled to the extent allowed by the 
volume of production (∑ 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑∈𝐷𝐷 ≤ 𝑦𝑦𝑑𝑑). However, since we are considering a market 
that is unbalanced in the short term, the demand does not need to be fulfilled with 
the products that have been actually ordered, as substitutes can be used instead (for 
example, a green vehicle can be offered to the customer instead of a blue one). Each 
product 𝑛𝑛 ∈ 𝑁𝑁 has a unit cost of manufacturing 𝑐𝑐𝑑𝑑 ≥ 0, and can be sold to customer 
𝑑𝑑 ∈ 𝐷𝐷 at price 𝑝𝑝𝑑𝑑𝑑𝑑 ≥ 𝑐𝑐𝑑𝑑. The goal of the decision-maker, as already stated, is 
twofold: to maximise the profit and to maintain good long-term relationship with 
the customer network. For this reason, the business problem is a two-criteria 
optimisation, but in our approach, the second criterion (the degree to which 
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customers’ demand is met) is modelled by a constraint in the optimisation problem. 
The complete list of symbols used to describe the decision situation is presented in 
Table 1. Since we are considering manufacturing industries which have both large 
product portfolios (e.g. offer similar products in different colours or with slightly 
different technical specifications) and significant number of customers, the decision 
variables in the model are discrete rather than continuous. 

2.2. Optimisation model 

As mentioned before, the goal of decision-makers is twofold: besides maximising 
profits from sales, they strive to maintain good relations with their customer 
networks (by guaranteeing a minimal level of supply). 
 This can be presented as the following model: 
 
 max  ∑ 𝑥𝑥𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑∈𝑁𝑁,𝑑𝑑∈𝐷𝐷 − 𝐜𝐜𝑇𝑇𝐲𝐲, (2) 
 
subject to: 
 
 𝐴𝐴𝐲𝐲 ≤ 𝐛𝐛 − 𝛏𝛏, (3a) 
 
 𝑋𝑋𝑆𝑆 ≤ 𝑉𝑉𝑆𝑆, (3b) 
 
 𝑋𝑋 ≥ γ𝑋𝑋∗, (3c) 
 
 ∑ 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑∈𝐷𝐷 ≤ 𝑦𝑦𝑑𝑑 ∀𝑛𝑛 ∈ 𝑁𝑁, (3d) 
 
 𝑥𝑥𝑑𝑑𝑑𝑑 ∈ ℕ0 ∀𝑑𝑑 ∈ 𝐷𝐷,𝑛𝑛 ∈ 𝑁𝑁, (3e) 
 
 𝑦𝑦𝑑𝑑 ∈ ℕ0 ∀𝑛𝑛 ∈ 𝑁𝑁, (3f) 
 
where 𝛏𝛏 represents the boxed polyhedral uncertainty defined in Equation (1). 
 
 Function (2) represents profit maximisation. Typically, each customer 𝑑𝑑 ∈ 𝐷𝐷 has 
a long-term relationship with the manufacturer, having negotiated an individual 
price 𝑝𝑝𝑑𝑑𝑑𝑑 for a particular product 𝑛𝑛 ∈ 𝑁𝑁. This means that the price level can vary 
across the customer base. The profit is denoted as ρ(𝑋𝑋). Please note that the increase 
in the value of 𝑦𝑦 without a corresponding drop in 𝑥𝑥 will always lead to a decrease of 
the goal Function (2). Therefore, at optimal solution (𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜,𝐲𝐲𝑜𝑜𝑜𝑜𝑜𝑜), no unsold 
products will be manufactured, hence the following equation holds true: 
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 ρ(𝑋𝑋) = ∑ 𝑥𝑥𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑∈𝑁𝑁,𝑑𝑑∈𝐷𝐷 − 𝐜𝐜𝑇𝑇𝐲𝐲 = ∑ 𝑥𝑥𝑑𝑑𝑑𝑑(𝑝𝑝𝑑𝑑𝑑𝑑 − 𝑐𝑐𝑑𝑑)𝑑𝑑∈𝑁𝑁,𝑑𝑑∈𝐷𝐷 . (4) 
 
 Equation (3a) assumes that the production should not be greater than the 
uncertain availability of critical components, where 𝐛𝐛 is the ‘optimistic’ availability 
of components, and 𝝃𝝃 is the unknown perturbation. Equation (3b) defines the ranges 
for product substitution (which involves providing the customers with alternative 
products to the ones originally requested). Please note that the dimension of 𝑋𝑋𝑆𝑆 is 
|𝐷𝐷| ⋅ |𝑁𝑁| and, hence, in a given matrix row each value controls the total number of 
products within a group of substitutes for the product corresponding to the column. 
While Equation (3b) allows the free movement of products across customers, in 
practice there is still some minimal guaranteed level of matching the actual demand 
– here presented as γ𝑋𝑋∗ in Equation (3c). Parameter γ ∈ [0,1] represents the 
substitution rigidity for the minimal required allocation. γ =  0 means that 
customers can be freely offered substitutes, while γ =  1 says that the level of 
substitute products is minimal. 𝑋𝑋∗ is the maximum feasible solution to the 
‘pessimistic’ version of the problem (i.e. when 𝛏𝛏 = 𝛙𝛙). One of the possible ways of 
calculating 𝑋𝑋∗ will be shown in the subsequent part of the text. Finally, Equation 
(3d) ensures that the number of allocated stocks does not exceed the volume of the 
manufactured output. 
 Let us discuss a sample procedure for finding a feasible value of 𝑋𝑋∗. Since the size 
of 𝑋𝑋 would be very large in practical applications, we propose a two-step procedure. 
 In the first step, a model is constructed that minimises the deviation of 
production from the current demand assuming pessimistic availability of the critical 
parts: 
 
 min  ∑ (∑ 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑∈𝐷𝐷 − 𝑦𝑦𝑑𝑑)2𝑑𝑑∈𝑁𝑁 , (5) 
 
subject to: 
 
 𝐴𝐴𝐲𝐲 ≤ 𝐛𝐛 −𝛙𝛙, (6a) 
 
 𝑦𝑦𝑑𝑑 ∈ ℕ0. (6b) 
 
 This model yields a pessimistic feasible value of production that matches  
demand 𝑉𝑉. We will denote that value as 𝑦𝑦∗. When the pessimistic value of 
production 𝐲𝐲∗ is known, feasible allocation 𝑋𝑋∗ can be calculated so that for each  
𝑛𝑛 ∈ 𝑁𝑁, the percentage deviation from the reported demand is minimised: 
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 min ∑ �𝑣𝑣𝑑𝑑𝑑𝑑−𝑥𝑥𝑑𝑑𝑑𝑑
𝑣𝑣𝑑𝑑𝑑𝑑

�
2

𝑑𝑑∈𝐷𝐷;𝑣𝑣𝑑𝑑𝑑𝑑>0 , (7) 

 
subject to: 
 
 𝑥𝑥𝑑𝑑𝑑𝑑 ≤ 𝑣𝑣𝑑𝑑𝑑𝑑, (8a) 
 
 ∑ 𝑥𝑥𝑑𝑑𝑑𝑑d∈D ≤ 𝑦𝑦𝑑𝑑∗, (8b) 
 
 𝑥𝑥𝑑𝑑𝑑𝑑 ∈ ℕ0 ∀𝑑𝑑 ∈ 𝐷𝐷,𝑛𝑛 ∈ 𝑁𝑁. (8c) 
 
Table 1. Notation summary 

Input variables 

𝑛𝑛 ∈ 𝑁𝑁 product type, where 𝑁𝑁 is the set of considered products 
𝑑𝑑 ∈ 𝐷𝐷 buyer, where 𝐷𝐷 is the set of buyers 

𝑘𝑘 ∈ 𝐾𝐾 part type (critical component) required to manufacture a given type of product, 
where 𝐾𝐾 is the set of part types 

𝑏𝑏𝑘𝑘 ∈ ℕ0 optimistic-assumption availability of critical components 𝑘𝑘  

𝜉𝜉𝑘𝑘 ∈ ℕ0 unknown perturbation to the availability of parts; the perturbation vector is 
denoted as 𝛏𝛏 = [𝜉𝜉𝑘𝑘]  

𝜓𝜓𝑘𝑘 ∈ ℕ0 maximum possible perturbation of the availability of components 𝜓𝜓𝑘𝑘 ≥ 0; 
maximum perturbation vector is denoted as 𝛙𝛙 = [𝜓𝜓𝑘𝑘] 

Γ ∈ ℕ0 maximum 𝐿𝐿1 norm of the possible perturbations �|𝛏𝛏|�
1
≤ Γ 

𝑎𝑎𝑘𝑘𝑑𝑑 ∈ ℕ0 amount of critical parts 𝑘𝑘 required to manufacture one unit of product 𝑛𝑛; the 
technology matrix is represented by 𝐴𝐴 = [𝑎𝑎𝑘𝑘𝑑𝑑] 

𝑠𝑠𝑖𝑖𝑖𝑖 ∈ {0,1} product substitution equivalent, where 𝑠𝑠𝑖𝑖𝑖𝑖 = 1 means that product 𝑖𝑖 can be 
replaced by product 𝑗𝑗, where 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, and 𝑠𝑠𝑖𝑖𝑖𝑖 = 0 means that no replacement is 
possible, and the substitution matrix is represented by 𝑆𝑆 = �𝑠𝑠𝑖𝑖𝑖𝑖� 

𝑣𝑣𝑑𝑑𝑑𝑑 ∈ ℕ0 buyer demand 𝑑𝑑 for product 𝑛𝑛; the demand matrix is represented by 𝑉𝑉 = [𝑣𝑣𝑑𝑑𝑑𝑑] 

𝑝𝑝𝑑𝑑𝑑𝑑 price acquired from selling product 𝑛𝑛 to buyer 𝑑𝑑 (prices vary across buyers due to 
different contract terms) 

𝑐𝑐𝑑𝑑 unit costs of manufacturing one unit of product 𝑛𝑛, in vector notation denoted as  
𝐜𝐜 = [𝑐𝑐𝑑𝑑] 

𝑥𝑥𝑑𝑑𝑑𝑑∗  pessimistic level of the allocation of products; it can be represented by matrix  
𝑋𝑋∗ = [𝑥𝑥𝑑𝑑𝑑𝑑∗ ] 

𝛾𝛾 ∈ [0,1] substitution rigidity; γ = 0 means that all customer orders can be replaced with 
substitutes, γ = 1 means that the level of substitutes will be minimised, and at least 
𝑋𝑋∗ will be fulfilled 

𝜌𝜌(𝑋𝑋) profit from production allocation 𝑋𝑋; optimistic and pessimistic profits are denoted 
as ρ+ and 𝜌𝜌−, respectively 

Optimisation model variables 

𝑦𝑦𝑑𝑑 production level of item 𝑛𝑛; it can be represented by vector 𝒚𝒚 = [𝑦𝑦𝑑𝑑] 

𝑥𝑥𝑑𝑑𝑑𝑑 number of goods of type 𝑛𝑛 allocated to buyer 𝑑𝑑; it can be represented by matrix  
𝑋𝑋 = [𝑥𝑥𝑑𝑑𝑑𝑑] 

Source: author’s work. 



28 Przegląd Statystyczny. Statistical Review 2022 | 2 

 

 

 Goal Function (7) involves minimising the percentage deviations of supply and 
demand. Note that for each 𝑛𝑛 ∈ 𝑁𝑁, the exact solution to (7) can be easily achieved in 
three steps: (1) the proportional scaling of 𝑣𝑣𝑑𝑑𝑑𝑑 values in such a way that their sum is 
equal to 𝑦𝑦𝑑𝑑, (2) rounding those values down to the nearest integer and, finally,  
(3) redistributing the remaining product units starting from customers with the 
smallest orders. In practice, the decision-maker might decide to use substitution 
rigidity parameter γ to downscale the value of 𝑋𝑋∗ and, as a result, offer more 
aggressively substitutes to their customer base instead of the ordered products, 
thereby generating a greater profit from the unbalanced market situation.  
 The dependencies between the subsequent modelling steps are presented in 
Figure 1. Firstly, we calculate the pessimistic production volume by solving the 
model presented in Equation 5. Secondly, we calculate the pessimistic amount of 
goods that will be made available to customers (please note that we are considering a 
post-pandemic economy with a scarcity of goods). It is important to remember that 
this solution will be feasible regardless of the observed perturbation value 𝛏𝛏. Finally, 
since there is no more stable production capacity matching the demand, the 
company will manufacture product substitutes that will also be accepted by the 
market. This process is controlled by substitution rigidity parameter γ– its actual 
value will depend on the business objectives of the company. 
 It is assumed that since the demand on the market is high, customers will 
purchase substitute goods as long as Equation (3b) holds. Please note that due to 
uncertainty 𝐔𝐔 (see Equation (1)), the decision-maker faces risk related to cash flow 
management and needs to adjust the production plan accordingly.  
 Given uncertainty set 𝐔𝐔, the pessimistic value of profits 𝜌𝜌− can be calculated by 
solving the following model: 
 
 ρ− = min

ξ∈𝑈𝑈
�𝑚𝑚𝑎𝑎𝑥𝑥∑ 𝑥𝑥𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑∈𝑁𝑁,𝑑𝑑∈𝐷𝐷 − 𝐜𝐜𝑇𝑇𝐲𝐲;  𝑠𝑠𝑠𝑠𝑏𝑏𝑗𝑗𝑠𝑠𝑐𝑐𝑠𝑠 𝑠𝑠𝑡𝑡 𝑐𝑐𝑡𝑡𝑛𝑛𝑠𝑠𝑠𝑠𝑐𝑐. 3𝑎𝑎– 3𝑓𝑓 �. (9) 

 
 On the other hand, the optimistic value of profits 𝜌𝜌+ can be computed by means 
of solving Equation (2), assuming that 𝛏𝛏 = 𝟎𝟎. Bertsimas et al. (2016) point out that 
there are several approaches to reformulating a robust MILP optimisation model 
into a set of MILP models, but they all assume that perturbations are defined 
individually for each constraint (see e.g. Ben-Tal et al., 2009 or Li et al., 2011). Since 
the model presented in Equation (9) is the mixed integer programming, and the 
uncertainty set is defined across all constraints, it can only be solved through 
iterating solutions over the entire set 𝐔𝐔. 
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 For larger sizes of uncertainty set 𝐔𝐔, iterating over all of its values is prohibitively 
computationally expensive. However, nearly optimal solution can be found by using 
a cutting plane heuristic similar to the one proposed by Bertsimas et al. (2016).  
 In this paper, the following algorithm for estimating pessimistic profit value  
𝜌𝜌− was developed: 
 
1  Γ∗ = Γ 
2  𝝃𝝃 = 𝟎𝟎 
3  𝜌𝜌∗ = 𝟎𝟎 
4  while Γ∗ > 0 do 
5  𝜌𝜌0∗ = 𝜌𝜌∗  
6  for each 𝑘𝑘 ∈ 𝐾𝐾 do 
7    𝝃𝝃′ = 𝝃𝝃 
8    𝜉𝜉𝑘𝑘′ = 𝜉𝜉𝑘𝑘 + min{𝜓𝜓𝑘𝑘 − 𝜉𝜉𝑘𝑘 , Γ∗}    ▷ Try cutting to the furthest possible extent  
9   𝑿𝑿,𝒚𝒚 = solve Equation 2 with fixed perturbation 𝝃𝝃 = 𝝃𝝃′ 
10  𝜌𝜌 = ∑ 𝑥𝑥𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑∈𝑁𝑁,𝑑𝑑∈𝐷𝐷 − 𝒄𝒄𝑻𝑻𝒚𝒚 
11  if 𝜌𝜌 < 𝜌𝜌∗ then 
12  𝜌𝜌∗ = 𝜌𝜌 
13  𝑘𝑘∗ = 𝑘𝑘 
14  𝜉𝜉∗ = (∑ 𝑎𝑎𝑘𝑘𝑑𝑑𝑦𝑦𝑑𝑑𝑑𝑑∈𝑁𝑁 ) − 𝑏𝑏𝑘𝑘     ▷ Reduce cut to the amount sufficient to obtain 𝜌𝜌 
15  end 
16  end 
17  Γ∗ = Γ∗ − (𝜉𝜉∗ − 𝜉𝜉𝑘𝑘∗)  
18  𝜉𝜉𝑘𝑘∗ = 𝜉𝜉∗ 
19  if 𝜌𝜌∗ − 𝜌𝜌0∗ < 𝜖𝜖 then 
20  break         ▷ No significant improvement found 
21  end 
22 end 
23 return 𝜌𝜌∗ 

Source: author’s work. 

 
 The idea behind the heuristic presented in the above algorithm is to sequentially 
select the constraint that leads to the highest reduction of the cost function when 
under perturbation. At a given step of the algorithm, we are sequentially considering 
each constraint 𝑘𝑘 ∈ 𝐾𝐾. For a given constraint 𝑘𝑘, we assign its maximum 
perturbation level so that it still satisfies the boxed-polyhedral uncertainty inequality 
presented in Equation (1) and solves the optimisation problem denoted by Equation 
(2). Finally, we choose a constraint whose perturbation leads to the highest 
reduction of the goal function presented in Equation (2). Once the new value is 
calculated, we set the perturbation level to eliminate the unnecessary slack. The 
algorithm stops when no significant improvement is found (the minimal 
improvement value is presented as 𝜖𝜖 > 0 in the algorithm). 
 
 
 
 



30 Przegląd Statystyczny. Statistical Review 2022 | 2 

Figure 1. Dependencies between the proposed optimisation models  

Source: author’s work. 

3. Numerical experiments

The goal of this section is twofold. Firstly, we will show the numerical accuracy of 
the algorithm from Section 2.2. Secondly, the sensitivity of the model’s parameters 
will be demonstrated on sample input data. 
 The optimisation model presented in the previous section has been implemented 
in the Julia programming language. We conducted numerical experiments using 
Julia JuMP (Dunning et al., 2017; Legat et al., 2022). 
 The parameters for the numerical experiments are presented in Table 2. Please 
note that ∼ {… } indicates that a value is uniformly drawn from the given set, 
∼ 𝑁𝑁(μ,σ) means that a value is chosen from the normal distribution with mean μ
and standard deviation σ, and ∼ 𝑈𝑈(𝑎𝑎,𝑏𝑏) denotes a number drawn from the uniform
distribution. Random values are also used in the model in its equations – in this case
they are shown in parentheses, e.g. max �0, �∼ 𝑁𝑁(4, 7)�� means a censored normal
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distribution where the negative values of the left tail are replaced with zeros. Finally, 
please note that whenever a continuous distribution is used, all the values are 
rounded to the nearest integer. 

Table 2. Parameters used for numerical experiments 

Parameter Symbol Value 

Number of item types .......................................  |𝑁𝑁| 15 

Number of distributors .....................................  |𝐷𝐷| 15 

Number of critical part types  .........................  |𝐾𝐾| 6 

Substitution matrix  ............................................  𝑆𝑆 𝑠𝑠𝑖𝑖𝑖𝑖 = 1 and ∀𝑖𝑖≠𝑖𝑖𝑃𝑃�𝑠𝑠𝑖𝑖𝑖𝑖 = 1� = 1/3 

Technology matrix  .............................................  𝑎𝑎𝑘𝑘𝑑𝑑 ∼ {0,1} 

Prices  ......................................................................  𝑝𝑝𝑑𝑑𝑑𝑑 prices are generated for each value  
of 𝑛𝑛 ∼ {101 + (𝑛𝑛 − 1) ∗ |𝐷𝐷|, … ,100 + 𝑛𝑛 ∗ |𝐷𝐷|} 

Cost  .........................................................................  𝑐𝑐𝑑𝑑 𝑐𝑐𝑑𝑑 = 𝑝𝑝1,𝑑𝑑/2 

Demand  .................................................................  𝑣𝑣𝑑𝑑𝑑𝑑 max�0, �∼ 𝑁𝑁(4,7)�� 

Part availability ....................................................  𝑏𝑏𝑘𝑘 ∑ �𝑎𝑎𝑘𝑘𝑑𝑑 ∑ 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑∈𝐷𝐷 − �∼ 𝑈𝑈(1,20)��𝑑𝑑∈𝑁𝑁   

Maximum perturbation  ...................................  ψ𝑘𝑘 ∼ {4, 5, 6}
Total perturbation limit ....................................  Γ 1–16 (numerical accuracy) 

5–40 (model properties) 

Source: author’s work. 

 We start by evaluating the quality of the cutting plane heuristic proposed in the 
algorithm from Section 2.2. Following the parametrisations presented in Table 2, 
30 different randomised scenarios were constructed, including demand structure, 
prices, substitution matrices and critical part availability. For each of those scenarios, 
the pessimistic value of profit 𝜌𝜌− was evaluated in two ways. Firstly, 𝜌𝜌− was fully 
enumerating all values 𝛏𝛏 ∈ 𝐔𝐔 and solving a separate optimisation model, hence 
obtaining the exact solution to the robust optimisation problem presented in 
Equation (9). Secondly, the same 𝜌𝜌− value was estimated with the algorithm. The 
results are presented in Figure 2, and scaled against the profit that can be obtained in 
the pessimistic scenario without substitution (𝑋𝑋∗). The profit lift is calculated as 
(ρ(𝑋𝑋)/ρ(𝑋𝑋∗)− 1) ∗ 100%. It becomes evident that the heuristic yields a slightly 
larger estimate of profit 𝜌𝜌− compared to the actual exact solution; however, this 
difference is marginal considering the influence of the other model parameters – any 
change of Γ has a much more significant impact on the results. 
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Figure 2. Performance of the algorithm developed in the paper vs. the exact solution  

Source: author’s calculations. 

Figure 3. Additional pessimistic estimate of profits 𝜌𝜌− acquired due to substitution at various 
total perturbation limits Γ and substitution rigidity levels γ 

Source: author’s calculations. 
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Figure 4. Impact on the overall profit of substitution rigidity and the total perturbation limit 

Source: author’s calculations. 

 Figure 3 shows how substitution rigidity γ jointly with total perturbation limit 
Γ influence the model outcomes. The profit that can be obtained at rigid pessimistic 
solution 𝑋𝑋∗ is used as a benchmark. Similarly to the previous plot, the profit lift 
value is calculated as (ρ(𝑋𝑋)/ρ(𝑋𝑋∗)− 1) ∗ 100%. Figure 3 demonstrates that 
regardless of the substitution rigidity level γ, the pessimistic estimate of profits 
𝜌𝜌− drops with the increase of the total perturbation limit Γ, which is the expected 
outcome. However, it is worth noting that the marginal drops decrease as the values 
of Γ increase. 
 Figure 4 shows to what extent the presented model is sensitive to maximum 
perturbation level Γ at various levels of product substitution rigidity 𝛾𝛾. Again, the 
profit lift (𝜌𝜌(𝑋𝑋)/𝜌𝜌(𝑋𝑋∗)− 1) is used as the benchmark value (note the log scale of 
the colour bar). However, in order to ensure comparability, the results for each 
rigidity level 𝛾𝛾 have been scaled using the optimistic profit lift value, i.e. the profit lift 
without perturbation (Γ = 0). It can be seen that when there is a high product 
substitution rigidity (𝛾𝛾 = 0), the model is very sensitive to the perturbation limit. On 
the other hand, when even small level of substitution is possible, the business 
importance of perturbation limit Γ quickly diminishes. This means that if customers 
are even slightly inclined to buy product substitutes on a market with shortages, then 
it immediately has a considerable impact on the number of goods that can be 
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manufactured. Hence, even a small substitution flexibility yields a significant 
increase in profits. 
 The numerical experiments show that the heuristic proposed in the algorithm 
ensures a sufficient level of accuracy to apply the model in supporting a real 
production system. The model proposed in the paper applied using real-life data 
allows a more precise measurement of the effects that product substitutes have on 
the actual operational efficiency of the company. It also shows that ensuring even 
small substitution elasticity can have a significant influence on the financial results  
of a manufacturing enterprise. 

4. Conclusions 

In this paper, a robust optimisation model was presented which maximises the 
profits of a manufacturing company located in the middle of a supply chain. This 
kind of a company struggles with uncertain supplies of sub-components and 
experiences market disturbances, and therefore is willing to offer its customers 
substitutes instead of the originally requested products. The model developed in the 
paper was implemented in the Julia programming language and tested in a series of 
numerical experiments. 
 The main outcomes are as follows: (1) an integrated model for profit 
maximisation in a production company facing uncertain supplies of critical 
components at various levels of product substitution rigidity, (2) a heuristic that 
makes it possible to efficiently solve the presented problem at scale, (3) a set of 
business guidelines on how the product substitution rigidity and component 
availability perturbations affect the final financial situation of a company, and (4) 
managerial insights for decision-making in post-pandemic markets. The proposed 
results and methodology can be immediately applied to companies operating on 
today’s markets prone to unbalanced demand and sub-component shortages. 
 The research presented in the paper can be expanded on in many ways. One of 
them is multi-period planning for resources, i.e. adding another dimension of weeks 
or months to the production plan. This would significantly increase the 
computational conditionality of the model. Another possible direction of the future 
research could involve the construction of an agent-based model (e.g. see Tesfatsion, 
2003) of an entire shortage-driven economy. Such a model would take into 
consideration several manufacturers in the logistic chain, so that the output of one 
manufacturer would be the input for another. 
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