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LETTER FROM THE EDITOR 

Dear Readers, 
 
In 2020, we started to publish papers only in English. The current volume is the 13th in the 
series. So far, we have published 38 research papers, 5 occasional papers and 4 conference 
reports. They have been viewed over 23,000 times on our web page. We would like to thank 
you for your growing interest in Przegląd Statystyczny. Statistical Review. To make the journal 
more visible, this year we expanded its abstracting and indexing by the Directory of Open 
Access Journals (DOAJ).  

Meanwhile, we are seeking new submissions. We welcome high-quality papers addressing 
significant issues from various branches of economics, finance and management, by all 
interested authors, including PhD candidates. Articles on theoretical and empirical topics in 
statistics, econometrics, mathematical economics, operational research, decision sciences and 
data analysis are particularly welcome. The full editorial process – from the paper’s 
submission to its publishing – is free of charge. The final decision regarding the publication of 
a paper is issued within approximately two months. 

 
On behalf of the Board of Editors, 

Paweł Miłobędzki 
Editor-in-Chief 
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Ascending Probabilistic Max-min Extended Choice 
Correspondence 

Somdeb Lahiria 
 
Abstract. In this paper, we provide an axiomatic characterization of the ascending probabilistic 
max-min extended choice correspondence for a decision-maker who has state-dependent 
preferences (represented by a linear order) over a set of alternatives and a (subjective) 
probability vector over states of nature, where both the preferences and probability vectors are 
variable. Further on the domain of all extended preference profiles for which the Ascending 
Probabilistic Max-Min Extended Choice Correspondence is resolute, the same choice 
correspondence is completely characterized by just two of the three axioms that are required 
for the axiomatic characterization on the more general domain. A significant feature of our 
solution concept and the related axiomatic analysis is that we use no more information than 
the probability with which each alternative realizes each rank. 
Keywords: decision-making under risk, state-dependent preferences, extended choice 
correspondences, ascending probabilistic max-min 
JEL: C02, D81, D91 

1. Introduction 

The framework of decision-making under uncertainty, introduced in Lahiri 
(2020/2021, 2022), is that of a decision-maker who is faced with making a choice 
under probabilistic uncertainty (risk) regarding the future state of nature, which is 
realized after the decision has been made. The decision-maker is provided with  
(or aware of) an extended preference profile, which is a pair whose first component 
is a profile of state-dependent rankings over a non-empty finite set of alternatives 
(the consequences) and whose second component is a probability distribution over  
a non-empty finite set of states of nature. A decision support system (DSS) or 
decision aid is required to choose a non-empty “desirable” set of alternatives from 
which the final choice has to be made. The decision aid or DSS has no bias in favor 
of any one or more alternatives that it suggests. Such a decision support system is 
called an extended choice correspondence, i.e. a rule which associates each extended 
preference profile from a given set of extended preference profiles with a non-empty 
finite set of desirable alternatives. For related literature, one might wish to consult 
Lahiri (2022). 
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 Here we begin by setting up the model for extended choice correspondences.  
In this framework, we define and provide an axiomatic characterization of the 
Ascending Probabilistic Max-min Extended Choice Correspondence, which is  
a refined version of the Probabilistic Max-min Choice Correspondence defined and 
axiomatically characterized in Lahiri (2022). The Probabilistic Max-min Extended 
Choice Correspondence is based on the Max-min Choice Correspondence defined 
in Campbell, Kelly and Qi (2018). This choice correspondence selects, for each 
preference profile, those alternatives which have the best “worst rank”. In our 
framework, for an extended preference profile – a pair comprising of a strict 
preference profile and a probability vector (for the states of nature) – a “max-min 
alternative” is an alternative whose worst rank among states of nature that occur 
with positive probability is the best. The worst rank of a max-min alternative is said 
to be the “max-min rank”. The probabilistic max-min extended choice corres-
pondence selects, for each extended preference profile, those max-min alternatives 
which have the least positive probability of attaining the “max-min rank”. We ignore 
those states of nature which occur with zero probability, since if an alternative 
attains its worst rank with zero probability, it is improbable (though not impossible) 
that it will attain such a rank. Further, if a max-min alternative attains the max-min 
rank with the lowest probability, then it attains a superior rank with the highest 
probability among all the max-min alternatives. The Ascending Probabilistic Max-
min Extended Choice Correspondence chooses those alternatives from among the 
Probabilistic Max-min winners that occur with the greatest (cumulative) probability 
of a better rank, as we keep improving the rank, one rank each time, and stop as 
soon as we arrive at a unique solution, or the moment we reach the first rank – 
whichever happens sooner. It is very unlikely that a risk-averse individual to whom 
the probabilistic max-min extended choice correspondence is recommended would 
wish for anything better. Hence, the solution studied here unconditionally 
supersedes the solution presented in Lahiri (2022). 
 The axioms we use to characterize the Ascending Probabilistic Max-min 
Extended Choice Correspondence are Independence of Irrelevant States, 
Probabilistic Neutrality and No-Terminal Stochastic Domination. Further on the 
domain of all extended preference profiles for which the Ascending Probabilistic 
Max-Min Extended Choice Correspondence is resolute, the same choice 
correspondence is completely characterized by Independence of Irrelevant States 
and No-Terminal Stochastic Domination. Probabilistic Neutrality is no longer 
required for the axiomatic characterization on such a domain. 
 The Independence of Irrelevant States says that states of nature that occur with 
zero probability have no influence or effect on the choice procedure. Probabilistic 
Neutrality says that if two alternatives have identical probabilities of realizing each 
and every rank, then either both are chosen or neither is chosen. An alternative is 
said to terminally stochastically dominate another alternative if there is a rank such 
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that the probability of the first alternative getting that rank or better is higher than 
the probability of the second alternative getting the same rank or better, and for all 
worse ranks, the probability of the first alternative getting that rank or better is no 
less than the probability of the second alternative getting the same rank or better.  
In other words, towards the end the first alternative has a better chance of having  
a preferred position than the second alternative. No-Terminal Stochastic 
Domination says that a terminally stochastically dominated alternative is not chosen. 
The interesting characteristic of our result is that we are able to obtain it without any 
axiom appealing to worst ranks, although the worst rank is one of the most 
important features – in fact the starting point – in the definition of our solution 
concept. A significant feature of our solution concept and the related axiomatic 
analysis is that we use no more information than the probability with which each 
alternative realizes each rank. 
 The domain of the ascending probabilistic max-min extended choice corres-
pondence whose axiomatization we provide is the set of all extended preference 
profiles such that, for any non-empty subset of probability vectors, all strict 
preference profiles can be associated with any probability vector in the subset. 
However, the axiomatic characterization we provide continues to remain valid on 
the strict sub-domain where the extended preference profiles are such that those 
states of nature that occur with positive probability have an equal probability of 
occurrence. Such a domain is called a domain with equiprobable support. As regards 
the domain with equiprobable support, our solution concept is a strict refinement of 
the one discussed in Campbell, Kelly and Qi (2018), with a different interpretation.  

2. The framework of the analysis 

The following framework, which is identical to the one in Lahiri (2022), is  
a relatively close adaptation of the ones from Denicolò (1985), Section 2.2 of Endriss 
(2011) and those discussed thoroughly in Lahiri (2020/2021). There are passages in 
Sections 2 and 3 of the latter paper where the wording is identical to some passages 
in Lahiri (2022). It is necessary to include them, since unlike the results which can be 
referred to, these passages are concerned with basic notations and definitions, and it 
would be a harassment for the readers to ask them to look for those definitions 
elsewhere. However, all such passages have been included between inverted commas 
in what follows. 
 “Consider a decision-maker (DM) faced with the problem of choosing one or 
more alternatives from a non-empty finite set of alternatives X, containing at least 
three elements. Let Ψ(X) denote the set of all non-empty subsets of X. For a positive 
integer 𝑛𝑛 ≥  3, let N =  {1,2, . . . ,𝑛𝑛}. In contrast to the convention, we will refer to 
an element in N as a state of nature and the set N as the set of states of nature. 



4 Przegląd Statystyczny. Statistical Review 2023 | 1 

 

 

 A strict preference relation/strict ranking on X is a linear order (i.e. a reflexive, 
complete/connected/total, transitive and anti-symmetric binary relation) on X. 
Generally, a strict preference relation is denoted by R with P signifying its 
asymmetric part. If for 𝑥𝑥,𝑦𝑦∈ X it is the case that (𝑥𝑥,𝑦𝑦)∈ R, then we shall denote it by 
𝑥𝑥R𝑦𝑦 and say that 𝑥𝑥 is at least as good as 𝑦𝑦 for the strict preference relation R. 
Similarly, 𝑥𝑥P𝑦𝑦 interpreted as 𝑥𝑥 is strictly preferred to 𝑦𝑦 for the strict preference 
relation R. 
 Given a strict preference R and an alternative 𝑥𝑥, the rank of 𝑥𝑥 at R denoted 
rk(𝑥𝑥, R)  =  |{𝑦𝑦∈X|𝑦𝑦R𝑥𝑥}|, i.e. 1 + cardinality of the set of alternatives strictly 
preferred to 𝑥𝑥 for the strict preference relation R. 
 Let ℒ denote the set of all strict preference relations on X.” 
 A convenient way to display/represent a strict ranking R is by using an m-

dimensional column vector �
𝑥𝑥
⋮
𝑧𝑧
�, such that the entry in the rth row corresponds to 

the alternative that has the rth rank at the strict ranking R. 
 “A strict preference profile denoted RN is a function from N to ℒ. RN is 
represented as the array 〈Ri|i∈N〉, where Ri is the strict preference relation/strict 
ranking in state of nature i. The set of all preference profiles is denoted ℒN. 
 A probability vector over N is a vector p∈ℝ+

N satisfying ∑ piN
i=1  = 1, where for 

i∈N, pi is the probability that state of nature i occurs. 
 The set of probability vectors over N is denoted by ∆. 
 Given a probability vector p, the set {j|pj > 0} is referred to as the support of p and 
denoted support(p). 
 Since probabilities are associated with events, for each i∈N, the state of nature i 
represents a non-empty set, and N is a finite partition of some underlying sample 
space. 
 A pair (RN,p)∈ℒN×∆ is said to be an extended preference profile and ℒN×∆ is the 
set of all extended preference profiles. 
 Given (RN,p)∈ℒN×∆ and an alternative x (i.e. x∈X), the state of nature i (i.e. i∈N) 
is referred to as the worst state of nature for x at (RN,p) if i∈ argmax

j∈support(p)
rk(x, Rj). 

 The definition above says that a state of nature is the worst state of nature for an 
alternative if the state of nature occurs with “positive probability”, and the 
alternative does not attain any worse rank with “positive probability”. 
 Given (RN,p)∈ℒN×∆ and an alternative x (i.e. x∈X), the set WS(x, (RN,p)) = {i| i is 
the worst state of nature for x} is said to be the set of the worst states of nature for x 
at (RN,p), and for i∈WS(x, (RN,p)), rk(x,Ri) denoted worstrk(x,(RN,p)) is said to be 
the worst rank of x at (RN,p). 
 Clearly, worstrk(x,(RN,p)) = max{rk(x,Ri)|i∈support(p)} for all x∈X. 
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 For all (RN,p)∈ℒN×∆, let Mm(RN,p) = argmin
y∈X

worstrk(y, (RN, p)). 

 Mm(RN,p) is said to be the set of max-min alternatives at (RN,p). The max-min 
rank for (RN,p) is equal to the unique worstrk(x,(RN,p)) for any x∈Mm(RN,p). 
 A domain is any non-empty subset of ℒN×∆. We will denote a domain by ℛ. 
 An extended choice correspondence (ECC) on (domain) ℛ is a function f from ℛ 
to Ψ(X).” 
 
 Useful Notations: Given (RN,p)∈ ℒN×∆, x∈X and r∈{1,…,m}: 
(a) Let Pr({rk(x) = r}|(RN,p)) denote the probability of x being ranked rth at (RN,p), 

which is equal to ∑ 𝑝𝑝𝑗𝑗{𝑗𝑗∈𝑁𝑁|𝑟𝑟𝑟𝑟�𝑥𝑥,𝑅𝑅𝑗𝑗�= 𝑟𝑟} . 
(b) Let Pr({rk(x) ≤ r}|(RN,p)) denote the probability of x being ranked “rth or better” 

at (RN,p), which is equal to ∑ 𝑝𝑝𝑗𝑗{𝑗𝑗∈𝑁𝑁|𝑟𝑟𝑟𝑟�𝑥𝑥,𝑅𝑅𝑗𝑗� ≤ 𝑟𝑟} . 
 Given that (RN,p)∈ ℒN×∆, x∈X and r∈{2,…,m}, let Pr({rk(x) < r}|(RN,p)) denote 
the probability of x being ranked “better than rth” at (RN,p), which is equal to 
∑ 𝑝𝑝𝑗𝑗{𝑗𝑗∈𝑁𝑁|𝑟𝑟𝑟𝑟�𝑥𝑥,𝑅𝑅𝑗𝑗�< 𝑟𝑟} . 
 An ECC on (domain) ℛ is said to be resolute if it is singleton valued for all 
preference profiles on ℛ. 

3. Some axioms and a lemma which will be useful on the way 

“In what follows, we will be concerned only with those domains which satisfy the 
following property: 
Domain Property: 𝑅𝑅 =ℒN×Q, where Q is a non-empty subset of ∆.” 
 The following is a desirable axiom that few would wish to contest. 
An ECC f on ℛ is said to satisfy Independence of Irrelevant States (be Independent 
of Irrelevant of States) (IIS) if for all (RN,p), (RN

′ ,p)∈ ℛ: [{j|pj > 0} ⊂ {j|Rj = Rj
′}] 

implies [f(RN
′ ,p) = f(RN,p)]. 

 In view of (IIS) and the issues we will be concerned with here – which depend 
only on the probability with which each strict ranking occurs – an alternative way of 
displaying an extended preference profile is equally convenient. 
 If for (RN,p)∈ℛ there exists a positive integer K such that a strict ranking R = Rj 
for j∈support (p) if and only if R∈{R(1),…, R(K)}, then (RN,p) can be displayed as: 
𝑝𝑝(1) … 𝑝𝑝(𝑟𝑟) … 𝑝𝑝(𝐾𝐾)

�𝑅𝑅(1) … 𝑅𝑅(𝑟𝑟) … 𝑅𝑅(𝐾𝐾)�
, where �𝑅𝑅(1) … 𝑅𝑅(𝑟𝑟) … 𝑅𝑅(𝐾𝐾)� is an m × K matrix 

such that for k∈{1,…,K}, the kth column is the column vector representing the strict 
ranking R(k) and the p(k) on top of the kth column denotes the probability with which 
the state of nature is such that the strict ranking R(k) is realized, i.e.,  
p(k) =∑ 𝑝𝑝𝑗𝑗{𝑗𝑗∈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝑠𝑠)|𝑅𝑅𝑗𝑗= 𝑅𝑅(𝑘𝑘)} . 
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 An ECC f on ℛ is said to satisfy Probabilistic Neutrality if for all (RN,p)∈ ℛ and 
x,y∈X: [∑ 𝑝𝑝𝑗𝑗{𝑗𝑗∈𝑁𝑁|𝑟𝑟𝑟𝑟�𝑦𝑦,𝑅𝑅𝑗𝑗�= 𝑟𝑟}  = ∑ 𝑝𝑝𝑗𝑗{𝑗𝑗∈𝑁𝑁|𝑟𝑟𝑟𝑟�𝑥𝑥,𝑅𝑅𝑗𝑗�= 𝑟𝑟}  for all r∈{1,…,m}] implies 
[x∈f(RN,p) if and only if y∈f(RN,p)]. 
 Given that (RN,p)∈ ℒN×∆ the alternatives x,y∈X, x is said to be terminally 
stochastically dominated by y if there exists K∈{1,…,m–1} such that Pr({rk(y) ≤ 
K}|(RN,p)) > Pr({rk(x) ≤ K}|(RN,p)) and Pr({rk(y) ≤ r}|(RN,p)) ≥ Pr({rk(x) ≤ r}|(RN,p)) 
for all r∈{K+1,…,m}. 
 An ECC f on ℛ is said to satisfy No-Terminal Stochastic Domination if for all 
(RN,p)∈ ℛ and x,y∈X: [x is terminally stochastically dominated by y] implies  
[x∉ f(RN,p)]. 
Lemma 1: If an ECC f on a domain ℛ satisfies IIS and No-Terminal Stochastic 
Domination, then for all (RN,p)∈ℛ it must be the case that f(RN,p) ⊂ Mm(RN,p). 
Proof: Suppose f on a domain ℛ satisfies No-Terminal Stochastic Domination. 
 Let (RN,p)∈ℛ and x∈f(RN,p). 
 By IIS, we may without loss of generality suppose that support (p) = N. 
 If worstrk (x, (RN,p)) = 1, then Mm (RN,p) = {x}, and so x∈Mm(RN,p). Hence 
suppose r = worstrk(x, (RN,p)) > 1. 
 Towards a contradiction, suppose that for y∈Mm (RN,p), it is the case that 
worstrk(y, (RN,p)) = ρ < r. 
 Thus, 1 = Pr({rk(y) ≤ ρ}|(RN,p)) > Pr({rk(x) ≤ ρ}|(RN,p)) and 1 = Pr({rk(y) ≤ 
r}|(RN,p)) ≥ Pr({rk(x) ≤ r}|(RN,p)) for all r∈{ρ+1,…,m}.  
 But then y terminally stochastically dominates x, contradicting our assumption 
that f satisfies No-Terminal Stochastic Domination. 
 Thus, x∈Mm(RN,p), and hence f(RN,p) ⊂ Mm(RN,p). Q.E.D. 

4. The problem with Max-min and a possible refinement 

The problem with Mm(RN,p) and any ECC that does not discriminate between states 
of nature which have positive probability is that they might over-emphasize the 
“extremely unlikely” to absurd extents, thereby denying the decision-maker the right 
to exercise one’s discretion within reasonable limits. 
 The following example comes from Lahiri (2022). 
Example 1: X = {x,y}, n = 2, 

(RN,p) = 

1
100

99
100

�
𝑥𝑥  𝑦𝑦
𝑦𝑦  𝑥𝑥�

 

 Mm(RN,p) = {x,y}. But, does ‘x’ have any reason to be treated at par with ‘y’, when 
there is a 99% chance that ‘y’ is going to be preferred to ‘x’? 
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 Hence, we consider the procedure below. 
 The next notation will prove useful in what follows. 
 Given that (RN,p)∈ ℒN×∆ and x∈X, the probability of the worst rank of x at 
(RN,p) denoted Pr(WS(x,RN,p)) = ∑ piiϵWS(x,RN,p) . 
 An ECC on ℛ is called the probabilistic max-min choice correspondence, denoted 
fPMm, if for all (RN,p)∈ ℛ, fPMm(RN,p) = {x∈Mm(RN,p)| Pr(WS(x,RN,p)) ≤ 
Pr(WS(y,RN,p)) for all y∈Mm(RN,p)}, i.e. fPMm(RN,p) is the set of max-min 
alternatives with the least total probability of securing the worst rank at (RN,p). 
 Thus, an ECC is fPMm which at any (RN,p) in the domain of the ECC chooses those 
max-min alternatives whose max-min rank occurs with the least probability, i.e. the 
chosen alternative are those max-min alternatives each of which occurs at its worst 
rank with the least probability. In other words, fPMm minimizes “the probability” with 
which a max-min rank occurs. 
 Clearly, fPMm(RN,p) for Example 1 is {y}. 
 In view of the fact that domain ℛ is a subset of ℒN×∆, given any (RN,p)∈ ℛ, it is 
not possible for two different alternatives to have the same worst state of nature at 
(RN,p)”. 
Example 2: For m = 3 with X = {x,y,z} and n = 4, let (RN,p) be defined as follows: 
2
5

 1
5  15

1
5

�
𝑥𝑥
𝑦𝑦
𝑧𝑧

𝑦𝑦
𝑥𝑥
𝑧𝑧

𝑧𝑧
𝑦𝑦
𝑥𝑥

𝑧𝑧
𝑥𝑥
𝑦𝑦
�
 

 Here fPMm(RN,p) = {x,y}, but y is terminally stochastically dominated by x. 
 Thus, we are led to the following refinement of the Probabilistic Max-min, and 
hence a further refinement of Max-min, which for each extended preference profile 
(RN,p) beginning with fPMm(RN,p) iteratively chooses (from among the chosen 
alternatives from the previous stage) those alternatives which occur at any rank with 
the highest (cumulative) probability of securing a better rank, all the way up to the 
second rank. 
 Let k = worstrk (x, RN,p) for x∈Mm(RN,p). 
 If k = 1, then Mm(RN,p) = fPMm(RN,p) is a singleton. 
 If fPMm(RN,p) is a singleton then STOP. 
 If fPMm(RN,p) is not a singleton then k > 1. 
(This does not necessarily mean that if k > 1, then fPMm(RN,p) is not a singleton). 
 Let fPMm(RN,p) be denoted k- fPMm(RN,p), where k > 1 and the cardinality of the set 
k- fPMm(RN,p) is greater than one. 
 Thus, k- fPMm(RN,p) = {x∈Mm(RN,p)| Pr({rk(x) = k}|(RN,p)) ≤ Pr({rk(y) = 
k}|(RN,p)) for all y∈Mm(RN,p)} = {x∈Mm(RN,p)| Pr({rk(x) ≤ k-1}|(RN,p)) ≥ Pr({rk(y) 
≤ k-1}|(RN,p)) for all y∈Mm(RN,p)} 
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 If k = 2, then fPMm(RN,p) = 2- fPMm(RN,p) = {x∈Mm(RN,p)| Pr({rk(x) = 2}|(RN,p)) ≤ 
Pr({rk(y) = 2}|(RN,p)) for all y∈fPMm(RN,p)} = {x∈Mm(RN,p)| Pr({rk(x) = 1}|(RN,p)) ≥ 
Pr({rk(y) = 1}|(RN,p)) for all y∈fPMm(RN,p)} 
 Hence if k = 2, STOP. 
 Now suppose k > 2. 
 Having defined ρ- fPMm(RN,p) with k ≥ ρ > 2 and the cardinality of the set  
ρ- fPMm(RN,p) greater than one, let (ρ-1)- fPMm(RN,p) = {x∈ρ- fPMm(RN,p)| Pr({rk(x) ≤ 
ρ - 2}|(RN,p)) ≥ Pr({rk(y) ≤ ρ - 2}|(RN,p)) for all y∈ρ- fPMm(RN,p)} = {x∈ρ- 
fPMm(RN,p)| Pr({rk(x) = ρ-1}|(RN,p)) ≤ Pr({rk(y) = ρ-1}|(RN,p)) for all y∈ρ-
fPMm(RN,p)}. 
 Since this iterative process cannot go on indefinitely, we finally arrive at the set 
K*- fPMm(RN,p) with K* ≥ 2 such that: 

either (i) cardinality of K- fPMm(RN,p) > 1 for all K∈{2,…,k}, in which case K* = 2; 
or (ii) K* = max {K| K-fPMm(RN,p) is a singleton}. 

 Let APMm (RN,p) = K*- fPMm(RN,p) if x∈Mm (RN,p) implies worstrk(x, (RN,p)) > 1, 
and APMm (RN,p) = Mm(RN,p), otherwise. 
 The extended choice correspondence fAPMm on ℛ, defined as fAPMm(RN,p) = APMm 
(RN,p) for all (RN,p)∈ℛ, is referred to as the Ascending Probabilistic Max-min 
Extended Choice Correspondence on ℛ. 
 In example 3, APMm (RN,p) = {x}. 

5. An axiomatic characterization of the Ascending Probabilistic  
Max-min ECC 

Lemma 2: (a) The ECC fAPMm on ℛ satisfies No-Terminal Stochastic Domination. 
(b) Let f on ℛ be an ECC that satisfies IIS and No-Terminal Stochastic Domination. 
Then f(RN,p) ⊂ APMm(RN,p) for all (RN,p)∈ℛ. 
Proof: Let (RN,p)∈ℛ. 
(a) By definition, fAPMm(RN,p) ⊂ fPMm(RN,p) ⊂ Mm(RN,p). Let x∈ fAPMm(RN,p) and 

suppose worstrk (x,(RN,p)) = K. Towards a contradiction, suppose y terminally 
stochastically dominates x at (RN,p). 

 If y∉Mm(RN,p), then 1 = Pr({rk(x) ≤ K}|(RN,p)) > Pr({rk(y) ≤ K}|(RN,p)) and  
1 = Pr({rk(x) ≤ k}|(RN,p)) ≥ Pr({rk(y) ≤ k}|(RN,p)) for all k∈{K+1,…,m}. This violates 
the requirement for y to terminally stochastically dominate x. 
 If y∈Mm(RN,p), then 0 < Pr({rk(x) = K}|(RN,p)) ≤ Pr({rk(y) = K}|(RN,p)) and 
Pr({rk(x) ≤ k}|(RN,p)) = Pr({rk(y) ≤ k}|(RN,p)) = 1 for all k∈{K+1,…,m}, since 
x∈fAPMm(RN,p). 
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 0 < Pr({rk(x) = K}|(RN,p)) ≤ Pr({rk(y) = K}|(RN,p)) implies Pr({rk(x) ≤  
K-1}|(RN,p)) ≥ Pr({rk(y) ≤ K-1}|(RN,p)), since Pr({rk(x) ≤ K}|(RN,p)) = 1 = Pr({rk(y) 
≤ K}|(RN,p)) 
 Since y terminally stochastically dominates x, it must be the case that Pr({rk(y) ≤ 
ρ}|(RN,p)) > Pr({rk(x) ≤ ρ}|(RN,p)) for some ρ < K-1 and Pr({rk(y) ≤ k}|(RN,p)) ≥ 
Pr({rk(x) ≤ k}|(RN,p)) for all k > ρ. This, in particular, implies y∈fPMm(RN,p). 
 This contradicts our assumption that x∈fAPMm(RN,p). 
 Thus, fAPMm satisfies No-Terminal Stochastic Domination. 
(b) Suppose f is an ECC on ℛ that satisfies ISS and No-Terminal Stochastic 

Domination. 
 By lemma 1, for all (RN,p)∈ℛ, it is the case that f(RN,p) ⊂ Mm(RN,p). 
 Let x∈f(RN,p) and suppose worstrk (x, (RN,p)) = K. 
 Since x∈ Mm(RN,p), Pr({rk(x) ≤ K}|(RN,p)) = 1. 
 Towards a contradiction, suppose that there exists y∈Mm(RN,p) and ρ ≥ 1 with 
ρ ≤ K-1, satisfying Pr({rk(y) ≤ ρ}|(RN,p)) > Pr({rk(x) ≤ ρ}|(RN,p)) and Pr({rk(y) ≤ 
k}|(RN,p)) ≥ Pr({rk(y) ≤ k}|(RN,p)) for all k > ρ. 
 This violates the requirement that f satisfies No-Terminal Stochastic Domination.  
 Thus, for y∈Mm(RN,p) and ρ ≥ 1 with ρ ≤ K-1, either (i) Pr({rk(y) ≤ ρ}|(RN,p)) ≤ 
Pr({rk(x) ≤ ρ}|(RN,p)) in which case x∈APMm(RN,p), or (ii) Pr({rk(y) ≤ ρ}|(RN,p)) > 
Pr({rk(x) ≤ ρ}|(RN,p)), and for some k > ρ, in which case it must be that Pr({rk(y) ≤ 
k}|(RN,p)) < Pr({rk(y) ≤ k}|(RN,p)), the latter implying y∉APMm(RN,p). 
 Since APMm(RN,p) ≠ φ, (i) and (ii) imply that x ∈APMm(RN,p).  
 Thus, f(RN,p) ⊂ APMm(RN,p) as desired. Q.E.D.  
 Let ℛ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = {(RN,p)∈ℒN×∆|APMm(RN,p) is a singleton}, i.e. the largest domain 
(of extended preference profiles) on which fPMm is resolute. 
 An immediate and important consequence of Lemma 2 is the following Corollary. 
Corollary to Lemma 2: A ECC f on ℛ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 satisfies IIS and No-Terminal Stochastic 
Domination if and only if [f is resolute and f = fAPMm]. 
 IIS and No-Terminal Stochastic Domination along with Probabilistic Neutrality 
can be used to establish an axiomatic characterization of the Ascending Probabilistic 
Max-min solution. 
Proposition 1: An ECC f on ℛ satisfies IIS, Probabilistic Neutrality and No-
Terminal Stochastic Domination if and only if f = fAPMm. 
Proof: It is easy to see that fAPMm on ℛ satisfies Probabilistic Neutrality. 
 Hence, suppose that f on ℛ satisfies IIS, Probabilistic Neutrality and No-Terminal 
Stochastic Domination. 
 Let (RN,p)∈ ℛ. 
 By Lemma 2, we know that f(RN,p) ⊂ APMm(RN,p) = fAPMm(RN,p). 
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 If for y∈Mm(RN,p), the worst-rank (y, (RN,p)) = 1, then fAPMm(RN,p) = Max-min 
Winners(M) is a singleton. 
 Thus, f(RN,p) = fAPMm(RN,p). 
 Let APMm(RN,p) = K*-fPMm(RN,p) with K* > 2. 
 Then, APMm(RN,p) = K*-fPMm(RN,p) is a singleton, so that f(RN,p) ⊂ APMm(RN,p) 
= fAPMm(RN,p) implies f(RN,p) = fAPMm(RN,p). 
 Hence, suppose K* = 2. Then for all x,y∈APMm(RN,p) = K*-fPMm(RN,p), it is the 
case that Pr({rk(y) = k}|(RN,p)) = Pr({rk(y) = k}|(RN,p)) for all k∈{1,…,m}. 
 By Probabilistic Neutrality, x∈f(RN,p) if and only if y∈f(RN,p). 
 Thus, f(RN,p) = fAPMm(RN,p). Q.E.D. 
Note: Given a strict ranking on X, the extended choice correspondence which for all 
(RN,p)∈ℛ chooses from APMm(RN,p), the alternative that is ranked best according 
to this strict ranking is singleton valued (resolute), satisfies IIS and No-Terminal 
Stochastic Domination, but does not satisfy Probabilistic Neutrality. The choice 
function that selects the whole set X for all (RN,p)∈ℛ satisfies IIS and Probabilistic 
Neutrality, but does not satisfy the No-Terminal Stochastic Domination. 

6. Conclusion 

The solution concept we suggest here violates the Condorcet consistency, which 
requires that if an alternative is preferred to all other alternatives in a pair-wise 
comparison, then such an alternative should be (the only alternative to be) chosen. 
This is easily seen for an extended preference profile with three alternatives: x, y, z, 
where x is ranked first with probability 501

1000
, and last with probability 499

1000
, whereas y 

is ranked second with probability 1. Our solution would select y, in spite of x being 
the Condorcet winner. The problem with x is its extreme volatility, and our solution 
concept protects the decision-maker from the not-unlikely adverse consequences 
that the choice of the Condorcet winner would expose him or her to. 
 An alternative way of proceeding with our analysis would be to use ordinal data 
matrices. An ordinal data matrix gives the probability with which each alternative is 
assigned each rank. Clearly, such a matrix is a bi-stochastic matrix of rational 
numbers, assuming that the probability with which each state of nature occurs is  
a rational number. The Birkhoff-von Neumann theorem states that every bi-
stochastic matrix is an expected ranking matrix, though there may be more than one 
probability distribution over strict rankings that lead to the same expected ranking 
matrix. Many choice procedures based on preference profiles, including the 
procedure we discuss here, can be stated in terms of data contained in such matrices. 
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 Aleskerov and Subochev (2013) study the representation of binary relations on 
finite sets by logical matrices. They are largely concerned with the “preferred with 
probability at least half” relation. 
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The detectability of asymmetric distributions 
deviating from normality due to small skewness 

Piotr Sulewskia 
 
Abstract. The aim of this article is to test the ability of goodness-of-fit tests (GoFTs) to detect 
any deviations from normality. A very specific case is considered, namely the deviation from 
normality consisting in the coincidence of asymmetry and small 𝛾𝛾1 skewness. The first step in 
achieving the aforementioned aim is to compile a set of normality-oriented GoFTs commonly 
recommended for use, as described in the recently published literature. The second step is to 
create a family of asymmetric distributions with a non-constant 𝛾𝛾1, further referred to as 
alternatives. The formulas for calculating 𝛾𝛾1 are provided for each alternative. To compare the 
alternatives with the normal distribution, a relevant similarity measure is applied. The third step 
involves running a Monte Carlo simulation. The study investigates 21 GoFTs and 13 alternatives. 
The obtained results show that the LFα�,β� and 𝐻𝐻𝑛𝑛 GoFTs prove most effective in detecting 
asymmetric distributions that deviate from normality due to small skewness, equal to even 
0.05. 
Keywords: normality, goodness-of-fit test, skewness 
JEL: C1, C6 

1. Introduction 

Numerous goodness-of-fit tests (GoFTs) are discussed in the statistics-related 
literature. The most common normality test procedures available in statistical 
software are the Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933; Smirnov, 
1948), the Lilliefors (LF) test (Lilliefors, 1967), the Cramer-von Mises (CVM) test 
(Cramér, 1928), the Anderson-Darling (AD) test (Anderson & Darling, 1952), and 
the Shapiro-Wilk (SW) test (Shapiro & Wilk, 1965). The Power R package (Lafaye de 
Micheaux & Tran, 2016) from the R software proved the most useful to the research 
undertaken in this paper. The package offers a large set of generators of pseudo-
random numbers that follow probability distributions which are used both 
frequently and sporadically. Moreover, the package provides many GoFTs for 
normality, uniformity and laplacity (see Section 4). 
 In the recent years, many articles have been devoted to GoFTs for normality, e.g.: 
Afeez et al. (2018), Ahmad and Khan (2015), Aliaga et al. (2003), Arnastauskaitė et 
al. (2021), Bayoud (2021), Bonett and Seier (2002), Bontemps and Meddahi (2005), 
Brys et al. (2008), Coin (2008), Desgagné et al. (2023), Desgagné and Lafaye de 
Micheaux (2018), Gel at el. (2007), Gel and Gastwirth (2008), Hernandez (2021), 

 
a Pomeranian University, Institute of Exact and Technical Sciences, Arciszewskiego Street 22, 76-200 Słupsk, 

Poland, e-mail: piotr.sulewski@apsl.edu.pl, ORCID: https://orcid.org/0000-0002-0788-6567. 
 

© Piotr Sulewski. Article available under the CC BY-SA 4.0 licence  

https://doi.org/10.59139/ps.2023.01.1
mailto:piotr.sulewski@apsl.edu.pl
https://orcid.org/0000-0002-0788-6567
https://creativecommons.org/licenses/by-sa/4.0/legalcode


14 Przegląd Statystyczny. Statistical Review 2023 | 1 

 

 

Kellner and Celisse (2019), Khatun (2021), Marange and Qin (2019), Mbah and 
Paothong (2015), Mishra et al. (2019), Nosakhare and Bright (2017), Noughabi and 
Arghami (2011), Razali and Wah (2011), Romao et al. (2010), Sulewski (2019), 
Sulewski (2022b), Tavakoli et al. (2019), Torabi et al. (2016), Uhm and Yi (2021), 
Uyanto (2022), Wijekularathna et al. (2020), Yap and Sim (2011), and Yazici and 
Yolacan (2007). 
 In this article, we focus on GoFTs for normality recommended for use when the 
alternatives are asymmetric, i.e. the skewness (𝛾𝛾1) is non-zero (see Table 1). The 
results of applying the Monte Carlo method to assess the power of GoFTs are 
presented in Section 4. 
 Asymmetric distributions can be divided into distributions with constant 𝛾𝛾1 and 
non-constant 𝛾𝛾1. Distributions with constant 𝛾𝛾1 include exponential (EXP), Gumbel 
(GU), half-logistic (HL), half-Normal (HN), log-Weibull (LW) or extreme-value, or 
Maxwell (MX) and Rayleigh (Ry) distributions. Section 3 is devoted to distributions 
with non-constant 𝛾𝛾1. 
 The research results presented in the article by Sulewski (2022a) inspired further 
research and form the core of this article. That paper discusses the Easily Changeable 
Kurtosis (ECK) distribution. The ECK enables testing the ability of GoFTs to detect 
the deviations from normality by negative excess kurtosis �̅�𝛾2. The article shows that 
the most popular GoFTs do not distinguish the ECK distribution of negative �̅�𝛾2 
(even �̅�𝛾2 = −0.3) from normal distribution. This is the case even when sample size 
𝑛𝑛 = 30, 50 and significance level 𝛼𝛼 = 0.05. The findings presented in the author’s 
other works entitled ‘Goodness-of-fit testing for normality when alternative 
distributions have undefined or constants skewness and kurtosis’ and ‘On the 
detectability of symmetric distributions that deviate from normality due to small 
excess kurtosis’ (currently reviewed) also motivated further research in the discussed 
area. The common feature of this article and those mentioned in this paragraph is 
the testing of GoFTs. 
 The review of the recent statistics-related literature shows that 𝛾𝛾1 ∈ [−0.25, 0.25] 
does not dominate in testing for normality. It is very interesting to see how the GoFT 
responds to samples coming from alternatives close to normal distribution. In this 
article, we will focus on 𝛾𝛾1 values close to zero. In other words, we use the values of 
alternative parameters to obtain the desired 𝛾𝛾1 values and similarity measure values 
of the alternatives to normal distribution. 
 The aim of this article is to test the ability of GoFTs to detect deviations from 
normality. A very specific case is considered, namely the deviation from normality 
consisting in the coincidence of asymmetry and small 𝛾𝛾1 values. The first step 
toward achieving the aforementioned aim is to compile a set of normality-oriented 
GoFTs commonly recommended for use, mainly on the basis of the review of 
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recently-published source literature. The second step is to create a family of 
asymmetric distributions with non-constant 𝛾𝛾1, further referred to as alternatives. 
Formulas for calculating the 𝛾𝛾1 and �̅�𝛾2 values are provided for each distribution. In 
order to compare the alternatives with normal distribution, an appropriate similarity 
measure is applied. The third step involves performing a Monte Carlo simulation. 
The study is based on the use of 21 GoFTs and 13 alternatives. 
 The article is organised as follows: Section 2 presents 21 GoFTs for normality 
recommended in the literature as fit for use when the alternatives are asymmetric. 
Section 3 is devoted to the similarity measure of the normal distribution to the 
alternative distribution. Moreover, this part of the study presents asymmetric 
distribution with non-constant 𝛾𝛾1. Section 4 analyses the results of the Monte Carlo 
simulations. The summary and conclusions, compiled in Section 5, close the paper. 

2. Goodness-of-fit tests for the Monte Carlo simulation 

Hypothesis 𝐻𝐻0 states that the data come from normal distribution. Hypothesis 𝐻𝐻1 
negates 𝐻𝐻0. Table 1 presents the studied 21 GoFTs for normality (sorted by year) 
recommended in the literature in the recent years (𝑛𝑛 ≤ 100) when alternatives are 
asymmetric. These GoFTs are used in the Monte Carlo simulations (see Section 4). 
 
Table 1. GoFTs for normality when alternatives are asymmetric (𝑛𝑛 ≤ 100) 

GoFT Recommended by 

Anderson-Darling test (AD) 
(Anderson & Darling, 1952) 

Afeez et al. (2018), Khatun (2021), Yap and Sim (2011) 

Shapiro-Wilk test (SW) 
(Shapiro & Wilk, 1965) 

Afeez et al. (2018), Bayoud (2021), Coin (2008), Hernandez (2021), 
Khatun (2021), Mishra et al. (2019), Romao et al. (2010), Wijekularathna 
et al. (2020), Yap and Sim (2011) 

Kurtosis test (KT) 
(Shapiro et al., 1968) 

Mishra et al. (2019) 

D’Agostino skewness test (AS) 
(D’Agostino, 1970) 

Mishra et al. (2019) 

Shapiro-Francia test (SF) 
(Shapiro & Francia, 1972) 

Khatun (2021), Nosakhare and Bright (2017)  

D’Agostino-Pearson test (AP) 
(D’Agostino & Pearson, 1973) 

Mishra et al. (2019) 

Ryan-Joiner test (RJ) 
(Ryan & Joiner, 1976) 

Nosakhare and Bright (2017)  

T1n test (T1n) 
(LaRiccia, 1986) 

Torabi et al. (2016) 
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Table 1. GoFTs for normality when alternatives are asymmetric (𝑛𝑛 ≤ 100) (cont.) 

GoFT Recommended by 

Jarque-Bera test (JB) 
(Jarque & Bera, 1987) 

Brys et al. (2008), Yazici and Yolacan (2007) 

1st Hosking test (H1) 
(Hosking, 1990) 

Arnastauskaitė et al. (2021) 

1st Cabana-Cabana test (CC) 
(Cabaña & Cabaña, 1994) 

Uyanto (2022) 

Chen-Shapiro test (CS) 
(Chen & Shapiro, 1995) 

Romao et al. (2010) 

Adjusted Jarque-Bera test (AJB) 
(Urzua, 1996) 

Nosakhare and Bright (2017) 

ZA Zhang-Wu test (ZA) 
(Zhang & Wu, 2005) 

Romao et al. (2010), Sulewski (2019), Uhm and Yi (2021), Uyanto (2022)  

ZC Zhang-Wu test (ZC) 
(Zhang & Wu, 2005) 

Romao et al. (2010), Uhm and Yi (2021) 

𝛽𝛽32 Coin test (𝛽𝛽32), (Coin, 2008) Coin (2008) 

Hn test (Hn) 
Torabi et al. (2016) 

Torabi et al. (2016) 

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 test (𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴) 
(Desgagné & Lafaye de Micheaux, 
2018) 

Desgagné et al. (2023) 

Bv test (Bv) 
Tavakoli et al. (2019) 

Tavakoli et al. (2019) 

Modified Lilliefors test (LFα�,β�) 
(Sulewski, 2022b) 

Sulewski (2022b) 

Delta test (𝛿𝛿) 
Bayoud (2021) 

Bayoud (2021) 

Source: author’s work. 

3. The similarity measure and the alternatives 

3.1. Similarity measure 

Let 𝑓𝑓(𝑥𝑥;𝛉𝛉) be a probability density function (PDF) of an alternative distribution 
with vector of parameters 𝛉𝛉. Similarity measure 𝑀𝑀 of the alternative to the null 
distribution is defined as (Sulewski, 2022b) 
 

 𝑀𝑀(𝛉𝛉;𝜇𝜇,𝜎𝜎) = ∫ 𝑚𝑚𝑚𝑚𝑛𝑛[𝑓𝑓(𝑥𝑥;𝛉𝛉),𝜙𝜙(𝑥𝑥; 𝜇𝜇,𝜎𝜎)]𝑑𝑑𝑥𝑥∞
−∞ , (1) 

 
where 𝜙𝜙(𝑥𝑥;𝜇𝜇,𝜎𝜎) is the PDF of the normal distribution. 𝑀𝑀(𝛉𝛉;𝜇𝜇,𝜎𝜎) takes the values 
of [0,1] and equals 1 when the PDFs are identical. More details on distance and 
similarity measures can be found e.g. in Sulewski (2021). 
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3.2. Alternative distributions 

Asymmetric alternatives with non-constant 𝛾𝛾1 used in Monte Carlo simulations can 
be divided into two groups. The first and second group includes monolithic and 
compound distributions, respectively, used in GoFTs for normality in recent articles. 
These alternatives are: 
• Group I: beta (B), chi-squared (𝜒𝜒2), gamma (G), generalised power (GP), inverse 

Gaussian (IG), lognormal (LOG), power normal (PN), SB Johnson (SB), Skew-
flexible-normal (SFN), skew-normal (SN), SU Johnson (SU) and Weibull (W) 
distributions; 

• Group II: location-contaminated normal (LCN), Gumbel-normal (GN), Laplace 
mixture (LM), Laplace-normal (LN), normal distribution with a plasticising 
component (NDPC), normal mixture (NM), plasticising component mixture 
(PCM), skew-normal mixture (SNM) and Weibull-normal (WN) distributions. 

See Table 2 for more details. The distributions used in at least two articles (marked 
in bold) have been selected for the Monte Carlo simulation (see Section 4). 
 
Table 2. Asymmetric alternatives (A) with non-constant 𝛾𝛾1 used in GoFTs for normality  

in the recent literature (in alphabetical order)  

A Article 

B Afeez et al. (2018), Arnastauskaitė et al. (2021), Bayoud (2021), Coin (2008), Desgagné and Lafaye 
de Micheaux (2018), Gel at el. (2007), Noughabi and Arghami (2011), Razali and Wah (2011), 
Romao et al. (2010), Sulewski (2019), Sulewski (2022b), Torabi et al. (2016), Uhm and Yi (2021), 
Uyanto (2022), Yap and Sim (2011), Yazici and Yolacan (2007) 

𝝌𝝌𝟐𝟐 Arnastauskaitė et al. (2021), Bayoud (2021), Bontemps and Meddahi (2005), Coin (2008), Desgagné 
and Lafaye de Micheaux (2018), Nosakhare and Bright (2017), Razali and Wah (2011), Romao et al. 
(2010), Sulewski (2019), Sulewski (2022b), Tavakoli et al. (2019), Torabi et al. (2016), Uhm and Yi 
(2021), Wijekularathna et al. (2020) 

G Arnastauskaitė et al. (2021), Bayoud (2021), Desgagné and Lafaye de Micheaux (2018), Noughabi 
and Arghami (2011), Razali and Wah (2011), Romao et al. (2010), Tavakoli et al. (2019), Torabi et al. 
(2016), Uhm and Yi (2021), Uyanto (2022), Yap and Sim (2011), Yazici and Yolacan (2007) 

GN Sulewski (2022b) 

GP Desgagné et al. (2023), Desgagné and Lafaye de Micheaux (2018) 

IG Tavakoli et al. (2019) 

LCN Coin (2008), Yap and Sim (2011) 

LM Sulewski (2022b) 

LN Sulewski (2022b) 

LOG Arnastauskaitė et al. (2021), Bayoud (2021), Coin (2008), Desgagné and Lafaye de Micheaux (2018), 
Gel at el. (2007), Marange and Qin (2019), Noughabi and Arghami (2011), Romao et al. (2010), 
Sulewski (2019), Sulewski (2022b), Tavakoli et al. (2019), Torabi et al. (2016), Wijekularathna et al. 
(2020), Yap and Sim (2011), Yazici and Yolacan (2007) 

NDPC Sulewski (2022b) 
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Table 2. Asymmetric alternatives (A) with non-constant 𝛾𝛾1 used in GoFTs for normality  
in the recent literature (in alphabetical order) (cont.) 

A Article 

NM Romao et al. (2010), Sulewski (2022b) 

PCM Sulewski (2022b) 

PN Sulewski (2022b) 

SB Sulewski (2019), Sulewski (2022b), Torabi et al. (2016)  

SFN Sulewski (2022b) 

SN Bayoud (2021), Sulewski (2022b), Torabi et al. (2016), Uyanto (2022) 

SU Sulewski (2019), Torabi et al. (2016) 

SNM Sulewski (2022b) 

W Afeez et al. (2018), Ahmad and Khan (2015), Arnastauskaitė et al. (2021), Bayoud (2021), Coin 
(2008), Desgagné and Lafaye de Micheaux (2018), Nosakhare and Bright (2017), Noughabi and 
Arghami (2011), Romao et al. (2010), Sulewski (2022b), Tavakoli et al. (2019), Torabi et al. (2016), 
Uyanto (2022), Yap and Sim (2011), Yazici and Yolacan (2007) 

WN Sulewski (2022b) 

Source: author’s work. 

 
 The family of alternatives also includes two very interesting distributions ideally 
suited to the subject of this work, namely the Edgeworth series (ES) and the Pearson 
(P) distributions. Their parameters are 𝛾𝛾1 and �̅�𝛾2. 
 Let 𝜙𝜙(𝑥𝑥; 0,1) and Φ(𝑥𝑥; 0,1) be the PDF and the cumulative density function 
(CDF) of the 𝑁𝑁(0,1) distribution, respectively. Below, for the analysed alternatives, 
the PDF, the 𝑀𝑀(𝛉𝛉; 0,𝜎𝜎) maximum value, and the 𝛾𝛾1(𝛉𝛉), �̅�𝛾2(𝛉𝛉),𝛉𝛉(𝛾𝛾1),𝛉𝛉(�̅�𝛾2) 
formulas are shown. The alternatives are presented in alphabetical order. 
 
1. Beta distribution 
 

𝑓𝑓𝐵𝐵(𝑥𝑥;𝑎𝑎, 𝑏𝑏) =
𝑥𝑥𝑎𝑎−1(1− 𝑥𝑥)𝑏𝑏−1

𝐵𝐵(𝑎𝑎,𝑏𝑏) ,  𝑥𝑥 ∈ [0,1] (𝑎𝑎 > 0,𝑏𝑏 > 0) 

𝑀𝑀(11.372,11.372; 0.5,0.105) = 0.990 

𝛾𝛾1(𝑎𝑎, 𝑏𝑏) =
2(𝑏𝑏 − 𝑎𝑎)√𝑎𝑎 + 𝑏𝑏 + 1

(𝑎𝑎 + 𝑏𝑏 + 2)√𝑎𝑎𝑏𝑏
(𝛾𝛾1 ∈ 𝑅𝑅),  𝛾𝛾1(𝑎𝑎, 𝑏𝑏) = −𝛾𝛾1(𝑏𝑏,𝑎𝑎) 

�̅�𝛾2(𝑎𝑎,𝑏𝑏) =
6[(𝑎𝑎 − 𝑏𝑏)2(𝑎𝑎 + 𝑏𝑏 + 1) − 𝑎𝑎𝑏𝑏(𝑎𝑎 + 𝑏𝑏 + 2)]

𝑎𝑎𝑏𝑏(𝑎𝑎 + 𝑏𝑏 + 2)(𝑎𝑎 + 𝑏𝑏 + 3)  (�̅�𝛾2 ≥ −2) 

 
 
 
 



P. SULEWSKI    The detectability of asymmetric distributions deviating from normality due to small...  19 

 

 

2. Chi-squared distribution 
 

𝑓𝑓𝝌𝝌𝟐𝟐(𝑥𝑥; 𝑘𝑘) =
𝑥𝑥0.5𝑘𝑘−1𝑒𝑒𝑥𝑥𝑒𝑒(−0.5𝑥𝑥)

20.5𝑘𝑘Γ(0.5𝑘𝑘) ,  𝑥𝑥 ≥ 0 (𝑘𝑘 > 0) 

𝑀𝑀(92.498; 91.47,13.506) = 0.973 

𝛾𝛾1(k) = �8
𝑘𝑘

 (𝛾𝛾1 > 0) ,   𝑘𝑘(𝛾𝛾1) =
8
𝛾𝛾12

,   �̅�𝛾2(𝑘𝑘) =
12
𝑘𝑘

 (�̅�𝛾2 > 0),   𝑘𝑘(�̅�𝛾2) =
12
�̅�𝛾2

 

 
3. Gamma distribution 
 

𝑓𝑓𝑮𝑮(𝑥𝑥; 𝑎𝑎, 𝑏𝑏) =
𝑥𝑥𝑐𝑐−1𝑒𝑒𝑥𝑥𝑒𝑒(−𝑥𝑥/𝑎𝑎)

𝑎𝑎𝑐𝑐Γ(𝑐𝑐) ,   𝑥𝑥 ≥ 0 (𝑎𝑎 > 0,𝑏𝑏 > 0) 

𝑀𝑀(0.06,80.166; 4.815,0.543) = 0.979 

𝛾𝛾1(b) =
2
√𝑏𝑏

 (𝛾𝛾1 > 0),𝑏𝑏(𝛾𝛾1) =
4
𝛾𝛾12

,   �̅�𝛾2(𝑏𝑏) =
6
𝑏𝑏

 (�̅�𝛾2 > 0),   𝑏𝑏(�̅�𝛾2) =
6
�̅�𝛾2

 

 
4. Generalised power distribution (Komunjer, 2007) 
 
Let 𝑔𝑔(𝑥𝑥; 𝑎𝑎,𝑏𝑏) = 2𝑎𝑎𝑏𝑏(1− 𝑎𝑎)𝑏𝑏[𝑎𝑎𝑏𝑏 + (1 − 𝑎𝑎)𝑏𝑏]−1 , (0 < 𝑎𝑎 < 1,𝑏𝑏 > 0), then 

𝑓𝑓𝑮𝑮𝑮𝑮(𝑥𝑥; 𝑎𝑎,𝑏𝑏) =
𝑔𝑔(𝑥𝑥; 𝑎𝑎,𝑏𝑏)

1
𝑏𝑏

Γ �1 + 1
𝑏𝑏�

𝑒𝑒𝑥𝑥𝑒𝑒�−
𝑔𝑔(𝑥𝑥; 𝑎𝑎, 𝑏𝑏)

�12 + 𝑠𝑠𝑔𝑔𝑛𝑛(𝑥𝑥) �1
2 − 𝑎𝑎��

𝑏𝑏 |𝑥𝑥|𝑏𝑏� ,   𝑥𝑥 ∈ 𝑅𝑅  

𝑀𝑀(0.5,2; 0,0.707) = 1. 

 Let 𝛼𝛼𝑘𝑘 = ∫ 𝑥𝑥𝑘𝑘𝑓𝑓𝑮𝑮𝑮𝑮(𝑥𝑥;𝑎𝑎, 𝑏𝑏)∞
−∞ ,  then 

𝛾𝛾1(a, b) =
𝛼𝛼3 − 3𝛼𝛼1𝛼𝛼2 + 2𝛼𝛼13

(𝛼𝛼2 − 𝛼𝛼12)1.5  (−10 < 𝛾𝛾1 < 10),   𝛾𝛾1(a, b) = −𝛾𝛾1(1− a, b) 

�̅�𝛾2(𝑎𝑎, 𝑏𝑏) =
𝛼𝛼4 − 4𝛼𝛼1𝛼𝛼3 + 6𝛼𝛼12𝛼𝛼2 − 3𝛼𝛼14

(𝛼𝛼2 − 𝛼𝛼12)2 − 3 (�̅�𝛾2 > −1.2). 
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5. Location contaminated normal distribution 
 

𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥; 𝑎𝑎,𝑤𝑤) = 𝑤𝑤𝜙𝜙(𝑥𝑥; 𝑎𝑎, 1) + (1 −𝑤𝑤)𝜙𝜙(𝑥𝑥; 0,1),  𝑥𝑥 ∈ 𝑅𝑅 (0 ≤ 𝑤𝑤 ≤ 1,  𝑎𝑎 > 0) 

𝑀𝑀(0,1;  0,1) = 𝑀𝑀(𝑎𝑎, 0;  0,1) = 1 

𝛾𝛾1(𝑎𝑎,𝑤𝑤) =
𝑎𝑎3𝑤𝑤(2𝑤𝑤2 − 3𝑤𝑤 + 1)
(𝑎𝑎2𝑤𝑤 − 𝑎𝑎2𝑤𝑤2 + 1)1.5  (𝛾𝛾1 ∈ 𝑅𝑅) 

�̅�𝛾2(𝑎𝑎,𝑤𝑤) =
𝑎𝑎4𝑤𝑤(−6𝑤𝑤3 + 12𝑤𝑤2 − 7𝑤𝑤 + 1)

(𝑎𝑎2𝑤𝑤 − 𝑎𝑎2𝑤𝑤2 + 1)2  (�̅�𝛾2 ≥ −2) 

𝑎𝑎(�̅�𝛾2,𝑤𝑤) =
��

�̅�𝛾2
6𝑤𝑤2 − 6𝑤𝑤 + 1 + � �̅�𝛾2

12𝑤𝑤3 − 6𝑤𝑤4 − 7𝑤𝑤2 + 𝑤𝑤� (6𝑤𝑤2 − 6𝑤𝑤 + 1)

�̅�𝛾2𝑤𝑤2 − 6𝑤𝑤 + 6𝑤𝑤2 − �̅�𝛾2𝑤𝑤 + 1
 

𝑤𝑤(�̅�𝛾2,𝑎𝑎) =
𝑎𝑎 + �4�̅�𝛾2 + �̅�𝛾2𝑎𝑎2 + 4𝑎𝑎2 + 2�𝑎𝑎4 − 4𝑎𝑎2�̅�𝛾2 − 24�̅�𝛾2

�̅�𝛾2 + 6

2𝑎𝑎
 

 
6. Lognormal distribution 
 

𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥;𝑎𝑎, 𝑏𝑏) =
1

𝑥𝑥𝑏𝑏√2𝜋𝜋
𝑒𝑒𝑥𝑥𝑒𝑒 �−

1
2
�
𝑙𝑙𝑛𝑛(𝑥𝑥)− 𝑎𝑎

𝑏𝑏
�
2

� ,  𝑥𝑥 > 0 (𝑎𝑎 ∈ 𝑅𝑅,  𝑏𝑏 > 0) 

𝑀𝑀(0.103,0.096;  1.106,0.106) = 0.974 

𝛾𝛾1(𝑏𝑏) = [𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏2) + 2]�𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏2)− 1 (𝛾𝛾1 ≥ 0) 

�̅�𝛾2(𝑏𝑏) = 𝑒𝑒𝑥𝑥𝑒𝑒(4𝑏𝑏2) + 2𝑒𝑒𝑥𝑥𝑒𝑒(3𝑏𝑏2) + 3𝑒𝑒𝑥𝑥𝑒𝑒(2𝑏𝑏2)− 6 (�̅�𝛾2 ≥ 0) 
 
7. Normal mixture distribution 
 

𝑓𝑓𝐿𝐿𝑁𝑁(𝑥𝑥;  𝑎𝑎, 𝑏𝑏,𝑤𝑤) = 𝑤𝑤𝜙𝜙(𝑥𝑥;  0,1) + (1−𝑤𝑤)𝜙𝜙(𝑥𝑥;  𝑎𝑎,𝑏𝑏), 
𝑥𝑥 ∈ 𝑅𝑅 (𝑎𝑎 ∈ 𝑅𝑅,  0 ≤ 𝑤𝑤 ≤ 1,  𝑏𝑏 > 0) 

𝑀𝑀(𝑎𝑎,𝑏𝑏, 1;  0,1) = 𝑀𝑀(0,1,0;  0,1) = 𝑀𝑀(0,1,𝜔𝜔;  0,1) = 1 

𝛾𝛾1(𝑎𝑎, 𝑏𝑏,𝑤𝑤) =
−𝑤𝑤(2𝑤𝑤2 − 3𝑤𝑤 + 1)𝑎𝑎3 + 𝑎𝑎𝑤𝑤(3𝑤𝑤 − 3𝑏𝑏2𝑤𝑤 + 3𝑏𝑏2 − 3)

[𝑤𝑤(𝑎𝑎2 − 𝑏𝑏2 − 𝑎𝑎2𝑤𝑤 + 1) + 𝑏𝑏2]1.5  (𝛾𝛾1 ∈ 𝑅𝑅) 

𝛾𝛾1(𝑎𝑎, 𝑏𝑏,𝑤𝑤) = −𝛾𝛾1(−𝑎𝑎,𝑏𝑏,𝑤𝑤) 

�̅�𝛾2(𝑎𝑎, 𝑏𝑏,𝑤𝑤)
(6𝑤𝑤2 − 6𝑤𝑤 + 1)𝑎𝑎4 + 𝑎𝑎2(12𝑏𝑏2𝑤𝑤 − 12𝑤𝑤 − 6𝑏𝑏2 + 6) + 3𝑏𝑏4 − 6𝑏𝑏2 + 3

(𝑤𝑤 −𝑤𝑤2)−1[𝑤𝑤(𝑎𝑎2 − 𝑏𝑏2 − 𝑎𝑎2𝑤𝑤 + 1) + 𝑏𝑏2]2 (�̅�𝛾2 ≥ −2) 

 



P. SULEWSKI    The detectability of asymmetric distributions deviating from normality due to small...  21 

 

 

8. SB distribution (Johnson, 1949) 
 

𝑓𝑓𝑆𝑆𝐵𝐵(𝑥𝑥; 𝑎𝑎, 𝑏𝑏) =
𝑏𝑏

𝑥𝑥(1− 𝑥𝑥)ϕ�𝑎𝑎 + 𝑏𝑏𝑙𝑙𝑛𝑛 �
𝑥𝑥

1 − 𝑥𝑥�
; 0,1� ,  𝑥𝑥 ∈ [0,1] (𝑎𝑎 ∈ 𝑅𝑅,  𝑏𝑏 > 0) 

𝑀𝑀(0,2.669;  0.5,0.093) = 0.999  

 Let 𝛼𝛼𝑘𝑘 = ∫ 𝑥𝑥𝑘𝑘𝑓𝑓𝑺𝑺𝑺𝑺(𝑥𝑥; 𝑎𝑎,𝑏𝑏)1
0 , then  

𝛾𝛾1(a, b) =
𝛼𝛼3 − 3𝛼𝛼1𝛼𝛼2 + 2𝛼𝛼13

(𝛼𝛼2 − 𝛼𝛼12)1.5 (𝛾𝛾1 ∈ 𝑅𝑅),   𝛾𝛾1(a, b) = −𝛾𝛾1(−a, b) 

�̅�𝛾2(𝑎𝑎, 𝑏𝑏) =
𝛼𝛼4 − 4𝛼𝛼1𝛼𝛼3 + 6𝛼𝛼12𝛼𝛼2 − 3𝛼𝛼14

(𝛼𝛼2 − 𝛼𝛼12)2 − 3 (�̅�𝛾2 ≥ −2) 

 
9. Skew-normal distribution (Azzalini, 1985) 
 

𝑓𝑓𝑆𝑆𝐿𝐿(𝑥𝑥; 𝑎𝑎) = 2ϕ(𝑥𝑥; 0,1) Φ(𝑎𝑎𝑥𝑥; 0,1),   𝑥𝑥 ∈ 𝑅𝑅 (𝑎𝑎 ∈ 𝑅𝑅) 

𝑀𝑀(0;  0,1) = 1  

𝛾𝛾1(a) =
𝑎𝑎3√2(4− 𝜋𝜋)

(𝜋𝜋 − 2𝑎𝑎2 + 𝜋𝜋𝑎𝑎2)1.5  (−1 < 𝛾𝛾1 < 1),  𝛾𝛾1(a) = −𝛾𝛾1(−a) 

�̅�𝛾2(𝑎𝑎) =
4𝑎𝑎4(2𝜋𝜋 − 6)

(𝜋𝜋 − 2𝑎𝑎2 + 𝜋𝜋𝑎𝑎2)2  (0 ≤ �̅�𝛾2 ≤ 0.869) 

𝑎𝑎(�̅�𝛾2) = ±�
𝜋𝜋�2�̅�𝛾2√𝜋𝜋 − 3 + 6�2�̅�𝛾2 − 𝜋𝜋�̅�𝛾2√𝜋𝜋 − 3 − 2𝜋𝜋�2�̅�𝛾2�

√𝜋𝜋 − 3(4�̅�𝛾2 − 8𝜋𝜋 − 4𝜋𝜋�̅�𝛾2 + 𝜋𝜋2�̅�𝛾2 + 24)
 

 
10. SU distribution (Johnson, 1949) 
 

𝑓𝑓𝑆𝑆𝑆𝑆(𝑥𝑥; 𝑏𝑏, 𝑐𝑐,𝑑𝑑) =
𝑑𝑑

√𝑥𝑥2 + 𝑏𝑏2
𝜙𝜙 �𝑐𝑐 + 𝑑𝑑𝑠𝑠𝑚𝑚𝑛𝑛ℎ−1 �

𝑥𝑥
𝑏𝑏�

; 0,1� ,   𝑥𝑥 ∈ 𝑅𝑅 (𝑏𝑏 > 0, 𝑐𝑐 ∈ 𝑅𝑅,𝑑𝑑 > 0) 

𝑀𝑀(1.375,0,11.129;  0,0.124) = 0.998 

 Let 

𝑊𝑊 = 𝑒𝑒𝑥𝑥𝑒𝑒(𝑑𝑑−2),   𝐾𝐾1 = 𝑊𝑊2(𝑊𝑊4 + 2𝑊𝑊3 + 3𝑊𝑊2 − 3)𝑐𝑐𝑐𝑐𝑠𝑠ℎ �
4𝑐𝑐
𝑑𝑑
�, 

𝐾𝐾2 = 4𝑊𝑊2(𝑊𝑊 + 2)𝑐𝑐𝑐𝑐𝑠𝑠ℎ �
2𝑐𝑐
𝑑𝑑
� ,  𝑉𝑉 =

𝑏𝑏2

2
(𝑊𝑊 − 1) �𝑊𝑊𝑐𝑐𝑐𝑐𝑠𝑠ℎ �

2𝑐𝑐
𝑑𝑑
�+ 1�, 
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then 

𝛾𝛾1(c, d) =
−𝑏𝑏3√𝑊𝑊(𝑊𝑊− 1)2 �𝑊𝑊(𝑊𝑊 + 2)𝑠𝑠𝑚𝑚𝑛𝑛ℎ �3𝑐𝑐

𝑑𝑑 �+ 3𝑠𝑠𝑚𝑚𝑛𝑛ℎ �𝑐𝑐𝑑𝑑��
4𝑉𝑉1.5  (𝛾𝛾1 ∈ 𝑅𝑅) 

𝛾𝛾1(c, d) = −𝛾𝛾1(−c, d) 

�̅�𝛾2(𝑐𝑐,𝑑𝑑) =
𝑏𝑏4(𝑊𝑊− 1)2[𝐾𝐾1 +𝐾𝐾2 + 6𝑊𝑊 + 3]

8𝑉𝑉2
− 3 (�̅�𝛾2 ≥ 2). 

 
11. Weibull distribution (Weibull, 1951) 
 

𝑓𝑓𝑊𝑊(𝑥𝑥;𝑎𝑎, 𝑏𝑏) =
𝑏𝑏
𝑎𝑎𝑏𝑏
𝑥𝑥𝑏𝑏−1exp �− �

𝑥𝑥
𝑎𝑎�

𝑏𝑏
� ,  𝑥𝑥 ≥ 0 (𝑎𝑎 > 0,  𝑏𝑏 > 0) 

𝑀𝑀(1.851,3.603;  1.673,0.532) = 0.985 

 Let Γ𝑘𝑘 = Γ(1 + 𝑘𝑘/𝑏𝑏), then 

𝛾𝛾1(𝑏𝑏) =
2Γ13 − 3Γ1Γ2 + Γ3

(Γ2 − Γ12)1.5  (𝛾𝛾1 ≥ −1.14) 

�̅�𝛾2(𝑏𝑏) = Γ4−3Γ22−4Γ1Γ3+12Γ12Γ2−6Γ14

�Γ2−Γ12�
2  (�̅�𝛾2 ≥ −0.289). 

 
12. Edgeworth series distribution (Aliaga et al., 2003) 
 

𝑓𝑓𝐸𝐸𝑆𝑆�𝑥𝑥;  𝛾𝛾1,, �̅�𝛾2� =
𝜙𝜙(𝑥𝑥; 0,1)

�1 + 1
3! 𝛾𝛾1,(𝑥𝑥3 − 3𝑥𝑥) + 1

4! �̅�𝛾2(𝑥𝑥4 − 6𝑥𝑥2 + 3)�
−1 , 

 𝑥𝑥 ∈ 𝑅𝑅 (𝛾𝛾1 ∈ 𝑅𝑅, �̅�𝛾2 ≥ −2) 

𝑀𝑀(0,0;  0,1) = 1 

 The PDF formula is introduced in the Appendix. 
 
13. Pearson distribution (Pearson, 1916) 
 
 Let 

𝑎𝑎 =
2�̅�𝛾2 − 3𝛾𝛾12

10�̅�𝛾2 − 5𝛾𝛾12 + 12
,   𝑏𝑏 =

|𝛾𝛾1|(�̅�𝛾2 + 6)
10�̅�𝛾2 − 5𝛾𝛾12 + 12

, 𝑐𝑐 =
4�̅�𝛾2 − 3𝛾𝛾12 + 12

10�̅�𝛾2 − 5𝛾𝛾12 + 12
, 

 Δ = 𝑏𝑏2 − 4𝑎𝑎𝑐𝑐 
(2) 
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then 
 

𝑓𝑓𝑃𝑃�𝑥𝑥; 𝛾𝛾1,, �̅�𝛾2� =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑒𝑒𝑥𝑥𝑒𝑒 � 2𝑎𝑎𝑎𝑎 − 𝑎𝑎

𝑎𝑎(2𝑎𝑎𝑥𝑥 + 𝑎𝑎)�

𝐶𝐶2(2𝑎𝑎𝑥𝑥 + 𝑎𝑎)1/𝑎𝑎 ∆= 0

𝑒𝑒𝑥𝑥𝑒𝑒 � 𝑎𝑎 − 2𝑎𝑎𝑎𝑎
𝑎𝑎√4𝑎𝑎𝑎𝑎 − 𝑎𝑎2

𝑡𝑡𝑎𝑎𝑡𝑡−1 � 2𝑎𝑎𝑥𝑥 + 𝑎𝑎
√4𝑎𝑎𝑎𝑎 − 𝑎𝑎2

��

𝐶𝐶4(𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑥𝑥 + 𝑎𝑎)1/(2𝑎𝑎) ∆< 0

�2𝑎𝑎𝑥𝑥 + 𝑎𝑎 − √𝑎𝑎2 − 4𝑎𝑎𝑎𝑎
2𝑎𝑎𝑥𝑥 + 𝑎𝑎 + √𝑎𝑎2 − 4𝑎𝑎𝑎𝑎

�

𝑏𝑏−2𝑎𝑎𝑏𝑏
2𝑎𝑎√𝑏𝑏2−4𝑎𝑎𝑎𝑎

𝐶𝐶8(𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑥𝑥 + 𝑎𝑎)1/(2𝑎𝑎) ∆> 0,

 

 
where 𝐶𝐶2, 𝐶𝐶4, 𝐶𝐶8 are normalising constants given by 
 

 𝐶𝐶2 = �
𝑒𝑒𝑥𝑥𝑒𝑒 � 2𝑎𝑎𝑎𝑎 − 𝑎𝑎

𝑎𝑎(2𝑎𝑎𝑥𝑥 + 𝑎𝑎)�

(2𝑎𝑎𝑥𝑥 + 𝑎𝑎)1/𝑎𝑎 𝑑𝑑𝑥𝑥,
∞

−∞
 (2) 

 

 𝐶𝐶4 = �
𝑒𝑒𝑥𝑥𝑒𝑒 � 𝑎𝑎 − 2𝑎𝑎𝑎𝑎

𝑎𝑎√4𝑎𝑎𝑎𝑎 − 𝑎𝑎2
𝑡𝑡𝑎𝑎𝑡𝑡−1 � 2𝑎𝑎𝑥𝑥 + 𝑎𝑎

√4𝑎𝑎𝑎𝑎 − 𝑎𝑎2
��

(𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑥𝑥 + 𝑎𝑎)1/(2𝑎𝑎) 𝑑𝑑𝑥𝑥
∞

−∞
, (3) 

 

 
𝐶𝐶8 = �

�2𝑎𝑎𝑥𝑥 + 𝑎𝑎 − √∆
2𝑎𝑎𝑥𝑥 + 𝑎𝑎 + √∆

�

𝑏𝑏−2𝑎𝑎𝑏𝑏
2𝑎𝑎√∆

𝐶𝐶8(𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑥𝑥 + 𝑎𝑎)1/(2𝑎𝑎) 𝑑𝑑𝑥𝑥,
∞

−∞
 

(4) 

 
𝑀𝑀(0,0;  0,1) = 1. 

 
The PDF formula is introduced in the Appendix. 
 The 13 above-mentioned distributions are grouped in Table 3 according to 
different properties. Table 3 shows that most of the analysed distributions have an 
infinite domain and assume negative or positive skewness values. The normal 
distribution is a special case of six distributions. 
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Table 3. Asymmetric distributions with non-constant �̅�𝛾2 grouped by different properties.  
The numbers of distributions with the given properties are provided in brackets 

Property Distributions 

Finite domain 𝐵𝐵, 𝑆𝑆𝐵𝐵 (2) 

Infinite domain 𝜒𝜒2,𝐺𝐺,𝐺𝐺𝐺𝐺, 𝐿𝐿𝐶𝐶𝐿𝐿, 𝐿𝐿𝐿𝐿𝐺𝐺,𝐿𝐿𝑀𝑀,𝑆𝑆𝐿𝐿, 𝑆𝑆𝑆𝑆,𝑊𝑊,𝐸𝐸𝑆𝑆,𝐺𝐺 (11) 

𝑀𝑀(𝛉𝛉;𝜇𝜇,𝜎𝜎) = 1 
for some 𝛉𝛉, 𝜇𝜇,𝜎𝜎 

𝐺𝐺𝐺𝐺,𝐿𝐿𝐶𝐶𝐿𝐿,𝐿𝐿𝑀𝑀, 𝑆𝑆𝐿𝐿,𝐸𝐸𝑆𝑆,𝐺𝐺 (6) 

𝛾𝛾1 < 0  (0) 

𝛾𝛾1 > 0 𝐿𝐿𝐿𝐿𝐺𝐺,𝐺𝐺,𝜒𝜒2 (3) 

𝛾𝛾1 < 0 ∨ 𝛾𝛾1 > 0 𝐵𝐵,𝐺𝐺𝐺𝐺, 𝐿𝐿𝐶𝐶𝐿𝐿,𝐿𝐿𝑀𝑀, 𝑆𝑆𝐵𝐵, 𝑆𝑆𝐿𝐿,𝑆𝑆𝑆𝑆,𝑊𝑊,𝐸𝐸𝑆𝑆,𝐺𝐺 (10) 

Unimodal 𝐵𝐵,𝜒𝜒2,𝐺𝐺,𝐺𝐺𝐺𝐺, 𝐿𝐿𝐿𝐿𝐺𝐺,𝑆𝑆𝐵𝐵, 𝑆𝑆𝐿𝐿,𝑆𝑆𝑆𝑆,𝑊𝑊,𝐸𝐸𝑆𝑆,𝐺𝐺 (11) 

Bimodal 𝐿𝐿𝐶𝐶𝐿𝐿,𝐿𝐿𝑀𝑀 (2) 

Source: author’s work. 

4. Monte Carlo simulation 

For alternatives numbered from 1 to 13 (see Section 3.2), 21 large-scale experiments 
are performed, each dedicated to one of the GoFTs (see Section 2). Each experiment 
involves generating 104 samples of size 𝑡𝑡 = 25. The samples come from a given 
alternative. Each sample is tested for normality at significance level 𝛼𝛼 = 0.05. The 
values of the alternative parameters are determined to obtain appropriate 𝛾𝛾1 values. 
The power of tests (PoTs) are calculated for the given 𝛾𝛾1 values. 
 All calculations are performed in R software using the codes presented in Table 4. 
A research tool facilitating the Monte Carlo power simulation studies for GoFTs in R 
called the PowerR package (Lafaye de Micheaux & Tran, 2016) proved very helpful 
in the process. The ‘statcompute()’ function calculates the test statistic value and the 
p-value for the GoFT described by the ‘stat.index’ argument, the sample described by 
the argument as ‘data’, and the significance level described by the argument as ‘level’. 
Thus, e.g. in the case of the ZA test, the calculations take the following form: 
statcompute(stat.index = 4, data = sample, level = 0.05). See Table 4 for more 
information.  
 Table 5 presents the generator formulas for all the alternatives described in 
Section 3. 
 
 
 
 
 

 



P. SULEWSKI    The detectability of asymmetric distributions deviating from normality due to small...  25 

 

 

Table 4. The R codes of the used GoFTs 

GoFT R codes GoFT R codes 

AD ad.test CS statcompute(stat.index = 26…) 

SW shapiro.test AJB ajb.norm.test 

KT kurtosis.norm.test ZA statcompute(stat.index = 4…) 

AS agostino.test ZC statcompute(stat.index = 3…) 

SF sf.test 𝛽𝛽32 statcompute(stat.index = 30…) 

AP dagoTest Hn author’s function, see Appendix 

RJ author’s function, see Appendix 𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴 statcompute(stat.index = 36…) 

T1n author’s function, see Appendix Bv author’s function, see Appendix 

JB jarque.test LFα�,β�  author’s function, see Appendix 

H1 statcompute(stat.index = 10…) 𝛿𝛿 author’s function, see Appendix 

CC statcompute(stat.index = 19…)   

Source: author’s work. 

 
Table 5. Generator formulas for the analysed alternatives (A) in R 

A Generator A Generator 

B rbeta(n,a,b) SB rJohnsonSB(n,a,b,0,1) 

𝜒𝜒2 rchisq(n,k) SN rskewnorm(n,0,1,a) 

G rgamma(n,b,1/a) SU rJohnsonSU(n,c,d,0,b)) 

GP rGP(n,a,b) see Appendix W rweibull(n,b,1.851) 

LCN rLCN(n,a,b) see Appendix ESa 𝑟𝑟𝐸𝐸𝑑𝑑𝑟𝑟𝑒𝑒(𝑡𝑡, 𝛾𝛾1,, �̅�𝛾2,𝑥𝑥𝑙𝑙 ,𝑥𝑥𝑢𝑢), see Appendix 

LOG rlnorm(n,0.103,b) P mom = c(0,1, 𝛾𝛾1,, �̅�𝛾2) 
 rpearson(n,moments=mom)) NM rNM(n,a,b,ω) see Appendix 

a The quality of built-in function rCornishFisher(n,1, 𝛾𝛾1,, �̅�𝛾2) was not satisfactory. 

Source: author’s work. 

 
 The simulation results for the alternatives are presented in alphabetical order in 
Tables 6–22. We assume that a GoFT detects negative or positive 𝛾𝛾1 if its power 
reaches at least 0.06. PoT values are marked in bold, while the highest average PoT 
values for positive and negative 𝛾𝛾1 are underlined. 
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Table 6. 𝐵𝐵(𝑎𝑎, 𝑎𝑎) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝑎𝑎, 𝑎𝑎; 0.5,0.105) for 𝑡𝑡 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2 –0.312 –0.306 –0.270 –0.338 –0.242 –0.233 –0.242 –0.338 –0.270 –0.306 -0.312 

𝑎𝑎 7.438 8.135 9.824 7.733 11.372 11.372 10.050 6.294 7.040 5.426 4.596 

𝑎𝑎 4.595 5.426 7.040 6.294 10.050 11.372 11.372 7.733 9.824 8.135 7.438 

𝑀𝑀 0.600 0.650 0.700 0.800 0.881 0.990 0.881 0.800 0.700 0.650 0.600 

GoFT PoT 

AD 0.058  0.052  0.050  0.044  0.045  0.042  0.046  0.045  0.046  0.052  0.060  

SW 0.058  0.050  0.046  0.041  0.039  0.039  0.041  0.039  0.045  0.050  0.060  

KT 0.038  0.032  0.036  0.029  0.032  0.033  0.032  0.031  0.033  0.033  0.038  

AS 0.041  0.035  0.035  0.026  0.029  0.029  0.028  0.025  0.035  0.035  0.045  

SF 0.046  0.038  0.038  0.031  0.034  0.034  0.035  0.030  0.037  0.042  0.049  

AP 0.041  0.034  0.036  0.027  0.030  0.031  0.030  0.029  0.035  0.036  0.044  

RJ 0.043  0.035  0.035  0.028  0.032  0.031  0.032  0.028  0.033  0.039  0.045  

𝑇𝑇1 0.057  0.051  0.048  0.035  0.037  0.035  0.038  0.036  0.043  0.048  0.055  

JB 0.034  0.027  0.030  0.022  0.027  0.026  0.025  0.022  0.029  0.029  0.038  

H1 0.053  0.047  0.043  0.036  0.040  0.041  0.040  0.039  0.045  0.048  0.052  

CC 0.040  0.035  0.035  0.026  0.030  0.030  0.030  0.027  0.035  0.039  0.048  

CS 0.060  0.052  0.048  0.043  0.040  0.041  0.042  0.042  0.046  0.051  0.061  

AJB 0.032  0.024  0.028  0.020  0.025  0.026  0.024  0.020  0.028  0.026  0.035  

ZA 0.054  0.044  0.044  0.036  0.036  0.036  0.034  0.035  0.041  0.046  0.056  

ZC 0.053  0.045  0.043  0.038  0.036  0.037  0.038  0.035  0.041  0.048  0.058  

𝛽𝛽32 0.039  0.039  0.042  0.038  0.042  0.041  0.041  0.041  0.043  0.038  0.042  

𝐻𝐻𝑛𝑛 0.050  0.047  0.051  0.047  0.050  0.054  0.062  0.068  0.071  0.081  0.093  

𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴 0.051  0.043  0.043  0.035  0.037  0.036  0.038  0.036  0.040  0.044  0.049  

𝐵𝐵𝑣𝑣 0.071  0.061  0.062  0.054  0.051  0.049  0.052  0.055  0.060  0.061  0.070  

LFα�,β�  0.083  0.070  0.065  0.054  0.053  0.045  0.053  0.058  0.063  0.074  0.081  

𝛿𝛿 0.042  0.041  0.041  0.038  0.041  0.042  0.050  0.052  0.055  0.066  0.072  

Source: author’s work. 
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Table 7. 𝜒𝜒2(𝑘𝑘) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝑘𝑘;𝜇𝜇,𝜎𝜎) for 𝑡𝑡 = 25 

𝛾𝛾1 0.294 0.350 0.400 0.450 0.500 0.550 0.600 0.650 0.700 0.705 0.800 

�̅�𝛾2 0.130 0.184 0.240 0.304 0.375 0.454 0.540 0.634 0.735 0.844 0.960 

0𝑘𝑘 92.550 65.310 50.000 39.510 32.000 26.450 22.220 18.930 16.330 14.220 12.500 

𝜇𝜇 91.410 66.930 51.864 42.556 36.448 31.503 23.608 20.842 23.742 15.101 21.708 

𝜎𝜎 13.503 12.750 12.639 11.790 10.592 10.663 13.538 13.895 10.950 15.337 12.699 

𝑀𝑀 0.973 0.9010 0.850 0.801 0.750 0.700 0.650 0.602 0.550 0.511 0.450 

GoFT PoT 

AD 0.068  0.076  0.087  0.095  0.098  0.122  0.144  0.150  0.164  0.188  0.212  

SW 0.072  0.087  0.099  0.109  0.121  0.143  0.167  0.181  0.203  0.221  0.256  

KT 0.065  0.074  0.075  0.083  0.088  0.098  0.116  0.117  0.130  0.133  0.153  

AS 0.080  0.095  0.104  0.117  0.133  0.152  0.179  0.191  0.209  0.233  0.259  

SF 0.078  0.090  0.098  0.110  0.122  0.145  0.170  0.179  0.199  0.218  0.248  

AP 0.074  0.088  0.092  0.106  0.113  0.129  0.152  0.158  0.174  0.192  0.213  

RJ 0.073  0.085  0.094  0.106  0.114  0.140  0.163  0.172  0.191  0.209  0.237  

𝑇𝑇1 0.081  0.091  0.106  0.120  0.138  0.157  0.187  0.201  0.223  0.253  0.291  

JB 0.076  0.090  0.094  0.108  0.114  0.134  0.157  0.164  0.180  0.202  0.225  

H1 0.070  0.079  0.090  0.100  0.106  0.124  0.150  0.154  0.180  0.192  0.216  

CC 0.080  0.095  0.102  0.120  0.134  0.155  0.182  0.195  0.216  0.239  0.268  

CS 0.072  0.085  0.097  0.107  0.120  0.141  0.164  0.179  0.202  0.219  0.255  

AJB 0.074  0.086  0.090  0.103  0.108  0.126  0.147  0.152  0.166  0.186  0.205  

ZA 0.074  0.088  0.101  0.110  0.124  0.150  0.174  0.188  0.211  0.233  0.265  

ZC 0.076  0.088  0.097  0.108  0.119  0.146  0.167  0.182  0.205  0.222  0.254  

𝛽𝛽32 0.052  0.055  0.058  0.058  0.058  0.058  0.064  0.062  0.064  0.066  0.073  

𝐻𝐻𝑛𝑛 0.096  0.106  0.120  0.127  0.139  0.166  0.189  0.204  0.217  0.251  0.274  

𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴 0.071  0.077  0.087  0.099  0.108  0.124  0.146  0.154  0.172  0.191  0.215  

𝐵𝐵𝑣𝑣 0.064  0.074  0.083  0.083  0.098  0.110  0.128  0.140  0.158  0.176  0.200  

LFα�,β�  0.084  0.096  0.104  0.122  0.126  0.148  0.165  0.172  0.180  0.206  0.222  

𝛿𝛿 0.085  0.097  0.110  0.119  0.131  0.154  0.179  0.191  0.206  0.230  0.262  

Source: author’s work. 
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Table 8. G(𝑎𝑎, 𝑎𝑎) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝑎𝑎, 𝑎𝑎; 4.815,0.543) for 𝑡𝑡 = 25 

𝛾𝛾1 0.223 0.300 0.350 0.400 0.450 0.500 0.550 0.600 0.650 0.700 0.750 

�̅�𝛾2 0.075 0.135 0.184 0.240 0.304 0.375 0.454 0.540 0.634 0.735 0.844 

𝑎𝑎 0.060 0.107 0.140 0.182 0.228 0.277 0.325 0.410 0.452 0.577 0.590 

𝑎𝑎 80.436 44.444 32.653 25.000 19.753 16.000 13.223 11.111 9.467 8.163 7.111 

𝑀𝑀 0.979 0.850 0.750 0.700 0.650 0.600 0.550 0.550 0.500 0.500 0.450 

GoFT PoT 

AD 0.063  0.069  0.077  0.083  0.101  0.107  0.120  0.135  0.153  0.171  0.187  

SW 0.065  0.076  0.086  0.095  0.115  0.129  0.141  0.166  0.181  0.204  0.226  

KT 0.061  0.063  0.068  0.079  0.085  0.097  0.097  0.111  0.115  0.129  0.136  

AS 0.066  0.077  0.093  0.105  0.121  0.142  0.152  0.172  0.192  0.214  0.234  

SF 0.069  0.077  0.087  0.097  0.117  0.129  0.144  0.161  0.180  0.201  0.221  

AP 0.065  0.071  0.081  0.093  0.105  0.123  0.133  0.149  0.157  0.177  0.192  

RJ 0.066  0.073  0.082  0.092  0.110  0.123  0.137  0.155  0.174  0.193  0.212  

𝑇𝑇1 0.066  0.080  0.095  0.108  0.119  0.143  0.157  0.184  0.204  0.229  0.256  

JB 0.066  0.073  0.083  0.094  0.109  0.127  0.136  0.153  0.164  0.184  0.200  

H1 0.065  0.070  0.077  0.088  0.103  0.114  0.128  0.144  0.159  0.178  0.192  

CC 0.067  0.077  0.094  0.106  0.122  0.143  0.156  0.177  0.199  0.219  0.241  

CS 0.064  0.073  0.084  0.093  0.113  0.127  0.140  0.163  0.179  0.201  0.223  

AJB 0.065  0.070  0.080  0.089  0.102  0.120  0.128  0.143  0.152  0.172  0.184  

ZA 0.065  0.077  0.088  0.097  0.115  0.132  0.147  0.167  0.189  0.214  0.237  

ZC 0.067  0.075  0.084  0.095  0.113  0.131  0.144  0.163  0.182  0.205  0.226  

𝛽𝛽32 0.055  0.051  0.053  0.057  0.059  0.062  0.061  0.064  0.060  0.066  0.065  

𝐻𝐻𝑛𝑛 0.084  0.098  0.106  0.120  0.136  0.148  0.160  0.182  0.205  0.226  0.245  

𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴 0.064  0.068  0.075  0.088  0.101  0.113  0.123  0.142  0.154  0.175  0.187  

𝐵𝐵𝑣𝑣 0.062  0.068  0.069  0.079  0.095  0.102  0.116  0.131  0.145  0.159  0.178  

LFα�,β�  0.076  0.086  0.101  0.108  0.121  0.136  0.136  0.153  0.178  0.187  0.202  

𝛿𝛿 0.077  0.088  0.095  0.109  0.125  0.138  0.152  0.174  0.194  0.210  0.234  

Source: author’s work. 
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Table 9. GP(𝑎𝑎, 2) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝑎𝑎, 2; 0,0.707) for 𝑡𝑡 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2 0.045 0.029 0.016 0.007 0.002 0 0.002 0.007 0.016 0.029 0.045 

𝑎𝑎 0.579 0.563 0.547 0.531 0.516 0.5 0.484 0.469 0.453 0.437 0.421 

𝑀𝑀 0.916 0.934 0.951 0.968 0.984 1 0.984 0.968 0.951 0.934 0.916 

GoFT PoT 

AD 0.067  0.065  0.057  0.057  0.049  0.051  0.051  0.050  0.058  0.060  0.069  

SW 0.068  0.067  0.058  0.057  0.048  0.053  0.053  0.052  0.060  0.062  0.067  

KT 0.057  0.056  0.054  0.054  0.048  0.051  0.052  0.051  0.053  0.058  0.054  

AS 0.068  0.062  0.058  0.055  0.046  0.052  0.055  0.053  0.059  0.063  0.065  

SF 0.068  0.067  0.062  0.057  0.049  0.056  0.055  0.051  0.060  0.063  0.067  

AP 0.064  0.059  0.056  0.053  0.048  0.052  0.053  0.051  0.055  0.064  0.059  

RJ 0.065  0.061  0.058  0.052  0.046  0.053  0.052  0.049  0.056  0.060  0.064  

𝑇𝑇1 0.070  0.065  0.060  0.056  0.048  0.049  0.053  0.052  0.060  0.064  0.068  

JB 0.064  0.058  0.055  0.053  0.047  0.051  0.054  0.050  0.055  0.062  0.060  

H1 0.065  0.062  0.058  0.058  0.050  0.056  0.053  0.051  0.059  0.058  0.065  

CC 0.067  0.062  0.057  0.055  0.047  0.050  0.055  0.050  0.059  0.064  0.067  

CS 0.066  0.066  0.059  0.056  0.048  0.053  0.051  0.052  0.059  0.062  0.067  

AJB 0.060  0.059  0.053  0.054  0.045  0.051  0.054  0.050  0.054  0.061  0.058  

ZA 0.067  0.066  0.058  0.055  0.047  0.053  0.053  0.053  0.057  0.062  0.065  

ZC 0.067  0.063  0.060  0.055  0.048  0.053  0.051  0.053  0.058  0.063  0.064  

𝛽𝛽32 0.049  0.050  0.048  0.050  0.049  0.053  0.053  0.049  0.051  0.052  0.055  

𝐻𝐻𝑛𝑛 0.052  0.052  0.054  0.056  0.054  0.057  0.059  0.066  0.079  0.084  0.096  

𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴 0.064  0.060  0.057  0.056  0.047  0.054  0.050  0.051  0.056  0.061  0.063  

𝐵𝐵𝑣𝑣 0.059  0.063  0.059  0.053  0.050  0.056  0.050  0.053  0.055  0.061  0.068  

LFα�,β�  0.085  0.084  0.069  0.066  0.059  0.049  0.055  0.060  0.069  0.077  0.086  

𝛿𝛿 0.048  0.049  0.048  0.051  0.046  0.051  0.054  0.055  0.069  0.073  0.086  

Source: author’s work. 
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Table 10. LCN(𝑎𝑎,𝜔𝜔) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝑎𝑎,𝜔𝜔;𝜇𝜇,𝜎𝜎) for 𝑡𝑡 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2 0.110 0.110 0.065 0.020 –0.048 0 –0.138 –0.116 –0.029 0.121 0.124 

𝑎𝑎 1.630 1.492 1.316 1.108 0.977 0 1.240 1.307 1.340 1.501 1.633 

𝜔𝜔 0.845 0.866 0.855 0.823 0.660 1 0.413 0.337 0.237 0.127 0.147 

𝜇𝜇 0.884 0.888 0.902 0.902 0.754 0 0.572 0.562 0.544 0.729 0.760 

𝜎𝜎 0.990 0.976 0.915 0.915 1.155 1 1.218 1.320 1.393 1.332 1.516 

𝑀𝑀 0.786 0.821 0.868 0.917 0.961 1 0.971 0.930 0.880 0.800 0.791 

GoFT PoT 

AD 0.069  0.061  0.056  0.053  0.054  0.052  0.050  0.050  0.055  0.061  0.065  

SW 0.072  0.068  0.061  0.052  0.049  0.052  0.048  0.047  0.054  0.062  0.070  

KT 0.063  0.059  0.056  0.048  0.047  0.052  0.043  0.040  0.046  0.062  0.056  

AS 0.078  0.069  0.067  0.051  0.047  0.051  0.043  0.041  0.051  0.067  0.074  

SF 0.075  0.071  0.065  0.055  0.050  0.056  0.046  0.045  0.053  0.069  0.074  

AP 0.069  0.064  0.059  0.048  0.047  0.049  0.044  0.039  0.050  0.063  0.065  

RJ 0.071  0.066  0.060  0.051  0.047  0.051  0.043  0.041  0.050  0.064  0.070  

𝑇𝑇1 0.078  0.071  0.061  0.052  0.048  0.053  0.047  0.047  0.052  0.064  0.076  

JB 0.074  0.065  0.061  0.048  0.047  0.051  0.041  0.040  0.047  0.068  0.068  

H1 0.071  0.066  0.064  0.052  0.051  0.054  0.047  0.049  0.054  0.065  0.069  

CC 0.077  0.068  0.063  0.051  0.049  0.050  0.043  0.043  0.052  0.068  0.075  

CS 0.069  0.066  0.059  0.051  0.050  0.052  0.049  0.048  0.054  0.060  0.066  

AJB 0.071  0.063  0.060  0.049  0.047  0.050  0.041  0.040  0.047  0.068  0.066  

ZA 0.073  0.067  0.062  0.052  0.049  0.053  0.044  0.046  0.052  0.064  0.070  

ZC 0.069  0.065  0.060  0.050  0.049  0.051  0.047  0.044  0.052  0.063  0.068  

𝛽𝛽32 0.056  0.054  0.053  0.050  0.047  0.052  0.046  0.046  0.052  0.058  0.053  

𝐻𝐻𝑛𝑛 0.046  0.043  0.046  0.049  0.048  0.051  0.058  0.060  0.070  0.072  0.081  

𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴 0.068  0.062  0.057  0.050  0.049  0.054  0.046  0.045  0.052  0.062  0.064  

𝐵𝐵𝑣𝑣 0.065  0.060  0.059  0.049  0.055  0.052  0.054  0.054  0.052  0.056  0.061  

LFα�,β�  0.088  0.074  0.067  0.062  0.056  0.053  0.050  0.063  0.069  0.075  0.086  

𝛿𝛿 0.047  0.052  0.048  0.047  0.048  0.050  0.048  0.056  0.066  0.073  0.084  

Source: author’s work. 
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Table 11. LOG(0.103,𝑎𝑎) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(0.103,𝑎𝑎; 1.106,𝜎𝜎) for 𝑡𝑡 = 25 

𝛾𝛾1 0.290 0.350 0.400 0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 

�̅�𝛾2 0.149 0.219 0.286 0.362 0.448 0.543 0.647 0.761 0.884 1.017 1.159 

𝑎𝑎 0.096 0.116 0.132 0.148 0.164 0.180 0.196 0.211 0.226 0.242 0.256 

𝜎𝜎 0.106 0.117 0.119 0.133 0.148 0.163 0.178 0.169 0.155 0.140 0.126 

𝑀𝑀 0.974 0.950 0.900 0.900 0.900 0.900 0.900 0.844 0.772 0.699 0.628 

GoFT PoT 

AD 0.069  0.083  0.090  0.093  0.110  0.117  0.136  0.152  0.166  0.196  0.198  

SW 0.082  0.088  0.102  0.108  0.131  0.138  0.164  0.183  0.199  0.236  0.238  

KT 0.066  0.076  0.080  0.083  0.097  0.104  0.114  0.125  0.132  0.148  0.155  

AS 0.084  0.092  0.107  0.121  0.141  0.155  0.175  0.197  0.212  0.251  0.255  

SF 0.083  0.092  0.102  0.112  0.133  0.144  0.164  0.183  0.199  0.235  0.238  

AP 0.078  0.085  0.101  0.105  0.123  0.135  0.151  0.168  0.178  0.209  0.211  

RJ 0.080  0.088  0.099  0.107  0.128  0.138  0.158  0.176  0.192  0.229  0.231  

𝑇𝑇1 0.082  0.092  0.108  0.119  0.138  0.153  0.180  0.203  0.223  0.261  0.265  

JB 0.079  0.085  0.102  0.109  0.127  0.138  0.155  0.173  0.186  0.220  0.222  

H1 0.075  0.085  0.091  0.096  0.117  0.126  0.145  0.160  0.171  0.208  0.211  

CC 0.083  0.092  0.106  0.121  0.140  0.155  0.177  0.202  0.217  0.256  0.259  

CS 0.079  0.087  0.099  0.106  0.128  0.135  0.161  0.181  0.196  0.234  0.234  

AJB 0.078  0.082  0.100  0.103  0.120  0.131  0.147  0.163  0.174  0.203  0.206  

ZA 0.079  0.087  0.101  0.112  0.132  0.143  0.166  0.187  0.203  0.243  0.248  

ZC 0.080  0.087  0.102  0.109  0.130  0.141  0.162  0.183  0.200  0.235  0.239  

𝛽𝛽32 0.056  0.060  0.061  0.058  0.062  0.067  0.071  0.071  0.069  0.074  0.076  

𝐻𝐻𝑛𝑛 0.088  0.102  0.112  0.114  0.137  0.139  0.165  0.186  0.201  0.234  0.234  

𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴 0.076  0.081  0.092  0.095  0.115  0.126  0.142  0.157  0.171  0.206  0.207  

𝐵𝐵𝑣𝑣 0.066  0.076  0.081  0.084  0.098  0.108  0.122  0.136  0.151  0.175  0.179  

LFα�,β�  0.092  0.100  0.112  0.113  0.131  0.135  0.156  0.173  0.180  0.204  0.214  

𝛿𝛿 0.086  0.104  0.115  0.116  0.138  0.146  0.176  0.193  0.205  0.241  0.244  

Source: author’s work. 
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Table 12. NM1(𝑎𝑎, 𝑎𝑎,𝜔𝜔) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝑎𝑎, 𝑎𝑎,𝜔𝜔; 0,1) for 𝑡𝑡 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2 0.522 0.522 0.449 0.471 0.110 0 0.110 0.471 0.449 0.522 0.522 

𝑎𝑎 –0.739 –0.524 –0.371 –0.216 –0.194 0 0.194 0.216 0.371 0.524 0.739 

𝑎𝑎 2.033 1.827 1.620 1.516 1.211 1 1.211 1.516 1.620 1.827 2.033 

𝜔𝜔 0.317 0.352 0.395 0.516 0.551 1 0.551 0.516 0.395 0.352 0.317 

𝑀𝑀 0.750 0.800 0.850 0.900 0.950 1 0.950 0.900 0.850 0.800 0.750 

GoFT PoT 

AD 0.113 0.099 0.080 0.069 0.057 0.050 0.055 0.075 0.080 0.097 0.113 

SW 0.114 0.099 0.086 0.082 0.061 0.052 0.058 0.084 0.083 0.099 0.112 

KT 0.106 0.102 0.097 0.096 0.061 0.052 0.060 0.101 0.092 0.098 0.111 

AS 0.120 0.108 0.098 0.095 0.063 0.052 0.064 0.097 0.093 0.107 0.119 

SF 0.131 0.122 0.100 0.097 0.065 0.055 0.066 0.102 0.100 0.118 0.135 

AP 0.111 0.106 0.096 0.095 0.064 0.054 0.062 0.097 0.095 0.102 0.113 

RJ 0.124 0.116 0.096 0.091 0.061 0.051 0.062 0.098 0.095 0.112 0.127 

𝑇𝑇1 0.108 0.096 0.081 0.076 0.059 0.051 0.061 0.083 0.079 0.094 0.106 

JB 0.121 0.117 0.104 0.103 0.066 0.053 0.063 0.107 0.103 0.114 0.127 

H1 0.124 0.116 0.095 0.087 0.063 0.053 0.064 0.093 0.090 0.111 0.125 

CC 0.119 0.109 0.097 0.091 0.061 0.052 0.064 0.096 0.093 0.110 0.122 

CS 0.109 0.094 0.082 0.079 0.060 0.053 0.058 0.081 0.080 0.093 0.108 

AJB 0.121 0.118 0.107 0.103 0.067 0.054 0.062 0.110 0.103 0.111 0.129 

ZA 0.109 0.097 0.089 0.086 0.061 0.053 0.060 0.086 0.084 0.098 0.110 

ZC 0.106 0.096 0.084 0.084 0.061 0.053 0.058 0.085 0.084 0.095 0.108 

𝛽𝛽32 0.098 0.101 0.091 0.086 0.058 0.052 0.059 0.088 0.080 0.097 0.103 

𝐻𝐻𝑛𝑛 0.074 0.064 0.057 0.053 0.053 0.053 0.055 0.070 0.080 0.102 0.126 

𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴 0.119 0.108 0.093 0.087 0.062 0.053 0.059 0.095 0.089 0.101 0.119 

𝐵𝐵𝑣𝑣 0.078 0.074 0.065 0.058 0.054 0.049 0.054 0.060 0.065 0.076 0.081 

LFα�,β�  0.128 0.107 0.085 0.068 0.059 0.049 0.058 0.074 0.083 0.104 0.128 

𝛿𝛿 0.084 0.074 0.065 0.060 0.054 0.051 0.059 0.080 0.087 0.113 0.130 

Source: author’s work. 
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Table 13. NM2(𝑎𝑎, 𝑎𝑎,𝜔𝜔) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝑎𝑎, 𝑎𝑎,𝜔𝜔; 0,1) = 0.95 for 𝑡𝑡 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2 0.546 0.425 0.350 0.134 0.130 0 0.130 0.134 0.350 0.425 0.546 

𝑎𝑎 –0.621 –0.522 –0.396 –0.398 –0.180 0 0.180 0.398 0.396 0.522 0.621 

𝑎𝑎 1.474 1.418 1.384 1.219 1.230 1 1.230 1.219 1.384 1.418 1.474 

𝜔𝜔 0.805 0.779 0.743 0.693 0.564 1 0.564 0.693 0.743 0.779 0.805 

𝑀𝑀 0.950 0.950 0.950 0.950 0.950 1 0.950 0.950 0.950 0.950 0.950 

GoFT PoT 

AD 0.081 0.074 0.079 0.059 0.057 0.050 0.056 0.061 0.067 0.074 0.080 

SW 0.097 0.088 0.088 0.067 0.059 0.051 0.057 0.063 0.075 0.081 0.094 

KT 0.105 0.091 0.091 0.068 0.058 0.051 0.058 0.067 0.083 0.092 0.103 

AS 0.109 0.100 0.097 0.070 0.064 0.051 0.060 0.068 0.085 0.094 0.104 

SF 0.110 0.099 0.099 0.073 0.063 0.053 0.063 0.069 0.087 0.094 0.107 

AP 0.108 0.097 0.095 0.068 0.063 0.051 0.057 0.067 0.084 0.094 0.107 

RJ 0.106 0.094 0.095 0.070 0.060 0.049 0.060 0.065 0.082 0.089 0.102 

𝑇𝑇1 0.092 0.084 0.084 0.064 0.062 0.047 0.057 0.063 0.073 0.079 0.090 

JB 0.115 0.102 0.100 0.071 0.064 0.052 0.061 0.069 0.089 0.101 0.112 

H1 0.095 0.084 0.088 0.066 0.062 0.053 0.061 0.064 0.074 0.086 0.094 

CC 0.108 0.099 0.097 0.070 0.062 0.049 0.060 0.067 0.082 0.092 0.103 

CS 0.093 0.085 0.084 0.064 0.058 0.051 0.055 0.062 0.074 0.078 0.092 

AJB 0.115 0.101 0.100 0.072 0.063 0.052 0.061 0.070 0.090 0.101 0.112 

ZA 0.100 0.090 0.086 0.068 0.059 0.051 0.059 0.067 0.079 0.084 0.100 

ZC 0.100 0.093 0.089 0.068 0.060 0.051 0.057 0.064 0.079 0.083 0.098 

𝛽𝛽32 0.084 0.078 0.078 0.062 0.057 0.054 0.057 0.061 0.072 0.080 0.084 

𝐻𝐻𝑛𝑛 0.082 0.079 0.085 0.066 0.064 0.052 0.058 0.066 0.069 0.078 0.083 

𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴 0.099 0.088 0.091 0.067 0.059 0.048 0.058 0.063 0.074 0.089 0.097 

𝐵𝐵𝑣𝑣 0.068 0.067 0.066 0.058 0.056 0.051 0.052 0.056 0.060 0.064 0.069 

LFα�,β�  0.044 0.041 0.041 0.032 0.029 0.050 0.056 0.066 0.070 0.079 0.085 

𝛿𝛿 0.091 0.085 0.092 0.069 0.068 0.050 0.060 0.066 0.072 0.087 0.089 

Source: author’s work. 
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Table 14. 𝑆𝑆𝑆𝑆(𝑎𝑎, 𝑏𝑏) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝑎𝑎, 𝑏𝑏; 0,0.093) for 𝑛𝑛 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2 –0.038 

𝑎𝑎 –0.810 –0.724 –0.599 –0.463 –0.262 0 0.262 0.463 0.599 0.724 0.810 

𝑏𝑏 1.913 2.055 2.187 2.396 2.576 2.669 2.576 2.396 2.187 2.055 1.913 

𝑀𝑀 0.543 0.540 0.534 0.526 0.514 0.500 0.486 0.474 0.466 0.460 0.457 

GoFT PoT 

AD 0.061 0.051 0.049 0.047 0.045 0.043 0.044 0.044 0.047 0.055 0.061 

SW 0.060 0.048 0.047 0.043 0.039 0.038 0.041 0.043 0.046 0.053 0.058 

KT 0.038 0.036 0.035 0.033 0.034 0.032 0.033 0.032 0.037 0.037 0.036 

AS 0.045 0.038 0.037 0.035 0.030 0.030 0.030 0.034 0.034 0.041 0.045 

SF 0.048 0.041 0.038 0.037 0.034 0.035 0.035 0.036 0.038 0.045 0.047 

AP 0.041 0.039 0.036 0.034 0.030 0.031 0.032 0.034 0.036 0.041 0.041 

RJ 0.044 0.038 0.035 0.034 0.031 0.032 0.031 0.033 0.035 0.041 0.043 

𝑇𝑇1 0.059 0.047 0.044 0.042 0.037 0.036 0.039 0.043 0.044 0.052 0.058 

JB 0.035 0.032 0.031 0.029 0.026 0.029 0.027 0.028 0.030 0.033 0.035 

H1 0.053 0.047 0.045 0.042 0.039 0.039 0.040 0.040 0.045 0.050 0.051 

CC 0.044 0.038 0.036 0.035 0.031 0.031 0.031 0.034 0.036 0.043 0.047 

CS 0.061 0.050 0.048 0.045 0.039 0.039 0.041 0.044 0.049 0.055 0.061 

AJB 0.033 0.030 0.028 0.029 0.025 0.026 0.027 0.027 0.028 0.031 0.032 

ZA 0.054 0.044 0.044 0.041 0.036 0.035 0.038 0.041 0.044 0.051 0.054 

ZC 0.057 0.047 0.043 0.041 0.035 0.035 0.038 0.042 0.044 0.052 0.056 

𝛽𝛽32 0.038 0.040 0.042 0.042 0.041 0.041 0.038 0.039 0.044 0.045 0.038 

𝐻𝐻𝑛𝑛 0.045 0.038 0.042 0.043 0.047 0.048 0.053 0.056 0.065 0.079 0.086 

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 0.052 0.045 0.041 0.039 0.037 0.034 0.039 0.040 0.042 0.049 0.050 

𝑆𝑆𝑣𝑣 0.070 0.061 0.060 0.056 0.051 0.052 0.053 0.054 0.060 0.066 0.070 

LFα�,β�  0.081 0.072 0.065 0.058 0.052 0.045 0.053 0.056 0.064 0.078 0.085 

𝛿𝛿 0.044 0.039 0.040 0.040 0.043 0.044 0.048 0.050 0.059 0.069 0.073 

Source: author’s work. 
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Table 15. 𝑆𝑆𝑆𝑆(𝑎𝑎) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝑎𝑎;𝜇𝜇,𝜎𝜎) for 𝑛𝑛 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2 0.138 0.102 0.070 0.041 0.016 0 0.016 0.041 0.070 0.102 0.138 

𝑎𝑎 –1.349 –1.199 –1.043 –0.871 –0.659 0 0.659 0.871 1.043 1.199 1.349 

𝜇𝜇 –0.252 –0.231 –0.262 –0.299 –0.339 0 0.476 0.677 0.825 0.879 1 

𝜎𝜎 1.012 1.018 0.968 0.905 0.967 1 0.954 0.955 0.771 0.720 0.500 

𝑀𝑀 0.800 0.810 0.850 0.900 0.950 1 0.965 0.910 0.863 0.840 0.692 

GoFT PoT 

AD 0.065 0.063 0.052 0.052 0.050 0.053 0.053 0.059 0.059 0.062 0.066 

SW 0.071 0.066 0.058 0.054 0.049 0.053 0.054 0.058 0.060 0.067 0.073 

KT 0.062 0.061 0.055 0.054 0.048 0.049 0.053 0.054 0.056 0.060 0.065 

AS 0.075 0.069 0.061 0.055 0.048 0.049 0.054 0.058 0.060 0.070 0.077 

SF 0.075 0.069 0.062 0.056 0.051 0.052 0.058 0.061 0.063 0.071 0.076 

AP 0.070 0.065 0.057 0.053 0.048 0.049 0.052 0.053 0.057 0.065 0.071 

RJ 0.071 0.065 0.057 0.051 0.048 0.049 0.054 0.056 0.060 0.066 0.072 

𝑇𝑇1 0.074 0.068 0.058 0.055 0.048 0.049 0.056 0.057 0.059 0.067 0.075 

JB 0.072 0.065 0.059 0.053 0.048 0.049 0.052 0.054 0.059 0.066 0.074 

H1 0.069 0.067 0.054 0.055 0.049 0.052 0.057 0.059 0.061 0.067 0.070 

CC 0.074 0.067 0.060 0.054 0.048 0.048 0.055 0.057 0.060 0.070 0.077 

CS 0.071 0.065 0.057 0.052 0.048 0.051 0.052 0.058 0.060 0.065 0.071 

AJB 0.069 0.065 0.059 0.053 0.050 0.047 0.054 0.054 0.059 0.066 0.073 

ZA 0.071 0.068 0.058 0.054 0.049 0.050 0.052 0.056 0.058 0.067 0.075 

ZC 0.071 0.065 0.057 0.054 0.049 0.050 0.053 0.055 0.058 0.066 0.075 

𝛽𝛽32 0.053 0.058 0.049 0.055 0.052 0.052 0.053 0.053 0.055 0.053 0.053 

𝐻𝐻𝑛𝑛 0.047 0.049 0.045 0.048 0.048 0.053 0.058 0.065 0.068 0.074 0.079 

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 0.069 0.065 0.054 0.053 0.048 0.051 0.056 0.057 0.058 0.065 0.067 

𝑆𝑆𝑣𝑣 0.063 0.062 0.053 0.054 0.050 0.054 0.055 0.054 0.055 0.060 0.060 

LFα�,β�  0.086 0.072 0.066 0.062 0.055 0.051 0.054 0.067 0.069 0.072 0.083 

𝛿𝛿 0.050 0.051 0.045 0.046 0.048 0.051 0.055 0.063 0.065 0.074 0.081 

Source: author’s work. 
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Table 16. 𝑆𝑆𝑆𝑆(𝑏𝑏, 𝑐𝑐,𝑑𝑑) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝑏𝑏, 𝑐𝑐,𝑑𝑑;𝜇𝜇,𝜎𝜎) for 𝑛𝑛 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2 –2.470 –2.010 –1.340 –0.646 –0.119 0.085 –0.119 –0.646 –1.340 –2.010 –2.470 

𝑏𝑏 0.529 0.619 0.738 0.906 1.192 1.375 1.192 0.906 0.738 0.619 0.529 

𝑐𝑐 9.322 7.823 5.909 3.972 2.038 0 –2.038 –3.972 –5.909 –7.820 –9.320 

𝑑𝑑 9.256 9.936 10.381 10.721 11.041 11.129 11.041 10.721 10.381 9.936 9.256 

𝜇𝜇 –0.570 –0.500 –0.412 –0.321 –0.207 0 0.207 0.321 0.412 0.497 0.569 

𝜎𝜎 0.104 0.092 0.087 0.097 0.111 0.124 0.111 0.097 0.087 0.092 0.104 

𝑀𝑀 0.750 0.800 0.851 0.900 0.950 0.998 0.950 0.900 0.851 0.800 0.750 

GoFT PoT 

AD 0.066 0.066 0.050 0.054 0.051 0.051 0.052 0.056 0.055 0.063 0.064 

SW 0.076 0.068 0.055 0.055 0.048 0.052 0.051 0.058 0.057 0.064 0.069 

KT 0.069 0.061 0.058 0.056 0.052 0.053 0.052 0.057 0.055 0.061 0.059 

AS 0.077 0.067 0.059 0.059 0.054 0.055 0.052 0.059 0.056 0.067 0.075 

SF 0.079 0.067 0.061 0.059 0.051 0.057 0.052 0.063 0.059 0.067 0.071 

AP 0.074 0.067 0.059 0.058 0.055 0.055 0.052 0.060 0.055 0.063 0.070 

RJ 0.075 0.063 0.056 0.055 0.046 0.054 0.049 0.059 0.056 0.063 0.068 

𝑇𝑇1 0.076 0.065 0.055 0.058 0.052 0.054 0.047 0.057 0.055 0.065 0.075 

JB 0.076 0.067 0.059 0.060 0.054 0.057 0.053 0.060 0.056 0.065 0.070 

H1 0.069 0.066 0.058 0.055 0.050 0.056 0.052 0.058 0.056 0.064 0.069 

CC 0.078 0.066 0.058 0.057 0.052 0.055 0.051 0.060 0.055 0.068 0.073 

CS 0.076 0.068 0.054 0.054 0.048 0.052 0.051 0.057 0.056 0.063 0.069 

AJB 0.074 0.066 0.058 0.060 0.055 0.057 0.053 0.060 0.055 0.064 0.069 

ZA 0.078 0.069 0.056 0.054 0.049 0.053 0.049 0.057 0.057 0.063 0.071 

ZC 0.076 0.068 0.057 0.056 0.050 0.051 0.049 0.059 0.056 0.063 0.070 

𝛽𝛽32 0.054 0.058 0.054 0.055 0.050 0.055 0.054 0.056 0.055 0.055 0.055 

𝐻𝐻𝑛𝑛 0.046 0.047 0.042 0.045 0.047 0.051 0.057 0.061 0.063 0.073 0.078 

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 0.070 0.062 0.055 0.055 0.048 0.053 0.051 0.060 0.054 0.064 0.066 

𝑆𝑆𝑣𝑣 0.065 0.060 0.054 0.053 0.049 0.052 0.050 0.055 0.055 0.059 0.063 

LFα�,β�  0.086 0.076 0.066 0.061 0.057 0.052 0.057 0.062 0.065 0.073 0.080 

𝛿𝛿 0.051 0.045 0.045 0.049 0.049 0.052 0.058 0.061 0.068 0.072 0.082 

Source: author’s work. 
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Table 17. 𝑊𝑊(1.851,𝑏𝑏) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(1.851,𝑏𝑏; 1.673,0.532) for 𝑛𝑛 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2 –0.124 –0.173 –0.214 –0.245 –0.269 –0.283 –0.289 –0.287 –0.276 –0.258 –0.230 

𝑏𝑏 4.971 4.634 4.334 4.064 3.822 3.602 3.403 3.222 3.056 2.905 2.766 

𝑀𝑀 0.849 0.880 0.911 0.940 0.968 0.985 0.974 0.951 0.927 0.904 0.882 

GoFT PoT 

AD 0.065 0.058 0.053 0.049 0.044 0.041 0.044 0.043 0.047 0.052 0.058 

SW 0.064 0.055 0.052 0.047 0.041 0.038 0.038 0.039 0.043 0.053 0.060 

KT 0.044 0.040 0.038 0.031 0.033 0.029 0.034 0.034 0.032 0.039 0.043 

AS 0.059 0.051 0.041 0.033 0.029 0.029 0.028 0.029 0.034 0.042 0.053 

SF 0.061 0.051 0.045 0.038 0.034 0.032 0.032 0.034 0.036 0.044 0.051 

AP 0.048 0.045 0.040 0.031 0.031 0.029 0.030 0.032 0.034 0.041 0.049 

RJ 0.056 0.048 0.042 0.034 0.033 0.029 0.030 0.030 0.033 0.041 0.048 

𝑇𝑇1 0.067 0.060 0.051 0.046 0.040 0.035 0.036 0.037 0.042 0.050 0.060 

JB 0.049 0.044 0.035 0.027 0.027 0.025 0.023 0.026 0.028 0.035 0.046 

H1 0.058 0.052 0.049 0.044 0.039 0.038 0.039 0.041 0.040 0.047 0.056 

CC 0.057 0.050 0.041 0.034 0.029 0.029 0.027 0.030 0.035 0.043 0.054 

CS 0.065 0.055 0.054 0.049 0.042 0.040 0.041 0.042 0.045 0.055 0.060 

AJB 0.046 0.042 0.033 0.025 0.026 0.023 0.023 0.026 0.027 0.034 0.042 

ZA 0.063 0.054 0.049 0.043 0.038 0.035 0.036 0.037 0.037 0.047 0.055 

ZC 0.060 0.052 0.048 0.043 0.039 0.035 0.037 0.039 0.041 0.049 0.058 

𝛽𝛽32 0.042 0.043 0.043 0.042 0.041 0.038 0.041 0.041 0.038 0.041 0.041 

𝐻𝐻𝑛𝑛 0.048 0.043 0.043 0.043 0.043 0.045 0.053 0.055 0.058 0.073 0.078 

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 0.056 0.050 0.046 0.042 0.038 0.036 0.039 0.039 0.040 0.047 0.053 

𝑆𝑆𝑣𝑣 0.064 0.059 0.058 0.065 0.054 0.050 0.053 0.053 0.054 0.062 0.067 

LFα�,β�  0.090 0.078 0.065 0.063 0.052 0.039 0.049 0.052 0.058 0.069 0.077 

𝛿𝛿 0.047 0.041 0.044 0.041 0.041 0.041 0.048 0.049 0.054 0.063 0.072 

Source: author’s work. 
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Table 18. 𝐸𝐸𝑆𝑆1(𝛾𝛾1,, �̅�𝛾2) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝛾𝛾1,, �̅�𝛾2; 0,1) for 𝑛𝑛 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2 0.250 0.200 0.150 0.100 0.050 0 0.050 0.100 0.150 0.200 0.250 

𝑀𝑀 0.966 0.973 0.979 0.986 0.993 1 0.993 0.986 0.979 0.973 0.966 

GoFT PoT 

AD 0.073 0.068 0.060 0.056 0.050 0.052 0.052 0.057 0.060 0.064 0.071 

SW 0.081 0.072 0.062 0.058 0.053 0.051 0.057 0.056 0.063 0.070 0.082 

KT 0.075 0.071 0.063 0.057 0.057 0.049 0.051 0.060 0.064 0.064 0.080 

AS 0.087 0.080 0.064 0.057 0.055 0.053 0.057 0.062 0.066 0.079 0.085 

SF 0.089 0.077 0.067 0.063 0.058 0.053 0.060 0.061 0.068 0.077 0.088 

AP 0.083 0.076 0.065 0.060 0.054 0.054 0.053 0.061 0.065 0.073 0.083 

RJ 0.083 0.072 0.063 0.059 0.054 0.049 0.056 0.057 0.064 0.073 0.082 

𝑇𝑇1 0.080 0.074 0.060 0.054 0.050 0.051 0.058 0.059 0.062 0.073 0.076 

JB 0.086 0.079 0.068 0.059 0.056 0.054 0.055 0.062 0.068 0.077 0.087 

H1 0.080 0.074 0.062 0.058 0.052 0.055 0.057 0.059 0.065 0.071 0.081 

CC 0.088 0.081 0.063 0.057 0.054 0.053 0.058 0.061 0.065 0.076 0.085 

CS 0.078 0.071 0.061 0.058 0.051 0.050 0.055 0.055 0.060 0.067 0.079 

AJB 0.085 0.080 0.067 0.060 0.056 0.053 0.055 0.063 0.067 0.075 0.089 

ZA 0.080 0.073 0.061 0.056 0.054 0.048 0.059 0.056 0.063 0.072 0.082 

ZC 0.078 0.073 0.060 0.057 0.051 0.049 0.055 0.055 0.065 0.072 0.081 

𝛽𝛽32 0.063 0.062 0.058 0.055 0.054 0.050 0.049 0.059 0.057 0.058 0.069 

𝐻𝐻𝑛𝑛 0.050 0.050 0.047 0.047 0.046 0.053 0.057 0.060 0.065 0.073 0.083 

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 0.078 0.070 0.062 0.059 0.051 0.050 0.054 0.055 0.063 0.067 0.077 

𝑆𝑆𝑣𝑣 0.063 0.065 0.057 0.054 0.051 0.055 0.051 0.053 0.055 0.060 0.065 

LFα�,β�  0.085 0.079 0.069 0.058 0.055 0.051 0.058 0.066 0.066 0.079 0.085 

𝛿𝛿 0.052 0.050 0.050 0.049 0.048 0.050 0.056 0.061 0.067 0.078 0.088 

Source: author’s work. 
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Table 19. 𝐸𝐸𝑆𝑆1(𝛾𝛾1,, �̅�𝛾2) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝛾𝛾1,, �̅�𝛾2 = 0; 0,1) for 𝑛𝑛 = 25 

𝛾𝛾1 –0.205 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2      0      

𝑀𝑀 0.969 0.975 0.981 0.987 0.994 1 0.994 0.987 0.981 0.975 0.969 

GoFT PoT 

AD 0.063 0.051 0.054 0.050 0.047 0.050 0.049 0.052 0.052 0.058 0.061 

SW 0.065 0.056 0.054 0.053 0.048 0.051 0.049 0.052 0.053 0.060 0.064 

KT 0.051 0.049 0.048 0.051 0.046 0.051 0.048 0.047 0.050 0.051 0.053 

AS 0.063 0.058 0.056 0.055 0.049 0.051 0.050 0.051 0.053 0.062 0.065 

SF 0.065 0.055 0.057 0.056 0.049 0.053 0.051 0.052 0.055 0.060 0.066 

AP 0.056 0.053 0.053 0.054 0.045 0.051 0.049 0.048 0.050 0.056 0.060 

RJ 0.059 0.053 0.053 0.053 0.045 0.049 0.048 0.048 0.051 0.056 0.061 

𝑇𝑇1 0.067 0.058 0.056 0.054 0.049 0.047 0.048 0.052 0.054 0.062 0.069 

JB 0.057 0.053 0.054 0.053 0.046 0.052 0.049 0.049 0.050 0.057 0.059 

H1 0.065 0.053 0.056 0.053 0.050 0.053 0.052 0.052 0.055 0.058 0.064 

CC 0.062 0.057 0.055 0.054 0.047 0.049 0.050 0.052 0.053 0.062 0.066 

CS 0.064 0.055 0.054 0.052 0.048 0.051 0.048 0.051 0.052 0.058 0.062 

AJB 0.056 0.052 0.053 0.053 0.047 0.052 0.048 0.047 0.051 0.055 0.059 

ZA 0.065 0.055 0.053 0.052 0.047 0.051 0.047 0.048 0.052 0.057 0.061 

ZC 0.064 0.056 0.053 0.053 0.047 0.051 0.047 0.049 0.053 0.056 0.059 

𝛽𝛽32 0.047 0.044 0.048 0.050 0.048 0.054 0.052 0.048 0.048 0.047 0.047 

𝐻𝐻𝑛𝑛 0.043 0.041 0.046 0.044 0.047 0.052 0.054 0.057 0.061 0.070 0.076 

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 0.060 0.052 0.054 0.052 0.045 0.048 0.048 0.047 0.051 0.054 0.059 

𝑆𝑆𝑣𝑣 0.060 0.052 0.053 0.051 0.050 0.051 0.049 0.051 0.056 0.056 0.059 

LFα�,β�  0.033 0.036 0.041 0.040 0.046 0.050 0.055 0.055 0.061 0.075 0.075 

𝛿𝛿 0.046 0.039 0.045 0.044 0.046 0.050 0.055 0.056 0.062 0.068 0.077 

Source: author’s work. 
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Table 20. 𝑃𝑃1(𝛾𝛾1,, �̅�𝛾2) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝛾𝛾1,, �̅�𝛾2 > 0; 0,1) for 𝑛𝑛 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2 0.250 0.200 0.150 0.100 0.050 0 0.050 0.100 0.150 0.200 0.250 

𝑀𝑀 0.969 0.975 0.981 0.987 0.993 1 0.993 0.987 0.981 0.975 0.969 

GoFT PoT 

AD 0.070 0.065 0.061 0.056 0.054 0.052 0.052 0.056 0.061 0.068 0.071 

SW 0.078 0.070 0.065 0.056 0.054 0.051 0.057 0.058 0.064 0.074 0.078 

KT 0.073 0.067 0.063 0.055 0.055 0.049 0.055 0.062 0.065 0.069 0.079 

AS 0.082 0.073 0.068 0.058 0.055 0.053 0.055 0.062 0.069 0.078 0.086 

SF 0.086 0.076 0.069 0.057 0.057 0.053 0.058 0.063 0.068 0.077 0.087 

AP 0.079 0.072 0.067 0.056 0.055 0.054 0.056 0.062 0.070 0.075 0.084 

RJ 0.081 0.071 0.065 0.055 0.053 0.049 0.054 0.059 0.064 0.073 0.081 

𝑇𝑇1 0.081 0.071 0.061 0.059 0.055 0.051 0.055 0.058 0.064 0.077 0.077 

JB 0.080 0.074 0.067 0.057 0.056 0.054 0.055 0.064 0.071 0.076 0.088 

H1 0.076 0.069 0.064 0.057 0.054 0.055 0.057 0.056 0.063 0.071 0.078 

CC 0.081 0.073 0.067 0.058 0.054 0.053 0.055 0.062 0.067 0.078 0.083 

CS 0.077 0.069 0.063 0.055 0.053 0.050 0.057 0.057 0.063 0.071 0.076 

AJB 0.077 0.075 0.066 0.058 0.055 0.053 0.055 0.065 0.071 0.075 0.089 

ZA 0.081 0.070 0.066 0.056 0.054 0.048 0.057 0.058 0.065 0.077 0.080 

ZC 0.079 0.070 0.064 0.055 0.053 0.049 0.059 0.061 0.065 0.075 0.081 

𝛽𝛽32 0.060 0.060 0.058 0.054 0.053 0.050 0.054 0.056 0.055 0.061 0.065 

𝐻𝐻𝑛𝑛 0.049 0.050 0.049 0.047 0.052 0.053 0.055 0.064 0.065 0.076 0.081 

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 0.074 0.069 0.062 0.056 0.054 0.050 0.056 0.058 0.063 0.072 0.077 

𝑆𝑆𝑣𝑣 0.067 0.063 0.057 0.053 0.054 0.055 0.054 0.053 0.056 0.066 0.064 

LFα�,β�  0.081 0.076 0.071 0.065 0.057 0.051 0.055 0.060 0.070 0.077 0.084 

𝛿𝛿 0.053 0.050 0.051 0.049 0.051 0.050 0.054 0.063 0.068 0.079 0.085 

Source: author’s work. 
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Table 21. 𝑃𝑃2(𝛾𝛾1,, �̅�𝛾2) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝛾𝛾1,, �̅�𝛾2 = 0; 0,1) for 𝑛𝑛 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2      0      

𝑀𝑀 0.967 0.974 0.981 0.987 0.994 1 0.994 0.987 0.981 0.974 0.967 

GoFT PoT 

AD 0.058 0.060 0.054 0.049 0.050 0.052 0.049 0.051 0.052 0.056 0.065 

SW 0.062 0.060 0.057 0.050 0.051 0.051 0.051 0.051 0.052 0.058 0.068 

KT 0.051 0.051 0.053 0.048 0.053 0.049 0.048 0.050 0.046 0.053 0.055 

AS 0.062 0.059 0.056 0.050 0.052 0.053 0.046 0.051 0.050 0.059 0.067 

SF 0.060 0.065 0.058 0.052 0.055 0.053 0.052 0.052 0.053 0.057 0.067 

AP 0.058 0.055 0.055 0.049 0.051 0.054 0.049 0.049 0.049 0.056 0.063 

RJ 0.057 0.059 0.054 0.048 0.051 0.049 0.049 0.048 0.050 0.054 0.063 

𝑇𝑇1 0.064 0.062 0.057 0.051 0.050 0.051 0.046 0.050 0.051 0.061 0.069 

JB 0.057 0.055 0.054 0.048 0.051 0.054 0.047 0.052 0.048 0.056 0.062 

H1 0.058 0.060 0.058 0.050 0.055 0.055 0.048 0.054 0.051 0.056 0.065 

CC 0.061 0.060 0.054 0.049 0.052 0.053 0.046 0.052 0.050 0.060 0.068 

CS 0.064 0.061 0.056 0.049 0.051 0.050 0.050 0.050 0.052 0.058 0.068 

AJB 0.053 0.054 0.053 0.046 0.052 0.053 0.049 0.051 0.046 0.055 0.059 

ZA 0.061 0.058 0.054 0.050 0.049 0.048 0.049 0.049 0.048 0.059 0.067 

ZC 0.059 0.060 0.057 0.050 0.051 0.049 0.050 0.049 0.050 0.060 0.066 

𝛽𝛽32 0.046 0.048 0.051 0.048 0.052 0.050 0.051 0.052 0.048 0.047 0.048 

𝐻𝐻𝑛𝑛 0.042 0.048 0.044 0.047 0.047 0.053 0.051 0.058 0.061 0.072 0.080 

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 0.057 0.057 0.056 0.048 0.052 0.050 0.051 0.051 0.050 0.056 0.062 

𝑆𝑆𝑣𝑣 0.058 0.057 0.055 0.051 0.051 0.055 0.051 0.053 0.051 0.060 0.064 

LFα�,β�  0.079 0.077 0.068 0.059 0.053 0.051 0.049 0.058 0.062 0.074 0.082 

𝛿𝛿 0.041 0.048 0.044 0.044 0.047 0.050 0.049 0.056 0.060 0.070 0.081 

Source: author’s work. 
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Table 22. 𝑃𝑃3(𝛾𝛾1,, �̅�𝛾2) distribution. PoT versus 𝛾𝛾1 and 𝑀𝑀(𝛾𝛾1,, �̅�𝛾2 < 0; 0,1) for 𝑛𝑛 = 25 

𝛾𝛾1 –0.250 –0.200 –0.150 –0.100 –0.050 0 0.050 0.100 0.150 0.200 0.250 

�̅�𝛾2 –0.250 –0.200 –0.150 –0.100 –0.050 0 –0.050 –0.100 –0.150 –0.200 –0.250 

𝑀𝑀 0.957 0.967 0.977 0.985 0.993 1 0.993 0.985 0.977 0.967 0.957 

GoFT PoT 

AD 0.057 0.050 0.051 0.051 0.049 0.052 0.047 0.052 0.050 0.051 0.059 

SW 0.056 0.049 0.052 0.050 0.048 0.051 0.048 0.051 0.048 0.050 0.061 

KT 0.036 0.039 0.042 0.046 0.041 0.049 0.045 0.043 0.041 0.038 0.044 

AS 0.044 0.043 0.048 0.046 0.046 0.053 0.045 0.043 0.041 0.042 0.053 

SF 0.048 0.044 0.047 0.049 0.049 0.053 0.048 0.047 0.044 0.045 0.053 

AP 0.040 0.042 0.044 0.042 0.045 0.054 0.045 0.043 0.040 0.041 0.050 

RJ 0.045 0.040 0.044 0.045 0.045 0.049 0.044 0.044 0.040 0.042 0.050 

𝑇𝑇1 0.058 0.049 0.051 0.050 0.050 0.051 0.048 0.048 0.046 0.049 0.059 

JB 0.035 0.036 0.043 0.042 0.045 0.054 0.045 0.041 0.038 0.036 0.045 

H1 0.051 0.047 0.049 0.050 0.049 0.055 0.047 0.052 0.045 0.048 0.057 

CC 0.044 0.040 0.048 0.045 0.046 0.053 0.045 0.044 0.042 0.045 0.054 

CS 0.057 0.051 0.053 0.051 0.048 0.050 0.048 0.052 0.048 0.052 0.061 

AJB 0.032 0.036 0.041 0.042 0.044 0.053 0.043 0.041 0.037 0.035 0.041 

ZA 0.056 0.047 0.049 0.047 0.048 0.048 0.047 0.050 0.047 0.047 0.058 

ZC 0.052 0.049 0.050 0.048 0.047 0.049 0.045 0.048 0.046 0.049 0.060 

𝛽𝛽32 0.042 0.042 0.042 0.048 0.047 0.050 0.047 0.048 0.043 0.041 0.046 

𝐻𝐻𝑛𝑛 0.043 0.041 0.042 0.048 0.044 0.053 0.055 0.059 0.063 0.070 0.079 

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 0.050 0.044 0.046 0.047 0.046 0.050 0.044 0.046 0.043 0.047 0.053 

𝑆𝑆𝑣𝑣 0.068 0.059 0.052 0.054 0.053 0.055 0.052 0.055 0.053 0.059 0.069 

LFα�,β�  0.033 0.033 0.036 0.041 0.042 0.051 0.053 0.061 0.063 0.068 0.081 

𝛿𝛿 0.044 0.037 0.044 0.043 0.044 0.050 0.052 0.058 0.060 0.062 0.075 

Source: author’s work. 

 
 Tables 6–22 show that when alternatives are asymmetric with non-constant 
𝛾𝛾1, the GoFT for normality detects positive or negative 𝛾𝛾1 differently, depending on 
the alternative. For distribution 𝑆𝑆, three and six analysed GoFTs detect 𝛾𝛾1 ≤ −0.25 
and 𝛾𝛾1 ≥ 0.25, respectively. For 𝜒𝜒2, all the analysed GoFTs, except 𝛽𝛽32, detect 𝛾𝛾1 ≥
0.294. For G, all the analysed GoFTs, except 𝛽𝛽32, detect 𝛾𝛾1 ≥ 0.223. For 𝐿𝐿𝐿𝐿𝐿𝐿, all 
analysed GoFTs, except 𝛽𝛽32, detect 𝛾𝛾1 ≥ 0.29. For 𝐿𝐿𝑃𝑃, the LFα�,β� and Hn tests detect 
𝛾𝛾1 ≤ −0.1 and 𝛾𝛾1 ≥ 0, respectively. For 𝐿𝐿𝐿𝐿𝑆𝑆, the LFα�,β� test detects 𝛾𝛾1 ≤ −0.1 or 
𝛾𝛾1 ≥ 0.1. For 𝑆𝑆𝑀𝑀 (see Table 12), thirteen and nine GoFTs detect 𝛾𝛾1 ≤ −0.1 and 
𝛾𝛾1 ≥ 0.1, respectively. For 𝑆𝑆𝑀𝑀 with 𝑀𝑀 = 0.95 (see Table 13), eleven and three 
GoFTs detect 𝛾𝛾1 ≤ −0.1 and 𝛾𝛾1 ≥ 0.1, respectively. For 𝑆𝑆𝑆𝑆, LFα�,β� and LFα�,β�,𝐻𝐻𝑛𝑛, the 
GoFTs detect 𝛾𝛾1 ≤ −0.15 and 𝛾𝛾1 ≥ 0.15, respectively. For 𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆, the LFα�,β�  
GoFT detects |𝛾𝛾1| ≥ 0.1. For 𝑊𝑊, the LFα�,β� ,𝑆𝑆𝑉𝑉 tests detect 𝛾𝛾1 ≤ −0.1 and LFα�,β� ,𝑆𝑆𝑉𝑉 
detects 𝛾𝛾1 ≥ 0.2. For 𝐸𝐸𝑆𝑆 (see Table 18), only the 𝑆𝑆𝐹𝐹 tests detect 𝛾𝛾1 ≤ −0.1 and most 
tests detect 𝛾𝛾1 ≥ 0.15. For 𝐸𝐸𝑆𝑆 with �̅�𝛾2 = 0 (see Table 19), only 10 tests detect 𝛾𝛾1 ≤
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−0.25 and the 𝐻𝐻𝑛𝑛, LFα�,β�,𝛿𝛿 tests detect 𝛾𝛾1 ≥ 0.15. For 𝑃𝑃 (see Table 20), the LFα�,β� 
GoFT detects |𝛾𝛾1| ≥ 0.1. For 𝑃𝑃 (see Table 21), the LFα�,β� GoFT detects |𝛾𝛾1| ≥ 0.15. 
For 𝑃𝑃 (see Table 22), only the 𝑆𝑆𝑣𝑣 test detects 𝛾𝛾1 ≤ −0.25 and the LFα�,β� test detects 
𝛾𝛾1 ≥ 0.1. As shown in Table 23, the 𝐻𝐻𝑛𝑛 test best detects 𝛾𝛾1 > 0 for seven 
alternatives; the LFα�,β� test best detects 𝛾𝛾1 < 0 and 𝛾𝛾1 > 0 for nine and eight 
alternatives, respectively. The 𝐽𝐽𝑆𝑆,𝐴𝐴𝐽𝐽𝑆𝑆 tests best detect 𝛾𝛾1 ≠ 0 for two alternatives. 
The LFα�,β� and 𝐻𝐻𝑛𝑛 tests best detect 𝛾𝛾1 > 0 for 13 alternative cases out of 17 (except 
𝐿𝐿𝐿𝐿𝐿𝐿, 𝑆𝑆𝑀𝑀1, 𝑆𝑆𝑀𝑀2 and 𝑃𝑃1). The LFα�,β� test best detects 𝛾𝛾1 > 0 for 𝑆𝑆, 𝐿𝐿𝑃𝑃, 𝐿𝐿𝐿𝐿𝑆𝑆, 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆, 
𝑆𝑆𝑆𝑆, 𝑊𝑊, 𝑃𝑃1, 𝑃𝑃2. The 𝐽𝐽𝑆𝑆,𝐴𝐴𝐽𝐽𝑆𝑆 tests best detect 𝛾𝛾1 ≠ 0 for 𝑆𝑆𝑀𝑀1,𝑆𝑆𝑀𝑀2 and 𝛾𝛾1 > 0 for the 
𝑃𝑃1 alternative. See Table 23 for more details. 
 
Table 23. Summary of the results from Tables 6–22 for the analysed alternatives (A).  

The symbol in bold denotes �̅�𝛾2 > 0. 

A 𝛾𝛾1 < 0 𝛾𝛾1 > 0 A 𝛾𝛾1 < 0 𝛾𝛾1 > 0 

𝑆𝑆 LFα�,β�  𝐻𝐻𝑛𝑛 𝑆𝑆𝑆𝑆 LFα�,β�  LFα�,β�  

𝜒𝜒2 n/a 𝐻𝐻𝑛𝑛 𝑆𝑆𝑆𝑆 LFα�,β�  LFα�,β� ,𝛿𝛿 

 n/a 𝐻𝐻𝑛𝑛 𝑊𝑊 LFα�,β�  𝐻𝐻𝑛𝑛 

𝐿𝐿𝑃𝑃 LFα�,β�  𝐻𝐻𝑛𝑛 𝐸𝐸𝑆𝑆1 𝑆𝑆𝑆𝑆 LFα�,β�  

𝐿𝐿𝐿𝐿𝑆𝑆 LFα�,β�  LFα�,β� ,𝐻𝐻𝑛𝑛 𝐸𝐸𝑆𝑆2 𝑇𝑇1𝑛𝑛 LFα�,β�  

𝐿𝐿𝐿𝐿𝐿𝐿 n/a 𝑇𝑇1𝑛𝑛 𝑃𝑃1 LFα�,β� ,𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆, 𝐽𝐽𝑆𝑆,𝐴𝐴𝐽𝐽𝑆𝑆 

𝑆𝑆𝑀𝑀1 𝑆𝑆𝑆𝑆, 𝐽𝐽𝑆𝑆,𝐴𝐴𝐽𝐽𝑆𝑆 𝑆𝑆𝑆𝑆, 𝐽𝐽𝑆𝑆,𝐴𝐴𝐽𝐽𝑆𝑆 𝑃𝑃2 LFα�,β�  LFα�,β�  

𝑆𝑆𝑀𝑀2 𝐽𝐽𝑆𝑆,𝐴𝐴𝐽𝐽𝑆𝑆 𝐽𝐽𝑆𝑆,𝐴𝐴𝐽𝐽𝑆𝑆 
𝑃𝑃3 𝑆𝑆𝑣𝑣 LFα�,β�  

𝑆𝑆𝑆𝑆 LFα�,β�  LFα�,β� ,𝐻𝐻𝑛𝑛 

Source: author’s work. 

5. Summary and conclusions 

The article contributes to the expansion of knowledge on GoFTs for normality. The 
study considers situations where the alternatives are asymmetric with non-constant 
skewness. At first, GoFTs were assessed with respect to their ability to detect samples 
for two reasons: 
• they come from general populations where the alternatives with skewness values 

are close to zero or where the lowest possible skewness values occur, and 
• the value of the normal-alternative similarity measure is close to unity. 
 Having already assessed the abilities of GoFTs, 21 of them were selected as a set of 
GoFTs to be applied to detect asymmetric alternatives with non-constant skewness. 
 Subsequently, a set of 13 alternatives was formed. These were distinguished as 
useful in deviation-from-normality-oriented Monte Carlo studies. Among them 
were alternatives of only negative skewness, only positive skewness or both negative 
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and positive skewness. The alternatives in question fall into two categories: 
monolithic and compound distributions. 
 When describing a given distribution, the main emphasis was placed on defining 
formulas for skewness and its range. The (global) values of the similarity measure of 
the alternative to the normal distribution were determined. 
 The Monte Carlo study revealed that when alternatives are asymmetric with non-
constant 𝛾𝛾1, GoFTs for normality detect positive or negative 𝛾𝛾1 differently, 
depending on the alternative. The 𝐻𝐻𝑛𝑛 test best detects 𝛾𝛾1 > 0 for seven alternatives; 
the LFα�,β� test best detects 𝛾𝛾1 < 0 and 𝛾𝛾1 > 0 for nine and eight alternatives, 
respectively. The 𝐽𝐽𝑆𝑆,𝐴𝐴𝐽𝐽𝑆𝑆 tests best detect 𝛾𝛾1 ≠ 0 for two alternatives. 
 The LFα�,β� and 𝐻𝐻𝑛𝑛 tests best detect 𝛾𝛾1 > 0 in 13 alternative cases out of 17 (except 
the 𝐿𝐿𝐿𝐿𝐿𝐿, 𝑆𝑆𝑀𝑀1, 𝑆𝑆𝑀𝑀2 and 𝑃𝑃1 alternatives). The LFα�,β� test best detects 𝛾𝛾1 > 0 for 
𝑆𝑆,𝐿𝐿𝑃𝑃,𝐿𝐿𝐿𝐿𝑆𝑆, 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆,𝑊𝑊,𝑃𝑃1,𝑃𝑃2. The 𝐽𝐽𝑆𝑆,𝐴𝐴𝐽𝐽𝑆𝑆 tests best detect 𝛾𝛾1 ≠ 0 for 
𝑆𝑆𝑀𝑀1,𝑆𝑆𝑀𝑀2 and 𝛾𝛾1 > 0 for alternative 𝑃𝑃1. 
 The LFα�,β� and 𝐻𝐻𝑛𝑛 GoFTs best detect asymmetric distributions that deviate from 
normality due to small skewness, equal to even 0.05. 

References 

Afeez, B. M., Maxwell, O., Otekunrin, O. A., & Happiness, O.-I. (2018). Selection and Validation of 
Comparative Study of Normality Test. American Journal of Mathematics and Statistics, 8(6), 
190–201. https://doi.org/10.5923/j.ajms.20180806.05. 

Ahmad, F., & Khan, R. A. (2015). Power Comparison of Various Normality Tests. Pakistan Journal 
of Statistics and Operation Research, 11(3), 331–345. https://doi.org/10.18187/pjsor.v11i3.845. 

Aliaga, A. M., Martınez-González, E., Cayón, L., Argüeso, F., Sanz, J. L., & Barreiro, R. B. (2003). 
Goodness-of-fit tests of Gaussianity: constraints on the cumulants of the MAXIMA data. New 
Astronomy Reviews, 47(8–10), 821–826. https://doi.org/10.1016/j.newar.2003.07.010. 

Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain ‘goodness of fit’ criteria 
based on stochastic processes. The Annals of Mathematical Statistics, 23(2), 193–212. 

Arnastauskaitė, J., Ruzgas, T., & Bražėnas, M. (2021). An Exhaustive Power Comparison of 
Normality Tests. Mathematics, 9(7), 1–20. 

Azzalini, A. (1985). A Class of Distributions which Includes the Normal Ones. Scandinanvian 
Journal of Statistics, 12(2), 171–178. 

Bayoud, H. A. (2021). Tests of normality: new test and comparative study. Communications in 
Statistics – Simulation and Computation, 50(12), 4442–4463. https://doi.org/10.1080/03610918 
.2019.1643883. 

Bonett, D. G., & Seier, E. (2002). A test of normality with high uniform power. Computational 
Statistics & Data Analysis, 40(3), 435–445. https://doi.org/10.1016/S0167-9473(02)00074-9. 

Bontemps, C., & Meddahi, N. (2005). Testing normality: a GMM approach. Journal of 
Econometrics, 124(1), 149–186. https://doi.org/10.1016/j.jeconom.2004.02.014. 

https://doi.org/10.5923/j.ajms.20180806.05
https://doi.org/10.18187/pjsor.v11i3.845
https://doi.org/10.1016/j.newar.2003.07.010
https://doi.org/10.1080/03610918.2019.1643883
https://doi.org/10.1080/03610918.2019.1643883
https://doi.org/10.1016/S0167-9473(02)00074-9
https://doi.org/10.1016/j.jeconom.2004.02.014


P. SULEWSKI    The detectability of asymmetric distributions deviating from normality due to small...  45 

 

 

Brys, G., Hubert, M., & Struyf, A. (2008). Goodness-of-fit tests based on a robust measure of 
skewness. Computational Statistics, 23(3), 429–442. https://doi.org/10.1007/s00180-007-0083-7. 

Cabaña, A., & Cabaña, E. M. (1994). Goodness-of-fit and comparison tests of the Kolmogorov-
Smirnov type for bivariate populations. The Annals of Statistics, 22(3-4), 1447–1459. 
https://doi.org/10.1214/aos/1176325636. 

Chen, L. & Shapiro, S. S. (1995). An alternative test for normality based on normalized spacings. 
Journal of Statistical Computation and Simulation, 53(3), 269–287. https://doi.org/10.1080 
/00949659508811711. 

Coin, D. (2008). A goodness-of-fit test for normality based on polynomial regression. 
Computational Statistics & Data Analysis, 52(4), 2185–2198. https://doi.org/10.1016/j.csda 
.2007.07.012. 

Cramér, H. (1928). On the composition of elementary errors. Scandinavian Actuarial Journal, (1), 
13–74. https://doi.org/10.1080/03461238.1928.10416862. 

D’Agostino, R. B. (1970). Transformation to normality of the null distribution of g1. Biometrika, 
57(3), 679–681. https://doi.org/10.2307/2334794. 

D'Agostino, R., & Pearson, E. S. (1973). Tests for departure from normality. Empirical results for 
the distributions of b2 and √b1. Biometrika, 60(3), 613–622. https://doi.org/10.2307/2335012. 

Desgagné, A., & Lafaye de Micheaux, P. (2018). A powerful and interpretable alternative to the 
Jarque-Bera test of normality based on 2nd-power Skewness and Kurtosis, using the Rao’s Score 
Test on the APD family. Journal of Applied Statistics, 45(13), 2307–2327. https://doi.org/10.1080 
/02664763.2017.1415311. 

Desgagné, A., Lafaye de Micheaux, P., & Ouimet, F. (2023). Goodness-of-fit tests for Laplace, 
Gaussian and exponential power distributions based on λ-th power skewness and kurtosis. 
Statistics, 57(1), 94–122. https://doi.org/10.1080/02331888.2022.2144859. 

Gel, Y. R., & Gastwirth, J. L. (2008). A robust modification of the Jarque-Bera test of normality. 
Economics Letters, 99(1), 30–32. https://doi.org/10.1016/j.econlet.2007.05.022. 

Gel, Y. R., Miao, W., & Gastwirth, J. L. (2007). Robust Directed Tests of Normality against Heavy-
tailed Alternatives. Computational Statistics & Data Analysis, 51(5), 2734–2746. https://doi.org 
/10.1016/j.csda.2006.08.022. 

Hernandez, H. (2021). Testing for Normality: What is the Best Method?. ForsChem Research 
Reports, 6, 1–38. https://doi.org/10.13140/RG.2.2.13926.14406. 

Hosking, J. R. M. (1990). L-moments: Analysis and Estimation of Distributions using Linear 
Combinations of Order Statistics. Journal of the Royal Statistical Society. Series B 
(Methodological), 52(1), 105–124. https://doi.org/10.1111/j.2517-6161.1990.tb01775.x. 

Jarque, C. M., & Bera, A. K. (1987). A Test for Normality of Observations and Regression Residuals. 
International Statistical Review, 55(2), 163–172. https://doi.org/10.2307/1403192. 

Johnson, N. L. (1949). System of frequency curves generated by methods of translation. 
Biometrika, 36(1/2), 149–176. https://doi.org/10.2307/2332539. 

Kellner, J., & Celisse, A. (2019). A one-sample test for normality with kernel methods. Bernoulli, 
25(3), 1816–1837. https://doi.org/10.3150/18-BEJ1037. 

Khatun, N. (2021). Applications of Normality Test in Statistical Analysis. Open Journal of Statistics, 
11(1), 113–122. https://doi.org/10.4236/ojs.2021.111006. 

https://doi.org/10.1007/s00180-007-0083-7
https://doi.org/10.1214/aos/1176325636
https://doi.org/10.1080/00949659508811711
https://doi.org/10.1080/00949659508811711
https://doi.org/10.1016/j.csda.2007.07.012
https://doi.org/10.1016/j.csda.2007.07.012
https://doi.org/10.1080/03461238.1928.10416862
https://doi.org/10.2307/2334794
https://doi.org/10.2307/2335012
https://doi.org/10.1080/02664763.2017.1415311
https://doi.org/10.1080/02664763.2017.1415311
https://doi.org/10.1080/02331888.2022.2144859
https://doi.org/10.1016/j.econlet.2007.05.022
https://doi.org/10.1016/j.csda.2006.08.022
https://doi.org/10.1016/j.csda.2006.08.022
https://doi.org/10.13140/RG.2.2.13926.14406
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
https://doi.org/10.2307/1403192
https://doi.org/10.2307/2332539
https://doi.org/10.3150/18-BEJ1037
https://doi.org/10.4236/ojs.2021.111006


46 Przegląd Statystyczny. Statistical Review 2023 | 1 

 

 

Kolmogorov, A. (1933). Sulla determinazione empirica di unalegge di distributione. Giornale 
Dell’Istituto Italiano Degli Attuari, 4, 83–91. 

Komunjer, I. (2007). Asymmetric power distribution: Theory and applications to risk 
measurement. Journal of Applied Econometrics, 22(5), 891–921. https://doi.org/10.1002/jae.961. 

Lafaye de Micheaux, P. L., & Tran, V. A. (2016). PoweR: A Reproducible Research Tool to Ease 
Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R. Journal of Statistical 
Software, (69), 1–44. https://doi.org/10.18637/jss.v069.i03. 

LaRiccia, V. N. (1986). Optimal goodness-of-fit tests for normality against skewness and kurtosis 
alternatives. Journal of Statistical Planning and Inference, 13, 67–79. https://doi.org/10.1016 
/0378-3758(86)90120-5. 

Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance 
unknown. Journal of the American Statistical Association, 62(318), 399–402. https://doi.org 
/10.2307/2283970. 

Malachov, A. N. (1978). Kumuljantnyj analiz slucajnych negaussovych processov i ich pre-
obrazovanij. Sovetskoe Radio. 

Marange, C. S., & Qin, Y. (2019). An Empirical Likelihood Ratio Based Comparative Study on 
Tests for Normality of Residuals in Linear Models. Advances in Methodology and Statistics, 
16(1), 1–16. https://doi.org/10.51936/ramh7128. 

Mbah, A. K., & Paothong, A. (2015). Shapiro-Francia test compared to other normality test using 
expected p-value. Journal of Statistical Computation and Simulation, 85(15), 3002–3016. 
https://doi.org/10.1080/00949655.2014.947986. 

Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive Statistics 
and Normality Tests for Statistical Data. Annals of Cardiac Anaesthesia, 22(1), 67–72. 
https://doi.org/10.4103/aca.ACA_157_18. 

Nosakhare, U. H., & Bright, A. F. (2017). Evaluation of Techniques for Univariate Normality Test 
Using Monte Carlo Simulation. American Journal of Theoretical and Applied Statistics, 6(5-1), 
51–61. https://doi.org/10.11648/j.ajtas.s.2017060501.18. 

Noughabi, H. A., & Arghami, N. R. (2011). Monte Carlo comparison of seven normality tests. 
Journal of Statistical Computation and Simulation, 81(8), 965–972. https://doi.org/10.1080 
/00949650903580047. 

Pearson, K. (1916). Mathematical Contributions to the Theory of Evolution – XIX. Second 
Supplement to a Memoir on Skew Variation. Philosophical Transactions of the Royal Society of 
London. Series A. Containing Papers of a Mathematical or Physical Character, 216, 429–457. 
https://doi.org/10.1098/rsta.1916.0009. 

Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, 
Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33. 

Romao, X., Delgado, R., & Costa, A. (2010). An empirical power comparison of univariate 
goodness-of-fit tests for normality. Journal of Statistical Computation and Simulation, 80(5), 
545–591. https://doi.org/10.1080/00949650902740824. 

Ryan, T. A., & Joiner, B. L. (1976). Normal probability plots and tests for normality. Journal of the 
Royal Statistical Society Series C (Applied Statistics), 31, 115–124. 

https://doi.org/10.1002/jae.961
https://doi.org/10.18637/jss.v069.i03
https://doi.org/10.1016/0378-3758(86)90120-5
https://doi.org/10.1016/0378-3758(86)90120-5
https://doi.org/10.2307/2283970
https://doi.org/10.2307/2283970
https://doi.org/10.51936/ramh7128
https://doi.org/10.1080/00949655.2014.947986
https://doi.org/10.4103/aca.ACA_157_18
https://doi.org/10.11648/j.ajtas.s.2017060501.18
https://doi.org/10.1080/00949650903580047
https://doi.org/10.1080/00949650903580047
https://royalsocietypublishing.org/doi/10.1098/rsta.1916.0009
https://doi.org/10.1080/00949650902740824


P. SULEWSKI    The detectability of asymmetric distributions deviating from normality due to small...  47 

 

 

Shapiro, S. S., & Francia, R. S. (1972). An Approximate Analysis of Variance Test for Normality. 
Journal of the American Statistical Association, 67(337), 215–216. https://doi.org/10.1080 
/01621459.1972.10481232. 

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). 
Biometrika, 52(3–4), 591–611. https://doi.org/10.2307/2333709. 

Shapiro, S. S., Wilk, M. B. & Chen, H. J. (1968). A comparative study of various tests for normality. 
Journal of the American Statistical Association, 63(324), 1343–1372. https://doi.org/10.2307 
/2285889. 

Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. The Annals 
of Mathematical Statistics, 19(2), 279–281. https://doi.org/10.1214/aoms/1177730256. 

Sulewski, P. (2019). Modification of Anderson-Darling goodness-of-fit test for normality. 
Afinidad. Journal of Chemical Engineering Theoretical and Applied Chemistry, 76(588), 270–277. 
https://raco.cat/index.php/afinidad/article/view/361876. 

Sulewski, P. (2021). Equal-bin-width histogram versus equal-bin-count histogram. Journal of 
Applied Statistics, 48(12), 2092–2111. https://doi.org/10.1080/02664763.2020.1784853. 

Sulewski, P. (2022a). Easily Changeable Kurtosis Distribution. Austrian Journal of Statistics. 
Advanced online publication. https://doi.org/10.17713/ajs.v52i3.1434. 

Sulewski, P. (2022b). Modified Lilliefors goodness-of-fit test for normality. Communications in 
Statistics – Simulation and Computation, 51(3), 1199–1219. https://doi.org/10.1080/03610918 
.2019.1664580. 

Tavakoli, M., Arghami, N., & Abbasnejad, M. (2019). A Goodness of Fit Test For Normality Based 
on Balakrishnan-Sanghvi Information. Journal of The Iranian Statistical Society, 18(1), 177–190. 
http://doi.org/10.29252/jirss.18.1.177. 

Torabi, H., Montazeri, N. H., & Grané, A. (2016). A test for normality based on the empirical 
distribution function. SORT – Statistics and Operations Research Transactions, 40(1), 55–88. 

Uhm, T., & Yi, S. (2021). A comparison of normality testing methods by empirical power and 
distribution of P-values. Communications in Statistics – Simulation and Computation. Advanced 
online publication. https://doi.org/10.1080/03610918.2021.1963450. 

Urzúa, C. M. (1996). On the correct use of omnibus tests for normality. Economics Letters, 53(3), 
247–251. https://doi.org/10.1016/S0165-1765(96)00923-8. 

Uyanto, S. S. (2022). An Extensive Comparisons of 50 Univariate Goodness-of-fit Tests for 
Normality. Austrian Journal of Statistics, 51(3), 45–97. https://doi.org/10.17713/ajs.v51i3.1279. 

Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of Applied 
Mechanics, 18(3), 293–297. https://doi.org/10.1115/1.4010337. 

Wijekularathna, D. K., Manage, A. B. W., & Scariano, S. M. (2020). Power analysis of several 
normality tests: A Monte Carlo simulation study. Communications in Statistics – Simulation and 
Computation, 51(3), 757– 773. https://doi.org/10.1080/03610918.2019.1658780. 

Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests. Journal of 
Statistical Computation and Simulation, 81(12), 2141–2155. https://doi.org/10.1080/00949655 
.2010.520163. 

Yazici, B., & Yolacan, S. A. (2007). A comparison of various tests of normality. Journal of Statistical 
Computation and Simulation, 77(2), 175–183. https://doi.org/10.1080/10629360600678310. 

Zhang, J., & Wu, Y. (2005). Likelihood-ratio tests for normality. Computational Statistics & Data 
Analysis, 49(3), 709–721. https://doi.org/10.1016/j.csda.2004.05.034. 

https://doi.org/10.1080/01621459.1972.10481232
https://doi.org/10.1080/01621459.1972.10481232
https://doi.org/10.2307/2333709
https://doi.org/10.2307/2285889
https://doi.org/10.2307/2285889
https://doi.org/10.1214/aoms/1177730256
https://raco.cat/index.php/afinidad/article/view/361876
https://doi.org/10.1080/02664763.2020.1784853
https://doi.org/10.17713/ajs.v52i3.1434
https://doi.org/10.1080/03610918.2019.1664580
https://doi.org/10.1080/03610918.2019.1664580
http://doi.org/10.29252/jirss.18.1.177
https://doi.org/10.1080/03610918.2021.1963450
https://doi.org/10.1016/S0165-1765(96)00923-8
https://doi.org/10.17713/ajs.v51i3.1279
https://doi.org/10.1115/1.4010337
https://doi.org/10.1080/03610918.2019.1658780
https://doi.org/10.1080/00949655.2010.520163
https://doi.org/10.1080/00949655.2010.520163
https://doi.org/10.1080/10629360600678310
https://doi.org/10.1016/j.csda.2004.05.034


48 Przegląd Statystyczny. Statistical Review 2023 | 1 

 

 

Appendix 

ES distribution 

The Edgeworth series (ES) distribution is defined as: 
 

 𝑓𝑓𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝜙𝜙(𝑥𝑥; 0,1) �1 + �
1
𝑖𝑖!
𝜒𝜒𝑖𝑖𝐻𝐻𝑖𝑖(𝑥𝑥)

∞

𝑖𝑖=3
�, (A1) 

 
where 𝜒𝜒𝑖𝑖  (𝑖𝑖 = 3,4, … ) are cumulants and 𝐻𝐻𝑖𝑖(𝑥𝑥) (𝑖𝑖 = 3,4, … ) are the probabilist’s 
Hermite polynomials defined by recurrence relations  
 
𝐻𝐻0(𝑥𝑥) = 1,𝐻𝐻1(𝑥𝑥) = 𝑥𝑥,𝐻𝐻2(𝑥𝑥) = 𝑥𝑥2 − 1, … ,𝐻𝐻𝑛𝑛+1(𝑥𝑥) = 𝑥𝑥𝐻𝐻𝑛𝑛(𝑥𝑥)− 𝑛𝑛𝐻𝐻𝑛𝑛−1(𝑥𝑥). 
 
 For the purposes of the simulation, we need the first three terms of the series. 
Then (A1) takes the following form: 
 

 𝑓𝑓𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝜙𝜙(𝑥𝑥; 0,1)�1 +
1
3!
𝜒𝜒3𝐻𝐻3(𝑥𝑥) +

1
4!
𝜒𝜒4𝐻𝐻4(𝑥𝑥)�, (A2) 

 
where 𝐻𝐻3(𝑥𝑥) = 𝑥𝑥3 − 3𝑥𝑥,𝐻𝐻4(𝑥𝑥) = 𝑥𝑥4 − 6𝑥𝑥2 + 3 and 𝜒𝜒3 = 𝛾𝛾1, 𝜒𝜒4 = �̅�𝛾2. The PDF of 
the ES distribution based on (A2), is given by: 
 

𝑓𝑓𝐸𝐸𝐸𝐸�𝑥𝑥; 𝛾𝛾1,, �̅�𝛾2� = 𝜙𝜙(𝑥𝑥; 0,1) �1 + 1
3!
𝛾𝛾1,(𝑥𝑥3 − 3𝑥𝑥) + 1

4!
�̅�𝛾2(𝑥𝑥4 − 6𝑥𝑥2 + 3)�. 

P distribution 

The P distribution is defined as: 
 

 𝑓𝑓𝑃𝑃�𝑥𝑥; 𝛾𝛾1,, �̅�𝛾2� = 𝑒𝑒𝑥𝑥𝑒𝑒 �−�
𝑥𝑥 + 𝑏𝑏

𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐
𝑑𝑑𝑥𝑥�, (A3) 

 
where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are given by (2). Let us consider three cases determined by the sign of 
the discriminant (and hence the number of real roots) of 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐. 
 
Case 1. ∆= 0 ⇔ 𝑏𝑏2 = 4𝑎𝑎𝑐𝑐. When solving this equation, we obtain the following: 
 

�̅�𝛾21 =
6��𝛾𝛾12+4�

3−42𝛾𝛾12+48

𝛾𝛾12−32
,   �̅�𝛾22 =

−6��𝛾𝛾12+4�
3−42𝛾𝛾12+48

𝛾𝛾12−32
. 
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 The figure shows that the graph of function �̅�𝛾21(𝛾𝛾1) is located outside Malakhov's 
area �̅�𝛾2 ≥ 𝛾𝛾12 − 2 (Malachov, 1978). 
 
Figure. Excess kurtosis as a function of skewness when 𝑏𝑏2 = 4𝑎𝑎𝑐𝑐 

 
Source: author’s work. 

 
 When substituting �̅�𝛾2 to (2), we obtain the following: 
 

𝑎𝑎 =
𝛾𝛾14−4𝛾𝛾12+4��𝛾𝛾12+4�

3−32
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3
−8�
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3+24�
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3
−8�

,   𝑐𝑐 =
𝛾𝛾14+20𝛾𝛾12+8��𝛾𝛾12+4�

3+64
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3
−8�

. 

 
 The integral in (A3) can be written as: 
 

�
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then 
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 The PDF of the P distribution based on (A3) is given by: 
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where 𝐶𝐶2 is given by (3). 
 
Case 2. ∆< 0 ⇔ 𝑏𝑏2 < 4𝑎𝑎𝑐𝑐. 
 
 The integral in (A3) can be written as: 
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where 𝐶𝐶4 is given by (4). 
 
Case 3. ∆> 0 ⇔ 𝑏𝑏2 > 4𝑎𝑎𝑐𝑐. 
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 The PDF of the P distribution based on (A3) is given by: 
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where 𝐶𝐶8 is given by (5). 

R codes 

h=function(x) ((x-1)/(x+1))^2 
Hn=function(x) { 

x=sort((x-mean(x))/sd(x)) 
n=length(x) 
Fn=1+1:n/n 
F1=pnorm(x,0,1)+1 
return(mean(h(F1/Fn))) } 

 
Fn=function(i,n,a,b) ((i - a)/(n - a - b + 1)) 
LF=function(x,alfa,beta) { 

x=sort(x); n=length(x) 
F=pnorm(x, mean(x), sd(x)) 
return(max(abs(Fn(1:n,n,alfa,beta)-F))) } 

 
RJ=function(x) {} 

x=sort(x); n=length(x) 
z=qnorm(Fn1(1:n,n,3/8,3/8),0,1); s1=sum(x*z); s2=sum(z*z) 
return(s1/sqrt(s2*(n-1)*var(x))) } 
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W1=function(u) qnorm(u)^2-1 
T1n=function(x) { 

x=sort(x); n=length(x) 
if (n==25) A1=-0.2114 else A1=-0.1297 
if (n==25) B1=0.2323 else B1=0.34 
s=sd(x)*sqrt((n-1)/n)  
Fn=1:n/(n+1) 
Cn=sum((W1(Fn)-A1)*x)/sqrt(n) 
return(Cn^2/s^2/B1) } 

 
TestSigma=function(x) { 

x=sort(x); Ft=pnorm(x,mean(x),sd(x)) 
n=length(x); Fn=1:n/n 
licz=sum((abs(Ft-Fn))); mian=0 
for (i in 1:n) { 

mian=mian+max(Ft[i],Fn[i]) } 
return(licz/mian) } 

 
Bv=function(x) { 

x=sort(x); n=length(x) 
mi=mean(x); sdev=sd(x)*sqrt((n-1)/n) 
if (n==25) m=5 else m=15; s=0 
for (i in 1:n) { 

up=i-m; if (up$\mathrm{<}$1) up=1 
uk=i+m; if(uk$\mathrm{>}$n) uk=n 
a=2*m/(x[uk]-x[up])/n 
b=exp(-0.5*((x[i]-mi)/sdev)^2)/sdev/sqrt(2*pi) 
s=s+((a-b)/(a+b))^2 } 

return(s/n) } 
rGP=function(n,a,b) { 

x=numeric(n) 
for (i in 1:n){ 

W=rgamma(1,1/b) 
d=dG(a,b) 
V=(W/d)^(1/b) 
x[i]=ifelse(runif(1,0,1)<1-a,(1-a)*V,-a*V) } 

return(sort(x)) } 
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rLCN=function(n,a,c) { 
x=numeric(n) 
for (i in 1:n){ 

x[i]=ifelse(runif(1,0,1)<c,rnorm(1,a,1),rnorm(1,0,1)) } 
return(sort(x)) } 

 
rNM=function(n,a,b,c) { 

x=numeric(n) 
for (i in 1:n){ 

x[i]=ifelse(runif(1,0,1)<c,rnorm(1,0,1),rnorm(1,a,b)) } 
return(sort(x)) } 

 
dEdge=function(x,a,b){ 

return(dnorm(x,0,1)*(1+a*(x^3-3*x)/6+b*(x^4-6*x^2+3)/24)) } 
rEdge=function(n,a,b,xl,xu){ #with support (xl,xu) 

wyn=numeric(n) 
e=optimize(function(x)  

dEdge(x,a,b),interval=c(xl,xu), maximum=1)$maximum 
d=dEdge(e,a,b) 
for (i in 1:n){ 

R1 = runif(1,xlow,xup) 
R2 = runif(1,0,d) 
w = dEdge(R1,a,b) 
while(w<R2){ 
R1 = runif(1,xlow,xup) 
R2 = runif(1,0,d) 
w = dEdge(R1,a,b) } 
wyn[i]=R1 } 

return(sort(wyn)) } 
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Supporting the Age-Period-Cohort model of default 
rate prediction with interpretable machine learning 

Maciej Paweł Kwiatkowskia 
 
Abstract. Regular short-term forecasting of defaults is a basic activity of a retail portfolio risk 
manager. From a business perspective, not only the quality of the forecast is significant, but 
also the understanding of the trends and their driving factors. The vintage analysis and a more 
advanced Age-Period-Cohort approach are popular tools used for the purpose. The aim of this 
article is to demonstrate that interpretable machine learning can support the Age-Period-
Cohort approach, facilitating forecasting beyond the time range of training data, eliminating 
the model identification problem and attributing cohort quality to the specific characteristics of 
loans approved in a given month. The study is based on real consumer finance portfolios from 
the Polish market. 
Keywords: credit risk, macroeconomic impact, age-period-cohort, machine learning, XGBoost, 
SHAP 
JEL: C41, C53, C55, C58, G20, G21 

1. Introduction 

Default rate prediction is a field of research very important for individual banks, as 
well as for the stability of the global financial system. This is reflected in the number 
of international regulations on that matter and the centralisation of loss forecasting 
units in large international banks. In particular, a part of the risk manager’s 
responsibilities in a retail lending business is short-term forecasting of the default 
rate and understanding its driving factors. 
 A typical analysis takes the form of the following process: having received an 
annual or quarterly loss budget, approved by the corporate management board, the 
risk manager is obligated to declare whether his/her portfolio is heading above the 
budget, below it or whether it is on track. If it is off track, he/she must determine if 
this is due to the portfolio age, the profile of the customers in the portfolio, credit 
policies, collections policies or the macroeconomic environment. The risk manager 
must then propose a remediating action (change in the underwriting criteria, 
promotions in certain sales channels, adjusted pricing, modifications in the 
collections policies, etc.) to set the forecasted default rate back on track, as 
determined by the budget. 
 The data available for the risk manager include credit application data, 
behavioural data on bank accounts (credit and non-credit behaviour) and data from 
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the credit bureau covering information from other financial institutions. Statistical 
and data management tools include Online Analytical Processing (OLAP), business 
intelligence reports, statistical classification models (e.g. application scoring used for 
assessing the creditworthiness of new clients at the moment of credit application, 
and behaviour scoring used for the assessment of the creditworthiness of clients 
already in the portfolio). The toolkit also contains portfolio forecasting models (e.g. 
migration or survival models predicting portfolio evolution). Textbooks explaining 
thoroughly this classical approach are Lawrence and Salomon (2002) and Siddiqi 
(2017). 
 In the recent years, machine learning models have been tested for purposes 
related to credit risk management (Bracke et al., 2019; Kaszyński et al., 2020). 
Publications on the success or failure of machine learning used in a real business 
environment are scarce, and this paper is intended to fill this gap. The study tests the 
hypothesis that OLAP-based vintage analysis and portfolio forecasting tools based 
on OLAP can be replaced with interpretable machine learning. 
 Let us then look in more detail at the practical aspects of default rate prediction. 
Of all factors affecting the default rate, the effect of portfolio aging is the most 
treacherous. Defaults take some time to develop, as the most common default trigger 
is 90 days payment arrears. In the case of new, dynamically growing portfolios, this 
will cause the numerator of the default rate (number of defaults) to remain low, 
while the denominator (number of open accounts) will be growing high. This makes 
unexperienced risk managers think that the credit losses will be below the budgeted 
level and encourages them to relax credit policies. A few months later it inevitably 
leads to exploding default rates, with consequences going as far as business closure. 
 In order to avoid such mistakes, a vintage analysis was developed (Siarka, 2011), 
together with business intelligence solutions supporting it. The main idea of vintage 
analysis is to analyse default rates by cohort (the month of booking). This way, credit 
risk managers can clearly see the default rates grow with the cohort age. 
Furthermore, they can compare relative risks of different cohorts, relating them to 
sales campaigns, characteristics of incoming clients or underwriting policies applied 
at that time, which is illustrated by in Figure 1. 
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Figure 1. Typical chart used for vintage analysis obtained by means of an OLAP 
cube (pivot table). 

 
Note. The lines correspond to cohorts (vintages). This can be further segmented based on information 
available at the time of underwriting using a standard OLAP functionality. 
Source: author's work. 

 
 Vintage analysis can also support the short-term forecasting of default rates. 
When the effect of portfolio aging on default rates and the relative differences in risk 
between cohorts is known, default rates of younger cohorts can be forecasted from 
the performance of older cohorts. Additional simulations may be prepared assuming 
changes in future underwriting criteria which provide their estimated impact on 
future default rates. A simulation run before any changes are implemented prevents 
serious problems in the future. 
 External factors like the macroeconomic environment further complicate the 
picture. A strong and sudden economic crisis can compromise the vintage analysis 
so that all cohorts are affected at once, each of them being at a different age. This 
undermines the assumption of roughly proportional default rates for various 
cohorts, which is a challenge for most vintage-based default rate forecasting tools 
built with business intelligence solutions as shown in Figure 2. 
 
 
 
 

0.0%

0.5%

1.0%

1.5%

2.0%

0 1 2 3 4 5 6 7 8 9 10 11 12

De
fa

ul
t R

at
e

Months on Books

2011Q1
2011Q2
2011Q3
2011Q4
2012Q1
2012Q2
2012Q3
2012Q4
2013Q1
2013Q2
2012Q4 forecast
2013Q1 forecast
2013Q2 forecast



M. P. KWIATKOWSKI    Supporting the Age-Period-Cohort model of default rate prediction with...  57 

 

 

Figure 2. Vintage analysis distorted by an external macroeconomic shock 

 
Source: author's work. 

 
 Macroeconomic factors cannot be ignored even in a non-crisis environment. 
Recently implemented accounting rules on credit risk provisions (IFRS 9, introduced 
in 2018) require credit institutions to forecast credit losses under various 
macroeconomic scenarios, and default forecasting tools must provide such 
functionality. For this purpose, a more advanced statistical approach called Age-
Period-Cohort (APC) is often applied. In the literature, APC is also called Dual Time 
Dynamics (Breeden, 2007, 2010; Breeden et al., 2008) or Exogenous-Maturity-
Vintage (Borges & Machado, 2022; Forster & Sudjianto, 2013). The link of APC to 
the vintage analysis is that on top of age and cohort (vintage), it includes an 
additional dimension of a ‘period’ which can be linked to the macroeconomic 
environment. 
 Extensive research results on APC were published by Breeden (2007, 2010) and 
Breeden et al. (2008), who also popularised this method and applied it commercially. 
A typical business application can also be found in Borgues and Machado (2022). 
It includes a non-parametric estimation of age, period and cohort effects. Then, the 
estimated period effects are regressed on macroeconomic data and the cohort effects 
are regressed on parameters of underwriting. The purpose of running these 
additional regressions is to identify the driving factors of default rates and to provide 
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inputs for their short-term forecasts. This is because an APC model itself is not able 
to forecast beyond the period on which it was trained. 
 In order to improve the quality of short-term default rate predictions, some 
authors investigated the use of advanced techniques of regressing macroeconomic 
effects obtained from an APC model on officially published macroeconomic 
indicators (e.g. Gamba-Santamaria et al., 2021 used a vector autoregressive model 
for that purpose). Other authors embedded simple behavioural data in the APC 
framework. For example, Babikov (2013) developed a method of integrating 
a popular behavioural model of loss forecasting based on a migration matrix of 
delinquency buckets with an APC framework. Finally, researchers explored non- 
linear versions of an APC model (Strydom, 2017). 
 Nevertheless, all the aforementioned authors used aggregated rather than account 
level data to develop their models. The reason is that it is costly and time-consuming 
to estimate an APC model using classical statistical methods when detailed credit 
application data are used. Such a model does not meet its main business purpose of 
supporting monthly portfolio quality reviews and providing short-term forecasts for 
the daily management of a lending business. 
 Furthermore, most models published so far fail to identify the root causes of 
delinquencies and attribute them to specific variables like customer characteristics. 
This task is left to an analyst who segments vintage analysis or APC models using 
business intelligence solutions in order to find variables corresponding to various 
risk profiles. Conclusions and business recommendations depend on the strength of 
the discovered relationships to the same extent as they do on the presentation skills 
of individual analysts. 
 This article demonstrates how the XGBoost machine learning algorithm (Chen & 
Guestrin, 2016) together with SHAP model explanations (Lundberg & Lee, 2017) 
can be used to make a decomposition of the observed default rates into age, period 
and cohort effects, then to identify the underlying macroeconomic and idiosyncratic 
(customer-related) features and finally, to provide short-term forecasts of the default 
rate. SHAP model explanations replace the expert judgement of the impact of 
specific customer characteristics on the default rate. The model can be estimated 
within a day in a fully automated way, eliminating the issue of long delivery time. 
The combination of gradient boosting and SHAP was also explained in more detail 
in Bracke et al. (2019) and Kaszyński et al. (2020). 
 The article further consists of Section 2, which presents the modelling 
methodology of an APC model and a new machine-learning model, Section 3, which 
describes the data used for the research, Section 4, presenting the model evaluation 
criteria, results and conclusions, and Section 5, which summarises the modelling 
methodology and demonstrates the stages of the analysis that might be used in any 
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lending business. The latter is the paper’s contribution to the development of the 
field of credit loss forecasting and credit risk management. 

2. Model specification 

This section describes the traditional APC model and discusses its advantages and 
disadvantages. Then, the proposed machine learning model is presented and its 
functionality is compared with APC. Finally, the technical details of the model 
estimation are provided. 

2.1. Age-Period-Cohort model 

An APC model is applied to explain various measures (in the OLAP sense) defined 
on a population, which may be segmented with respect to the origination date and 
age as the key dimensions. The model is non-parametric and it does not provide 
forecasts beyond the time range on which it was trained. Results from an APC model 
are used as inputs for further analysis, which may produce short-term forecasts of 
the measure in question. 
 In a credit risk context, APC decomposes an observed default or delinquency rate 
into effects of the date of the loan origination (also called vintage), portfolio aging 
(also called months on books – MOB), and the calendar date on which the default 
rate was reported. The effects of vintage provide information about the quality of the 
underwriting, which, in turn, depends on the riskiness of the sales channels and the 
credit policy criteria. The effect of aging results from the contractual maturities of 
the granted loans, defaults, prepayments and the level of adverse selection due to 
poor portfolio management. The effect of calendar date is primarily linked to the 
macroeconomic environment, but it is also impacted by early debt collection policies 
and regulations, such as payment holidays. Therefore, as already mentioned, further 
analysis is usually done with business intelligence tools or with statistical means to 
explain the results obtained from an APC model and to attribute the observed trends 
in delinquencies/default rates to their root causes. 
 
 The general formula of an APC model reads: 
 

 𝑓𝑓�𝑚𝑚(𝑎𝑎, 𝑝𝑝, 𝑐𝑐)� = 𝛼𝛼𝑎𝑎 + 𝜋𝜋𝑝𝑝 + 𝜁𝜁𝑐𝑐 + 𝜀𝜀𝑎𝑎,𝑝𝑝,𝑐𝑐 . (1) 
 
In this formula, 𝑓𝑓 is a link function – usually a logit, probit or natural logarithm, 𝑚𝑚 is 
the modelled measure (e.g. the default rate), 𝛼𝛼𝑎𝑎 is a series of coefficients correspond- 
ing to the values of age (MOB) 𝑎𝑎, 𝜋𝜋𝑝𝑝 is a series of coefficients corresponding to 
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reporting dates (periods) 𝑝𝑝, 𝜁𝜁𝑐𝑐  is a series of coefficients corresponding to dates of loan 
origination (cohorts, vintages) 𝑐𝑐, 𝜀𝜀𝑎𝑎,𝑝𝑝,𝑐𝑐 are error terms with expected values of 0. 
 In general, no further assumptions are made regarding the distributions of error 
terms; nevertheless, particular methods used for APC estimation may still use their 
specific assumptions. 
 The estimation of an APC model is usually done on aggregated data, i.e. a pivot 
table producing the measure in question and the number of observations for each 
combination of 𝑎𝑎, 𝑝𝑝, 𝑐𝑐. Since 𝑎𝑎 = 𝑝𝑝 − 𝑐𝑐 , one of the dimensions in this pivot table is 
redundant. The pivot table must cover consecutive values of period 𝑝𝑝 and cohort 𝑐𝑐. 
Then the coefficients of all the values of 𝑎𝑎,𝑝𝑝, 𝑐𝑐 observed in the dataset will be 
produced by the model. As the model is non-parametric, it is not possible to produce 
forecasts for the values of 𝑎𝑎,𝑝𝑝, 𝑐𝑐 not present in the development dataset. 
 The general formula of an APC model poses two identification problems. First, 
any constant can be added to coefficients 𝛼𝛼𝑎𝑎 and subtracted from 𝜋𝜋𝑝𝑝 or 𝜁𝜁𝑐𝑐 without 
any change in the model fit. This issue is purely technical and it has no impact on the 
practical interpretation of the results, as coefficients 𝛼𝛼𝑎𝑎 , 𝜋𝜋𝑝𝑝, 𝜁𝜁𝑐𝑐 can be presented in 
such a way that their mean value is zero. However, the second model identification 
issue is serious. Note that as 𝑎𝑎 − 𝑝𝑝 + 𝑐𝑐 = 0, for any number 𝜏𝜏 we can obtain an 
alternative set of coefficients producing the same prediction, but differing by a linear 
trend from their original versions: 
 

 
𝛼𝛼𝑎𝑎 + 𝜋𝜋𝑝𝑝 + 𝜁𝜁𝑐𝑐 = 𝛼𝛼𝑎𝑎 + 𝜋𝜋𝑝𝑝 + 𝜁𝜁𝑐𝑐 + 𝜏𝜏(𝑎𝑎 − 𝑝𝑝 + 𝑐𝑐) = (𝛼𝛼𝑎𝑎 + 𝜏𝜏𝑎𝑎) +

�𝜋𝜋𝑝𝑝 − 𝜏𝜏𝑝𝑝� + (𝜁𝜁𝑐𝑐 + 𝜏𝜏𝑐𝑐). 
(2) 

 
 From the user’s perspective, this poses a serious problem. The user of an APC 
model would want to know if the recent trend in the modelled variable (e.g. default 
rate) is caused by a trend in cohort quality (e.g. caused by underwriting criteria), 
portfolio age or a trend in external factors. This has an obvious impact on the action 
plan that the risk manager would propose. However, due to the model identification 
issue trends in the model, the coefficients can be freely manipulated by an analyst 
estimating the model. The data provide no answer as to which version of the 
coefficients is correct. 
 It should also be noted that the model identification issue does not depend on link 
function 𝑓𝑓 or any additional assumptions relating to the distribution of error terms. 
Therefore, no estimation technique can solve this problem unless additional data are 
provided or additional assumptions are made (Forster & Sudjianto, 2013). 
 To sum up, the main advantage of an APC model is its simplicity and the fact that 
it involves very few upfront assumptions. The disadvantages include the 
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identification problem and inability to provide reliable forecasts for cohorts, ages or 
periods going beyond the development dataset. 

2.2. The idea of a challenger model 

A tempting modification of an APC model would be to use an application score 
instead of the cohort indicator. It assumes that the application score summarises all 
the relevant information about the credit risk, and the difference of the average 
credit scores for the given cohorts reflects the differences in the quality of the 
underwriting. This reasoning, however, is flawed for a number of reasons. Firstly, 
underwriting is often based on a few scorecards (e.g. separate models for new and 
existing clients, separate models for clients with or without a credit bureau record) 
that are rarely consistently calibrated, making their resulting scores incomparable. 
Secondly, the sales channel is not usually included in the application scorecard, yet it 
might be a significant risk factor. Thirdly, the application scorecards may be 
frequently modified, thus making some cohorts incomparable by considering these 
scores alone. 
 In light of the arguments above, it is tempting to take all the relevant data 
captured at the time of application (sales channel, socio-demographics, credit bureau 
variables) and estimate an equivalent of an APC model with such raw data. These 
data are usually easily available, as they are produced for a periodical review of the 
application scorecards and for business intelligence reporting. Nevertheless, 
developing such a model with classical means, even without a strict validation 
process, can take several weeks, if not months. The APC model, on the other hand, is 
supposed to provide quick answers within days. Once set up, it takes only a few 
hours to estimate such a model and produce a summary report. 
 Interpretable machine learning can help improve the delivery time of the analysis 
above. The idea is to consider the measure in question (in this case the default rate) 
at the level of individual observation, so that it becomes a zero-one variable. Then, 
interpretable machine learning is run with a logit link function on the application 
data, the account age (MOB), and the indicator of the period, or, in another variant, 
on a pre-defined set of macroeconomic variables. The SHAP algorithm can then 
attribute the prediction to the period, age, and application data. As the SHAP 
algorithm provides additive attributions, the SHAP values for the application data 
can be added up for each observation to produce an equivalent of an application 
score. Then, the average of this application score equivalent over a cohort (vintage) 
can be taken to represent the quality of the underwriting in a given cohort. Similarly, 
the sum of the SHAP values for all the macroeconomic variables for a given 
observation provides a total attribution of the modelled measure to the external 
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environment. A vector of averages of these SHAP values by period provides an 
equivalent of the period coefficients in an APC model. 
 The use of a detailed application and macroeconomic data makes it possible to 
produce forecasts beyond the development dataset. Reasonable assumptions about 
the cohort quality can be made. They can be based on e.g. the sales budget by 
channel, trends in underlying customer characteristics such as past delinquencies, 
debt to income etc., and based on the expected changes in the credit policy. 
Similarly, macroeconomic scenarios can be used to make forecasts of the period 
coefficients. Finally, age coefficients can simply be extrapolated, as they flatten out 
with age (as demonstrated in Figure 7). 
 Finally, a detailed attribution of the measure in question to a particular 
application or macroeconomic data indicates which parameters of the incoming 
applicants should be monitored with classical business intelligence tools and which 
macroeconomic variables should be forecasted in macroeconomic scenarios. 
 Taking the above into consideration, the challenger model proposed here should 
be able to eliminate both of the indicated drawbacks of a simple APC model, to 
provide additional insight into the root cause of the identified trends of default or 
delinquency rates and to deliver a meaningful final report within a few of hours, 
once it is set up. 

2.3. Specification of the challenger model 

In this section, the results of the following algorithm of the proposed model are 
presented: an XGBoost model is run with logit output (option ‘binary:logitraw’) on a 
training sample. The modelled outcome is 1 for the accounts defaulting in the next 
calendar month, and 0 otherwise. The explanatory variables are: idiosyncratic 
predictors gathered on application date 𝑋𝑋(𝑎𝑎) for account 𝑎𝑎, macroeconomic 
variables 𝑀𝑀(𝑡𝑡) for observation date 𝑡𝑡, and months on books 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎, 𝑡𝑡). The model 
produces 𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑡𝑡�𝐷𝐷�𝑋𝑋(𝑎𝑎),𝑀𝑀(𝑡𝑡),𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎, 𝑡𝑡)�, which is then converted to the probability 
of a default occurring in the following month by the formula below: 
 

 𝑃𝑃𝑃𝑃�𝑋𝑋(𝑎𝑎),𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎, 𝑡𝑡),𝑀𝑀(𝑡𝑡)� =
exp�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� 𝐷𝐷�𝑋𝑋(𝑎𝑎),𝑀𝑀(𝑙𝑙),𝑚𝑚𝑙𝑙𝑚𝑚(𝑎𝑎,𝑙𝑙)��

1+exp�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� 𝐷𝐷�𝑋𝑋(𝑎𝑎),𝑀𝑀(𝑙𝑙),𝑚𝑚𝑙𝑙𝑚𝑚(𝑎𝑎,𝑙𝑙)��
 . (3) 

 
 
 
 
 
 



M. P. KWIATKOWSKI    Supporting the Age-Period-Cohort model of default rate prediction with...  63 

 

 

 The model is run in the variants presented in Table 1. 
 

Table 1. The applied model variants  

Lagged macroeconomic variables (AL) 𝑀𝑀(𝑡𝑡) consists of macroeconomic data with 6 lags 
Coincident macroeconomic variables (AC) 𝑀𝑀(𝑡𝑡) consists of macroeconomic data without lags 
Dummy variables (AD) 𝑀𝑀(𝑡𝑡) consists of dummy variables for the calendar 

month 
No macroeconomic variables (AN)  

Source: author's work. 

 
 The model corresponds to an APC framework in a sense that the MOB has the 
meaning of age, the macroeconomic variables describe the impact of the ‘period’, 
and the idiosyncratic information gathered at the time of credit application 
corresponds to the quality of the cohort. 
 The replacement of cohort indictors with idiosyncratic application data eliminates 
the identification problem of an APC-based approach. It is subject to assumption, 
though, that all the relevant cohort quality parameters are captured by these 
idiosyncratic data. 

2.4. Grid search 

The learning parameters have been optimised separately for each model variant, and 
only the results of these optimum models are presented in this paper. In order to 
optimise the learning parameters, the following algorithm was run: depth of trees 
– values 2, 3 and 4 were tested, within each depth, learning rates 1.0, 0.5, 0.25 were 
tested, within each learning rate, the number of trees of 40, 80, 160 were tested. 
 If the Gini index on the test sample was improved by at least 0.01 from the 
recently memorised best set of parameters, the old set of learning parameters was 
discarded, and the new one was remembered. 
 There is no random (bagging) element allowed in the model estimation, as 
financial institutions and their regulators prefer to have no random components in 
their models. 

2.5. Explanation of the predictions 

The TreeSHAP algorithm implemented in the Python SHAP package was applied to 
explain the aforementioned XGBoost model. It provided for the training, testing and 
out-of-time samples: 
• an additive explanation of the predictions (logit of default) for individual 

observations and for the entire sample; 
• a summary of the feature (predictor) importance; 
• the relationship between the predictors and their SHAP values. 
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 The above is in line with the practice already established in the financial industry 
(Bracke et al., 2019; Kaszyński et al., 2020). More on the SHAP algorithm can be 
found in Lundberg and Lee (2017).  
 Note that the SHAP values can be calculated for data out of the training sample. 
Therefore, once the model is developed, its SHAP values may be applied to many 
monthly snapshots of fresh data without the need to re-estimate the formula. This 
functionality is demonstrated in Section 4. 

2.6. Model constraints 

In order to improve interpretability, the XGBoost models were run with interaction 
constraints on all 𝑋𝑋(𝑎𝑎), 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎, 𝑡𝑡) and 𝑀𝑀(𝑡𝑡) variables. None of these variables were 
allowed to interact with each other. Similarly, following a common business practice 
in scorecard development, monotonicity constraints were applied to the 𝑋𝑋(𝑎𝑎) and 
𝑀𝑀(𝑡𝑡) variables, except for the categorical ones. Monotonicity constraints mean that 
the probability of default in the model can only increase in the direction indicated by 
a subject matter expert. Constraints imposed on macroeconomic variables are 
presented in Table 2. All lagged variables share an indicated direction of their base 
variable. 
 
Table 2. Monotonicity constraints imposed on macroeconomic variables 

Variable Description Sign 

Bankruptcies New consumer bankruptcies in a given month + 
Deaths New deaths reported in a given month + 
UnemployedStock Number of registered unemployed, end of a given month + 
UnemployedRate Registered unemployment rate + 
UnemployedNew Newly registered unemployed in a given month + 
UnemployedNewRepeat Newly registered unemployed in a given month who were 

unemployed before 
+ 

JobOffersNew New job offers registered in a given month – 
JobOffersNewPrivate New job offers registered in a given month, private sector – 
JobOffersEOM Open job offers on month-end – 
MeanSalaryEnt Mean salary in the enterprise sector – 
CPI Consumer price index, change year on year + 
CCI_curent Consumer Confidence Index, current status – 
CCI_leading Consumer Confidence Index, future outlook – 
CCI_finance Consumer Confidence Index, household finances – 
CCI_country Consumer Confidence Index, economic situation of a country – 
CCI_cpi Consumer Confidence Index, inflation outlook – 
CCI_unemployment Consumer Confidence Index, unemployment outlook 

(inverted sign) 
– 

CCI_purchases Consumer Confidence Index, propensity for major purchases – 
CCI_savings Consumer Confidence Index, savings propensity – 

Source: author's work. 
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 It should be noted, however, that these additional regularisation constraints are 
feasible without much compromise on the part of the predictive power, because the 
input data were already carefully prepared, i.e. most of the interactions between the 
raw variables were captured in the process of constructing predictors 𝑋𝑋(𝑎𝑎). 

2.7. Implied macroeconomic factors (period coefficients) 

Implied macroeconomic factors, called coefficients of periods in the classical APC 
approach, can be inferred from SHAP values. Having dummy variables for each 
calendar month 𝑡𝑡 as the only set of external variables 𝑀𝑀(𝑡𝑡), we can calculate their 
impact on the logit of the default in the development sample. The impact is 
measured by the SHAP value of the respective dummy variables. The mean value of 
the SHAPs for observations with a dummy equal to 1 was calculated. Then, the mean 
value of the SHAPs for observations with dummy equal to 0 was subtracted from the 
result. In this way, the implied macroeconomic factor was obtained for each 
observation month in the training sample. 
 In this article, the implied macroeconomic factors were compared with the weight 
of evidence of the calendar month in the training sample. The weight of evidence 
(WoE) corresponds to the coefficients of univariate logistic regression of the 
modelled default on the categorical calendar month plus a normalisation constant, 
making it independent from the choice of the reference category. The weight of the 
evidence for calendar month 𝑡𝑡 is defined as (Siddiqi, 2017) 
 

 𝑊𝑊𝑚𝑚𝑊𝑊(𝑡𝑡) = log�𝑝𝑝𝑝𝑝𝑓𝑓𝑑𝑑(𝑡𝑡)/𝑝𝑝𝑝𝑝𝑓𝑓𝑛𝑛(𝑡𝑡)�, (4) 
 
where 𝑝𝑝𝑝𝑝𝑓𝑓𝑑𝑑 and 𝑝𝑝𝑝𝑝𝑓𝑓𝑛𝑛 are probability distribution functions of the defaults and non-
defaults, respectively for the analysed portfolio and sample. 
 
 Both the implied macroeconomic factor and weight of evidence are presented on 
the same logit scale. This comparison visually demonstrates to what extent the 
variance of the default rates is explained by the calendar month, and to what extent 
other predictors in the model are playing their role. Such a comparison of the score 
value assigned to a certain category to its WoE is a standard assessment procedure of 
credit scorecards (Siddiqi, 2017). 

2.8. The quality of underwriting (cohort coefficients) 

The SHAP values for individual predictors add up to the total predicted logit of 
default. Separating the SHAP values for static (application) features and adding them 
up provides a close equivalent of a traditional application score (expressed in a logit 
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scale). Furthermore, averaging this score for the whole cohort provides a measure of 
the underwriting quality, which is called a cohort coefficient in the APC approach. 
 As accounts close, either due to prepayment or due to contractual maturity, the 
distribution of the application data for a given cohort changes along with the months 
on books. Therefore, the impact of a specific cohort (vintage) on the portfolio quality 
may depend on the MOB. The quality of the underwriting presented in this article 
should be understood in the context of a specific portfolio sample. 

3. Data 

This section describes the data obtained for the research and the sample selection for 
the development of a machine-learning model. 

3.1. Data obtained for research 

The gathered data correspond to a typical dataset available in a lending institution 
for credit risk analysis. It consists of 40 monthly portfolio snapshots between (and 
including) two dates: 𝑇𝑇𝑆𝑆 and 𝑇𝑇𝐸𝐸. The records contain an opening date, months on 
books and a date of default for the defaulted accounts. In these data, accounts never 
cure from default. The data also contain the application records: the socio- 
demographics and the summary of the credit bureau reports (e.g. the number of 
delinquent loans or the number of credit inquiries), altogether 27 potential 
idiosyncratic predictors. The data are fully anonymised. 
 Additionally, for the same period between (and including) 𝑇𝑇𝑆𝑆 and 𝑇𝑇𝐸𝐸, selected 
macroeconomic data were obtained from ‘Statistical Bulletins’ (Pol. ‘Biuletyny 
statystyczne’), available on the Statistics Poland portal,1 including lagged data up to 
6 months. 
 The data cover four different portfolios with different characteristics in terms of 
maturity, prepayment and default risk. Furthermore, the important idiosyncratic 
application data differ considerably in their distribution. Therefore, repeating the 
modelling procedure on these four portfolios guarantees that the modelling results 
were not obtained accidentally, and that one can draw general conclusions from the 
performance of the proposed methodology. 

3.2. Sample construction 

For each portfolio, the following samples were built: 
• A training and testing sample (50%/50%) of the portfolio on the development 

window. An equal size of a training and testing sample was used to make relative 
forecast errors comparable. Using a different proportion results in a higher 
forecast error on a smaller sample due to the higher variance of the observed 

 
1 See: https://stat.gov.pl/obszary-tematyczne/inne-opracowania/informacje-o-sytuacji-spoleczno-gospodarczej 

/biuletyn-statystyczny-nr-72023,4,140.html. 

https://stat.gov.pl/obszary-tematyczne/inne-opracowania/informacje-o-sytuacji-spoleczno-gospodarczej/biuletyn-statystyczny-nr-72023,4,140.html
https://stat.gov.pl/obszary-tematyczne/inne-opracowania/informacje-o-sytuacji-spoleczno-gospodarczej/biuletyn-statystyczny-nr-72023,4,140.html
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default rates for any calendar month, which is unrelated to the quality of the 
model and its explanatory variables. The large number of observations in the 
available dataset allowed this equal split rather than a 70%/30% one, commonly 
used for smaller portfolios; 

• An out-of-time sample (OOT). Its purpose is to test how accurately the proposed 
model can forecast beyond the time range of the development sample. This is in 
line with a common business practice of backtesting loss forecast models. 

 The algorithm procedure of sample selection involves: 
• Preparing a Cartesian product of all dates between (and including) 𝑇𝑇𝑆𝑆 and 𝑇𝑇𝐸𝐸 with 

a set of account ids ever open between these dates. Each observation is a pair of an 
account id and an observation date; 

• Dropping from this Cartesian product the observations where the account was 
closed or defaulted on or before the observation date. Observations with accounts 
not yet open on the observation date should also be dropped. 

 The two steps above are consistent with taking a representative sample of an open 
portfolio for all observation dates between (and including) 𝑇𝑇𝑆𝑆 and 𝑇𝑇𝐸𝐸, which, again, 
is a common business practice in credit risk modelling. The subsequent steps are: 
• Selecting an interim censoring date 𝑇𝑇𝐼𝐼 six months before end date 𝑇𝑇𝐸𝐸. No data 

after the interim date are available for the model development. It applies to the 
predictors, outcome and macroeconomic data; 

• Forming the out-of-time sample from all the observations with an observation 
date on or after 𝑇𝑇𝐼𝐼; 

 The first two steps above involve blindfolding the model to all the information 
coming on or after 𝑇𝑇𝐼𝐼. An out-of-time sample will be used to backtest the model, i.e. 
to check if it is able to forecast default rates over the period between 𝑇𝑇𝐼𝐼 and 𝑇𝑇𝐸𝐸, for 
which no prior information was received. 
• Forming the development sample from 50% of the observations from the 

remaining set (observation date before 𝑇𝑇𝐼𝐼), forming the test sample from the rest. 
 The predictors were taken as of the observation date. They include static 
(application) data, account age (months on books) and lagged macroeconomic 
variables. The target variable (default or not) was taken as of the calendar month 
following the observation date. 
 In the next step, all observations in the development sample with non-default 
outcome were down-sampled in order to reduce the computational burden. All 
observations with a default status were left in the development sample. When 
calculating predictions from the model, a constant is added to the predicted logit of 
default to calibrate the default rate forecast to the population before down-sampling. 
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 Table 3 summarises the number of defaults in each sample, which is critical for 
the performance of any form of logistic regression. The total number of observations 
is not shown, so that confidential corporate information is not disclosed. 
 
Table 3. Sample counts (number of defaults) 

Sample P1 P2 P3 P4 

Training  ..........  6015 7784 5078 8505 
Test  ..................  6040 8027 5177 8679 
OOT  .................  4406 5479 4065 7416 

Note. P – portfolio. 
Source: author's work.  

4. Results 

This section is devoted to the presentation of the model evaluation measures and 
model evaluation results, followed by conclusions on the degree to which the 
proposed model meets the expectations. On the technical side, in all of the estimated 
variants, the grid search algorithm chose depth 2, learning rate 1.0 and 40 trees, and 
only the results for models obtained with these parameters are presented. 

4.1. Model evaluation measures 

The model evaluation measures presented in this section are appropriate for the 
proposed machine learning methods and not relevant to the standard APC 
approach. They describe how accurately the model is able to predict default rates 
beyond the period on which it was developed, and how exhaustively default rates can 
be explained with the underlying detailed idiosyncratic and macroeconomic data. 
None of these is a functionality of the standard APC approach, therefore classical 
APC is not included in the comparison. 
 For each calendar month, the portfolio (P1–P4) and the sample (training, test, 
OOT), the following measures were calculated and compared: 
• forecasted default rate 𝑃𝑃𝐷𝐷� (𝑡𝑡) based on model predictions, defined as an average 

of 𝑃𝑃𝑃𝑃�𝑋𝑋(𝑎𝑎),𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎, 𝑡𝑡),𝑀𝑀(𝑡𝑡)� for all accounts 𝑎𝑎 in the sample, which were open 
in calendar month 𝑡𝑡; 

• realised default rate 𝑃𝑃𝐷𝐷(𝑡𝑡), defined as the ratio of: 
– the number of accounts in the sample that were open in calendar month 𝑡𝑡 in the 

denominator, 
– the number of such accounts that defaulted in the next calendar month in the 

numerator. 



M. P. KWIATKOWSKI    Supporting the Age-Period-Cohort model of default rate prediction with...  69 

 

 

 The quality of fit is evaluated with a relative forecast error, given by a simple 
formula easily understood by business users of the proposed models: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ |𝐷𝐷𝐷𝐷(𝑡𝑡)−𝐷𝐷𝐷𝐷� (𝑡𝑡)|𝑡𝑡
∑ 𝐷𝐷𝐷𝐷(𝑡𝑡)𝑡𝑡

 . (5) 

 
 As the default rate forecast does not have the same mean value over time 𝑅𝑅 as the 
default rate realisation, it is impractical to use 𝑅𝑅2 as a measure of the model fit. 
It may yield values higher than 1 or lower than 0 – and in fact it often does. As the 
purpose of this article is to compare various approaches, it is important that the 
quality of fit has the same denominator for all of them. This is why the realisation of 
the default rate is used in the denominator rather than in its forecast. 
 Even though the quality of the default rate forecast is primarily sought, the quality 
of the default/non-default separation was also measured with a Gini index, which is 
a standard approach in the consumer-lending industry. 

4.2. Summary of the results 

Tables 4 and 5 present the relative forecast errors and the Gini indices, respectively. 
 
Table 4. Relative forecast errors 

Portfolio/approach Training Test OOT 

P1/AL  ..................................   5.8%   8.5% 14.0% 
P1/AC  .................................   6.6%   8.6% 17.0% 
P1/AD  .................................   8.5% 11.0% 14.8% 
P1/AN  ................................. 12.2% 11.5% 12.7% 
P2/AL  ..................................   6.5%   6.3%   5.4% 
P2/AC  .................................   6.7%   8.0%   7.3% 
P2/AD  .................................   9.0%   9.8%   9.6% 
P2/AN  ................................. 12.1% 11.6%   8.3% 
P3/AL  ..................................   7.5%   8.8%   7.5% 
P3/AC  .................................   6.8%   9.7% 14.7% 
P3/AD  ................................. 10.5% 11.9%   9.0% 
P3/AN  ................................. 13.7% 14.5%   8.8% 
P4/AL  ..................................   6.1%   6.4%   2.5% 
P4/AC  .................................   6.1%   7.4%   2.7% 
P4/AD  .................................   6.8%   8.2% 16.2% 
P4/AN  ................................. 11.0% 11.2% 15.1% 

Source: author's work. 
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Table 5. Gini indices 

Portfolio/variant Training Test OOT 

P1/AL  .................................. 62% 61% 51% 
P1/AC  ................................. 62% 61% 51% 
P1/AD  ................................. 62% 61% 51% 
P1/AN  ................................. 62% 61% 51% 
P2/AL  .................................. 66% 65% 59% 
P2/AC  ................................. 66% 65% 58% 
P2/AD  ................................. 66% 65% 59% 
P2/AN  ................................. 66% 65% 59% 
P3/AL  .................................. 67% 65% 59% 
P3/AC  ................................. 67% 65% 59% 
P3/AD  ................................. 67% 65% 59% 
P3/AN  ................................. 67% 65% 59% 
P4/AL  .................................. 58% 57% 54% 
P4/AC  ................................. 58% 57% 54% 
P4/AD  ................................. 58% 57% 54% 
P4/AN  ................................. 58% 57% 54% 

Source: author's work. 

 
 The model performance measures on the test and the training sample provide 
information about the model fit. A model overfit can also be detected if the measures 
are considerably better on the training sample than on the test sample. On the other 
hand, the model performance on the OOT sample says if the model is able to 
extrapolate its forecast beyond the time scope of the training sample. The results 
show no overfit with respect to idiosyncratic data, while some overfit is observed 
with respect to macroeconomic data (or period coefficients), reflected in higher 
relative forecast errors on the test sample compared to the training sample. 
Furthermore, despite some drop on the out-of-time sample, the Gini indices remain 
strong. It means that the model is able to detect relationships in the idiosyncratic 
data which are stable over time. 
 It is quite surprising to see that the Gini index does not really depend on the 
approach to macroeconomic data, while the relative forecast error depends on it 
strongly. Approach AN without any period indicators and without macroeconomic 
data performs worst of all on the training and test samples. Approach AL with 
lagged macroeconomic data is able to provide a very accurate forecast, for example 
for portfolios P2 and P4. However, as shown in Table 6, the proposed algorithm is 
not very good at selecting macroeconomic variables consistently. This indicates the 
need to perform a reduction of dimensionality of macroeconomic variables and 
feature engineering in this area based on expert judgement, e.g. introducing the 
moving averages or differences of some macroeconomic variables. In this context, it 
should be noted that even though the number of observations provided to the 
machine-learning algorithm is large, the effective dimension of the macroeconomic 
data equals the number of months in the training sample, which is 34. The presented 
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machine-learning algorithm is based on an already pre-selected set of 19 variables, 
which with 6 lags each makes a total of 133 candidate variables. The right or wrong 
choice of macroeconomic variables may be the reason behind the inconsistent 
performance of model variants with macroeconomic data on the OOT sample.  
 
Table 6. Automatically selected macroeconomic variables 

Portfolio/variant Variant with coincident variables 

P1/AC UnemployedNew, UnemployedNewRepeat, JobOffersNewPrivate, CPI, CCI_current, 
CCI_cpi 

P2/AC UnemployedNewRepeat, MeanSalaryEnt, CCI_savings 
P3/AC UnemployedNewRepeat, JobOffersNew, MeanSalaryEnt, CPI 
P4/AC UnemployedNewRepeat, CPI, CCI_savings 
Portfolio/ variant Variant with lagged variables 
P1/AL Deaths_5, UnemployedNewRepeat_0, UnemployedNewRepeat_5, CPI_1, CPI_3, 
P2/AL UnemployedNewRepeat_3, MeanSalaryEnt_1, CPI_1, CCI_savings_1 
P3/AL UnemployedNewRepeat_2, MeanSalaryEnt_1, CPI_0, CCI_cpi_4 
P4/AL UnemployedNewRepeat_0, CPI_1, CCI_savings_1 

Source: author's work. 

 
 Figure 3 presents the predictions of the default rate and its realisations. No scale is 
shown on the Y axis so that the true default rate of the data provider is not disclosed 
for legal reasons. 
 
Figure 3. Predictions and realisation for portfolio P4, test and OOT samples. 

The OOT sample starts to the right of the visible gap in lines, months 34–40 

 
Source: author's work. 
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 As Figure 3 demonstrates, variant AN ignores the improving macroeconomic 
environment between months 10 and 25 as well as its worsening after month 30. 
Variant AD clearly overfits the random fluctuations of the training sample (shown in 
Figure 2), but makes a smaller systematic error on the test sample. Both the AN and 
AD variants perform poorly on the OOT sample, as variant AD was not provided 
with any macroeconomic scenario from month 35 onwards. Not surprisingly, it 
shows a nearly identical forecast as AN on the OOT sample. The variants with true 
macroeconomic data, AC and AL, perform really well on both test and OOT 
samples, at least for portfolio P4. This, despite the difficulties mentioned in Section 
4.2, confirms the technical possibility to build good machine-learning models with 
macroeconomic data, as required by IFRS 9 regulations and stress test requirements 
imposed by supervisors of financial systems. 
 Figure 4 shows how the model with dummy variables produced implied 
macroeconomic factors for portfolio P4. 
 
Figure 4. Implied macroeconomic factors by reporting month – portfolio P4, training sample  

 
Source: author's work. 
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 The improvement of the macroeconomic environment in months 12–24 was 
correctly identified, and furthermore aligned with WoE in this period. The model 
did not attribute an increased default rate to the macroeconomic situation in months 
30 to 33. Instead, it was attributed to the relaxed underwriting policy and portfolio 
age, as shown in Figure 5. 
 
Figure 5. Decomposition of default rate prediction for each reporting month, portfolio P4, 

variant AD, test and OOT samples 

 
Source: author's work. 

 
 This decomposition urges the risk manager to promptly review the underwriting 
criteria, as the negative impact of bad incoming population was temporarily offset by 
a relatively young portfolio age in months 24 to 29. This compensating effect ended 
in months 30 to 35, which resulted in an observed default rate increase in that 
period. 
 A better and more traditional way of presenting the quality of underwriting is to 
plot its dependence on the month of booking (also called a vintage or cohort). An 
example is shown for portfolio P4 in Figure 6. It was also successfully determined for 

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Lo
gi

t 
sc

al
e

Calendar month

MOB Underwriting Macroeconomics



74 Przegląd Statystyczny. Statistical Review 2023 | 1 

 

 

the OOT sample and for cohorts preceding the observation months (labelled with 
a negative sign). Note that higher values indicate a higher risk of default due to the 
relaxation of the credit policy. 
 
Figure 6. Estimated quality of underwriting by cohort, portfolio P4, variant AD, 

test and OOT samples 

 
Source: author's work. 

 
 Figure 6 shows that the decrease in the credit risk quality of recently booked loans 
is considerable. Compared to this, Figure 5 does not expose it as much as it mixes 
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in the APC approach). Here we see an increase of risk by 0.6 on a logit scale between 
months 22 and 40, which corresponds to the increase of the predicted default rate 
1.8 times. 
 The impact of portfolio aging on the logit of the probability of default is shown in 
Figure 7 for portfolio P4. The shape of the obtained curve corresponds with that 
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important driving factor of default rate prediction, and why it is so dangerous to omit 
it, as mentioned in Section 1. The span of three logit units accords with the 20-fold 
difference in the risk of default. This is compared to the span attributed to the cohort 
of 0.8 (Figure 6), which is in agreement with the default risk increase by a factor of 2. 
The impact of the macroeconomic environment, much valued in IFRS 9 regulations 
and stress-testing requirements of the banking supervision worldwide, has the span 
of only 0.3 (Figure 4), corresponding to the 1.3-fold difference in default risk. 
 
Figure 7. Impact of MOB on the SHAP value, portfolio P4, variant AD, training sample 

 
Source: author's work. 
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month 30 onwards. Other idiosyncratic variables have a much lower and more 
temporary impact. 
 Fortunately for the risk manager in charge of this portfolio, this pattern of a single 
variable getting out of control can be easily corrected by imposing a single additional 
underwriting criterion on this variable, which would likely be a recommended 
action. 
 
Figure 8. Decomposition of the quality of underwriting, portfolio P4, variant AD, 

test and OOT samples 

 
Source: author's work. 
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should be tracked with more conventional reporting. The proposed procedure reads 
as follows: 
• prepare a datamart consisting of application data, monthly delinquency and 

default data, and update it monthly; 
• prepare a datamart with macroeconomic variables and update it monthly; 
• prepare a sample as described in Section 3.2, without the out-of-time part; 
• estimate the model as explained in Sections 2.3–2.8, considering version with 

dummy variables (AD); 
• prepare decomposition charts (Figures 2, 3, 4, 5, 6); 
• based on Figure 2, attempt to identify the macroeconomic variables showing 

a similar time pattern; 
• re-estimate the model in version AC (or AL) with shortlisted macroeconomic 

variables; 
• prepare decomposition charts again (Figures 2, 3, 4, 5, 6); 
• prepare a short-term default rate/delinquency rate forecast with a macroeconomic 

scenario; 
• prepare your write-up, conclusions and recommendations for the management of 

your company; some guidelines may be found in Breeden (2010); 
• store your results and forecasts for out-of-time testing to be performed a few 

months later. 
 The two-step estimation (AD and then AC or AL) is recommended, as the 
methodology tested in this article has limited capacity to identify the 
macroeconomic variables driving portfolio performance. Automating the process of 
macroeconomic variables selection by means of imposing certain regularisation 
criteria (e.g. unit root tests, co-integration, etc.) remains an interesting topic for 
further research. 
 A limitation of the proposed method consists in its lack of utilising behavioural 
data. Therefore, its business potential is limited to portfolios of loans without 
transactional data, such as cash loans or mortgages. Furthermore, it is limited to 
institutions without current accounts, from which useful behavioural information 
can be extracted. Thus, the proposed model is practical mostly for specialised non- 
banking retail lenders. For other lenders it may still serve as a useful benchmark for 
models applying behavioural data. 
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The passing of our mentor,  
Professor Maria Cieślak – memories1 

Ireneusz Kuropka,a Joanna Krupowiczb  
 

 
 
On Sunday, 23 April 2023, we received very sad news that Professor Maria Cieślak 
had passed away. 
 ‘Our Professor Cieślak’ is gone. She was ‘our Professor’, because for many of us 
she was a thesis advisor or reviewer of doctoral dissertations, and she supported us 
in our further scientific careers. She was our teacher and mentor, and showed us the 
beauty and secrets of science. 
 Maria Łucja Cieślak was born on 13 December 1933 in Barchlin (Wielkopolskie 
Voivodship). She graduated high school in Leszno, where her reliability, meticulous 
work ‘from start to finish’, honesty and respect for the truth developed. In 1951, she 
studied at the University of Economics in Katowice. She then moved to Wrocław, 
where she enrolled at the Faculty of Industry of the then Higher School of 
Economics. It was that university (now the Wroclaw University of Economics and 
Business) that she connected her professional life with and where she pursued her 

 
1 The text uses the farewell speeches given by Prof. Elżbieta Gołata and Prof. Irena E. Kotowska at the 
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scientific career. In 1956, she earned her master’s degree in economics in the field of 
statistics. Professor Jan Falewicz, the first head of the Department of Statistics of the 
Higher School of Trade (Wyższa Szkoła Handlowa) in Wrocław (the precursor of 
the Wroclaw University of Economics and Business), influenced her scientific 
interests. Her outstanding scientific achievements earned her a proposal to work at 
the University, which she accepted, starting her career in the Department of 
Statistics, later transferring to the Department of Econometrics. 
 In 1964, Professor Maria Cieślak defended her doctoral thesis entitled ‘Statistical 
issues relating to working standards’ and earned a doctorate in economic sciences. In 
1974, at the initiative of Professor Zdzisław Hellwig, the Department of Forecasting 
and Theory of Demography was established at the Institute of Economic Cybernetics 
of the Faculty of National Economy. The management of the department was 
entrusted to Maria Cieślak. In the same year, in the course of her long-term 
cooperation with the Institute of Scientific Policy in Warsaw, her monograph 
entitled ‘Models of needs for qualified staff’ was published. This was the main 
achievement for which she obtained her postdoctoral degree in economic sciences. 
That work, under the modified title of ‘Models of demand for qualified staff’ was 
published by PWN (Polish Scientific Publishers) in 1976. Five years later, Maria 
Cieślak became a professor at the University of Economics. In 1981, the Department 
of Forecasting and Theory of Demography was transformed into the Chair of 
Forecasting and Theory of Demography, and in 1995 into the Chair of Forecasting 
and Economic Analysis. With breaks, the professor was head of these units until 
2003. In 1988, Professor Maria Cieślak received the title of full professor. 
 In addition to the function of the Head of the Chair of Forecasting and Economic 
Analysis, Professor Maria Cieślak also held other important positions at the 
University. In those particularly difficult times, she always worked with a sense of 
responsibility and service to the University’s academic community. In the years 
1979–1981, she was the vice-dean of the Faculty of National Economy and in 1981–
1982 she was the vice-rector for didactics. Due to her perseverance and courage, 
respect for fundamental values, her openness to others and the changing world, she 
became an inspiration for many at the time. 
 In recognition of her distinguished service to the University, on 26 September 
2007, the Senate of the Wroclaw University of Economics and Business awarded 
Maria Cieślak the title of honorary professor. 
 Professor Cieślak’s scientific and organisational activity was not limited to the 
University. She was a demographer and statistician, and a valued scientific authority. 
From 1975, for several terms of office she was a member of the Committee of 
Demographic Sciences of the Polish Academy of Sciences and in 1978 she started 
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serving on the Committee of Statistics and Econometrics of the Polish Academy of 
Sciences. After 1985, she was appointed member of the Government Population 
Council. She was also a member of the International Union for the Scientific Study 
of Population (from 1978). Professor Cieślak was active in the scientific community 
until her very last days. In 2022, she actively participated in the work of a team 
appointed by the Bureau of the Polish Academy of Sciences to evaluate the proposal 
for a demographic strategy prepared by the Ministry of Family and Social Policy. 
 Due to her established position in the scientific community and her 
conscientiousness in fulfilling her duties, she was often invited to participate in the 
activities of various bodies responsible for publishing scientific journals. At her 
home university, Professor Maria Cieślak chaired the Senate’s publishing committee 
for 11 years. Throughout her career, she was the editor-in-chief of Argumenta 
Oeconomica and Wrocławski Biuletyn Gospodarczy (Polish Economic Society, 
Wrocław Branch), as well as member of the editorial committee of Studia Demo-
graficzne and the editorial board of Przegląd Statystyczny, Studia Demograficzne, 
Badania Operacyjne i Decyzje and Przegląd Statystyczny Śląska Dolnego i Opolskiego. 
 For her outstanding achievements, Professor Maria Cieślak received many awards 
and distinctions from the state, the scientific community and other institutions. 
Professor Maria Cieślak was distinguished with the Knight’s Cross and Officer’s 
Cross of the Order of Rebirth of Poland, and the Golden Cross of Merit. She also 
received the Medal of the Committee on National Education and the Badge of the 
Distinguished Teacher. In 1993, the President of Statistics Poland awarded Professor 
Cieślak with the Golden Honorary Badge ‘For Distinguished Service to the Statistics 
of the Republic of Poland’. Moreover, she received the following regional awards:  
a Golden Badge ‘For Distinguished Service to Lower Silesia’ and a Silver Badge of the 
Builder of the Legnica-Głogów Copper District. 
 The Wroclaw University of Economics and Business awarded her the title of the 
Crystal Graduate (Alumnus), as an appreciation for the many years of her scientific 
and educational achievements and an expression of admiration for her commitment 
to the academic community. 
 Professor Maria Cieślak’s scientific and research interests focused mainly on two 
areas: forecasting and demography. She is considered the creator of the Scientific 
School of Forecasting, developed at the Wroclaw University of Economics and 
Business. The school is known for paying attention to the entire forecasting process, 
not just the forecasting method. This entails placing emphasis on the formulation of 
the purpose of the forecasting, the predictive indications, the determination of the 
assumptions underlying the forecasting methods and the examination of the 
compatibility of these components of the forecasting procedure with a selection of 
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forecasting methods. Professor Cieślak devoted a lot of attention to the critical 
analysis of forecasting methods, formulating proposals for new forecasting methods 
and building forecasts of economic and social processes. The culmination of her 
work in these areas was the publication of the ‘Economic forecasting. Methods and 
Application’ manual, which was co-written with a team of scientists and which 
received an award from the Minister of Education in 1994. The publication 
addresses the entire forecasting process in a comprehensive and in-depth way. The 
holistic approach presented in the manual made it a publication used at many Polish 
universities, serving as a guide for a variety of authors of other textbooks in this field. 
 Professor Maria Cieślak was also the initiator of the regularly organised 
‘Forecasting in company management’ scientific conference. During the event held 
in 2014, which marked the 20th anniversary of the Chair of Economic Forecasting 
and Analysis, when sharing her reflections on her ‘adventure’ with forecasting, she 
mentioned Alvin Toffler’s book ‘The Third Wave’ as an inspiration for her scientific 
exploration in this area. 
 Professor Cieślak’s interest in forecasting was also reflected in forecasting 
demographic phenomena, as demonstrated by her research on the concepts and 
modelling of demographic development. The Professor devoted a lot of her attention 
to the search for ever better research tools and for the means of expressing changes 
observed in population processes, especially those concerning ageing and the labour 
market. Her approach to the forecasting of demographic processes corresponded to 
the latest global trends. An excellent example of the above is her method of 
forecasting based on spatial-temporal analogies. The research on demographic 
processes resulted in the publication of a book entitled ‘Demography. Methods of 
Analysis and Forecasting’ (1982). The Professor was the scientific editor and co-
author of the publication, which received a minister’s award and had several 
editions. 
 Professor Maria Cieślak was the author or co-author of over 100 scientific papers, 
16 monographs, and 18 textbooks and academic books. Additionally, she prepared 
many research reports commissioned by various state institutions and companies. 
 Professor Cieślak assisted in the writing of numerous doctoral and post-doctoral 
dissertations as well as professor monographs. She was the supervisor of 13 PhD and 
eight post-doctoral candidates. Among her PhD students, three went on to receive 
the title of full professor. She supervised numerous master’s degree dissertations. 
Even after having formally ended her professional activity, Professor Cieślak was 
always ready to provide help and advice on various issues. She took special care of 
her students. 
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 She was held in high esteem and recognised by Polish demographers, statisticians 
and econometricians. Many researchers felt deep respect for her, thus any positive 
reviews or opinions expressed by Professor Cieślak were particularly significant and 
valued among the academic community and a testimony to the recognition of one’s 
scientific achievements. That is the reason why she was often invited to become 
member of various bodies and entrusted with the role of a reviewer. Professor 
Cieślak reviewed 53 doctoral dissertations, participated in 32 post-doctoral 
proceedings, and examined 16 applications for the title of professor. She knew how 
to appreciate another researcher’s commitment and effort. Her reviews were highly 
substantive and written in a kind way, as she always appreciated an individual’s 
achievements and was always willing to make further suggestions as to how to 
enhance their study. The Professor showed great respect for other researchers, which 
was particularly evident at conferences: she always listened carefully to the speeches 
and her comments and proposals were constructive and useful for the authors. After 
finishing her work at the Wroclaw University of Economics and Business in 2003, 
Professor Cieślak started working at the WSB School of Banking, initially in Poznań 
and later in Wrocław. 
 Professor Maria Cieślak was scientifically active throughout her life. Even when 
she retired, she wrote papers and reviewed various scientific works: studies, doctoral 
dissertations and post-doctoral monographs. Her last paper was published in  
a collective study entitled ‘Society in the Age of Change - Interdisciplinary Studies’ in 
April 2023. 
 Professor Cieślak’s attitude stemmed from an understanding of the role of  
a scholar, whose duty is to ‘help to understand the world’. However, ‘whether we use 
the results of their investigations and how we use them depends on the quality of the 
society’. Referring to the concept of social capital, she defined the role of scholars in 
its creation. In her opinion, scientists have ‘special obligations towards the 
individual, the society and the state. These commitments concern the effective, 
axiological, and fiduciary aspects of their activities and behaviour. The main goal of 
scientists (...) is to bring good, not material benefits that exceed ordinary personal 
needs as well as those resulting from work’ (Cieślak 2017, p. 13)2. 
 Despite her great commitment to scientific work, Professor Cieślak had time for 
her two passions: reading books and contact with nature. Olga Tokarczuk was one of 
her favourite writers. Trips to the woods and taking care of her plants in her garden 
gave her the greatest joy. 

 
2 Cieślak, M. (2017). Laudacja dla profesor Ireny Elżbiety Kotowskiej. Studia Demograficzne, (2), 13–16. 

https://econjournals.sgh.waw.pl/SD/article/view/1377/1229. 

https://econjournals.sgh.waw.pl/SD/article/view/1377/1229
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 On the one hand, we feel sadness and regret about the passing of a person we 
loved, who has been with us for many years, who has given so much to each of us, 
whose care we experienced, and whom we were always able to count on. On the 
other hand, we have a feeling of gratitude to Professor Cieślak for everything we 
received from her. She set an excellent example of a great scientist and a human 
being not indifferent to what both the country and other people are experiencing. 
For that, we will remain forever grateful. 
 The Polish scientific community has lost an outstanding scholar and educator. An 
enlightened, open, kind and creative person. 
 She will forever remain in our grateful memory. 
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