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Modified Cramer-von Mises goodness-of-fit
test for normality

Piotr Sulewski, Damian Stoltmann®

Abstract. The first goal of the article is to apply the modified Cramer-von Mises (CM) goodness-
of-fit test for normality to a practical problem. The modification of the test involves varying the
formula for calculating the empirical distribution function (EDF). The critical values are obtained
using the Monte Carlo method for sample sizes n = 10,20 and at a significance level of a=0.05.
The second goal is to calculate the power of several tests for appropriately selected alternative
distributions. The article shows that the values of constants a, 8 in the EDF formula affect the
power of the CM test. The effectiveness of the new proposal is illustrated by the analysis of real
data sets.

Keywords: empirical distribution function, goodness-of-fit test, Cramer-von Mises test, power of test
JEL: C02, C12, C46, GOO

1. Introduction

Numerous goodness-of-fit tests (GoFTs) for normality have been considered and
applied in many fields of science, including medicine, quality control and hydrology.
GoFTs for normality are also very popular in economics and finance. They are used
to analyse market behaviour (the distribution of rates of return, trading volume or
asset prices), assess market efficiency, identify deviations from ideal market
conditions and analyse stochastic processes (asset prices or changes in commodity
prices). In econometrics, normality tests are used to check whether regression errors
are normally distributed. This is important for the proper evaluation of regression
models as the violation of the assumption of normality can lead to erroneous
statistical conclusions. In demography, on the other hand, the fertility curve is
almost normally distributed.

One of the most common normality testing procedures available in statistical
software is the Cramer-von Mises (CM) test (Cramér, 1928; von Mises, 1931), which
belongs to the group of empirical distribution function (EDF) tests. Other popular
EDF tests include the Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933; Smirnov,
1948), the Lilliefors (LF) test (Lilliefors, 1967), the Kuiper (K) test (Kuiper, 1960), the
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Watson (W) test (Watson, 1962) and the Anderson-Darling (AD) test (Anderson &

Darling, 1952).

Recently, many articles have been devoted to goodness-of-fit tests (GoFTs) for

normality. Table 1 shows the authors of works created in the 21st century.

Table 1. Articles devoted to normal GoFTs created in the 21st century

Article Sample sizes Article Sample sizes
. 10, 30, 50, 100, 300,
Bonett and Seier (2002) 10, 20, ..., 50, 100 Afeez et al. (2018) 500, 1000
. . 15, 30, 50, 80, 100,
Aliaga et al. (2003) X Marange and Qin (2019) 150, 200

Bontemps and Meddahi
(2005)

100, 250, 500, 1000

Sulewski (2019)

10,12, ..., 30, 40,50

5, 6, ..., 15, 20, 25, 30,

Luceno (2006) 100 Tavakoli et al. (2019) 40, 50, ....100
Yazici and Yolacan (2007) (20, 30, 40, 50 Mishra et al. (2019) n<30, n>30
Gel et al. (2007) 20, 50, 100 Kellner and Celisse (2019) (50, 75, 100, 200, 300, 400

A Wijekularathna et al|5, 10, 20, 30, 50, 75, 100,
Coin (2008) 20, 50, 200 (2020) 500, 500, 1000, 2000
Brys et al. (2008) 100, 1000 Sulewski (2022) 10, 14, 20
Gel and Gastwirth (2008) (30, 50, 100 Hernandez (2021) 5,10, ...,30

- 10, 20, 25, 30, 40,
Romao et al. (2010) 25,50, 100 Khatun (2021) 50,100, 200, 300
20, 30, 50, 100, 200, ..., Arnastauskaité et  al|

Razali and Wah (2011)

500, 1000, 2000

(2021)

2A5,216,...,2A10

Noughabi
(2011)

and Arghami

10, 20, 30,50

Bayoud (2021)

10, 20,..., 50, 60, 80, 100

Yap and Sim (2011)

10, 20, 30, 50, 100, 300,
500, 1000, 2000

Uhm and Yi (2021)

10, 20, 30, 100, 200, 300

Chernobai et al. (2012)

X

Sulewski (2021)

20, 50, 100

Ahmad and Khan (2015)

10, 20, ..., 50, 100, 200,
500

Desgagné et al. (2022)

20, 50, 100, 200

Mbah
(2015)

and  Paothong

10, 20, 30, 50, 100, 200,

500, 1000, 2500, 5000

Uyanto (2022)

10, 30, 50, 70, 100

Torabi et al. (2016)

10, 20, 50, 100, 1000

Ma et al. (2024)

10,30, 50

10, 25, 50, 100, 250,500,

Feuerverger (2016) 200 Giles (2024) 1000

Nosakhare and Brlghtsl 10, ..., 50, 100 Borrajo et al. (2024) 50, 100, 200, 500
(2017)

Desgagné and Lafaye [Terdn-Garcia and

de Micheaux (2018) 10,12, ...,20,50,100, 2000 o Fornandez (2024) 2> %00

Note. Sample sizesn < 50 are in bold.

Source: authors’ work.

There are, of course, articles dedicated to the CM test. Durbin and Knott (1972)
compared the CM test with AD and W GoFTs. Pettitt and Stephens (1976) used the
CM test for a censored sample. Scott (2000) presented tables of unweighted CM
statistics for one and two samples, and compared them to the limiting distribution.
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Scott and Stewart (2011) presented tables for the Lilliefors distribution and the CM
distribution, which are used to test for normality when the population mean and
variance are unknown.

The small samples that dominate in Table 1 can be used in experimental
economics where published papers can be found that describe samples of a dozen or
so people in a group. In situations like these, strong testing proves very useful. In
terms of the results, a hypothesis accepted in the original paper may be rejected if a
more powerful test is applied.

Let X(1), X(2), -, X(n) be independent and identically distributed observations
from unknown continuous cumulative distribution function (CDF) F(x). We wish
to determine whether F(x) coincides with the CDF of normal distribution ®(x).
Then, we are interested in testing hypothesis Hy: F(x) = ®(x) against hypothesis
H,: F(x) # ®(x). The EDF is given by F,(x) = % Y™ 6(x — x;), where 8(x) = 1
forx = 0and 8(x) = 0 forx < 0.

The oO-corrected KS test (Harter et al,, 1984), investigated further by Khamis
(1990, 1992, 1993) redefines the value of the EDF at the data points and compares
the redefined EDF to the CDF at the data points. Let the EDF at the i-th data point be
given by

-8
n-26+1’

Fs(x) = <6f<1 (1)
Harter et al. (1984) selected § = 0,0.5,1 for their study.
Bloom (1958) proposed a, § transformation

i—a
Fa.ﬁ(x(i)) = m,a.ﬁ <1 (2)

to decrease the MSE of certain statistics. Note that Fss(x) = Fs(x). This
transformation was used to create GoFTs.

Sulewski (2022) used the Bloom formula to create the one-component Lilliefors
GoFT with statistic

LF, = Tﬁgfﬂf’a.ﬁ(x(i)) = @(xp) [} 3)

We know perfectly well that the greatest discrepancy between the theoretical and
empirical distribution functions may occur at different positions in the series. The
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probability of this discrepancy occurring for a given positional statistic r becomes
smaller the more extreme the r is. Hence the idea of a two-component test statistic
described in Sulewski (2021). The first component is, as in the original LF test, the
absolute value of the greatest discrepancy between sample and population
distributions. The second component is the position in an ordered sample at which
this discrepancy is located. The two-component Lilliefors statistic is given by

LF;(r) = max {IFap(x@) = @(x)|}- (4)

i

Simulation studies for the one- and two-component Lilliefors tests were carried out
for the following methods of calculating F, g (x@)) (@, B < 1):

1. F0,1(x(i)) = i - occurs in the KS statistic;

2. F1,0(x(i)) = % - occurs in the KS statistic;

i—0.5 ) .
3. Fys05 (x(i)) =" - occurs in the CM statistic;
4. F, (x ; ) = — _ the mean value of i-th order statistics of the beta distribution;
00\*DJ ~ hiq

5. Fos03(X()) = s

n

— the median of i-th order statistics of the beta distribution;

6. Fy3750375 (x(i)) = iy:f:;: - the mean value of i-th order statistics of the normal
distribution;
i-0.3175 -
7. F0_3175_0_3175(x(i)) T founded by Filliben (1975);
8. Fm(x(l-)) = :1%11 - founded by Harter et al. (1984).

In six of the EDF definitions listed above (except Fy; and F; o), @ = f.

The first goal of this paper is to propose a modified CM test for normality. The
second goal is to calculate the power of several tests for appropriately selected
alternative distributions (alternatives).

The rest of this paper is structured as follows. In Section 2, we define a new
version of the CM test. The similarity measure of the alternative to the normal
distribution is described in Section 3. Section 4 presents the alternatives divided into
nine groups according to their skewness and excess kurtosis. Simulation studies are
presented in Section 5 and real data examples are provided in Section 6. Finally, the
concluding remarks are presented in Section 7. Additional material can be found in
the Appendix.

2. Modified Cramer-Von Mises test for normality

The CM statistic belongs to the class of quadratic EDF statistics with measure
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n [ [Fy(x) — F(x)*w(x)dF (x), (5)

where w(x) is a weighting function. When the weighting function is w(x) = 1, the
CM statistic is obtained:

n [2,[Fa() = FQ)P*dF (). (6)
The CM test for normality is defined based on the following statistics:
M =n [ [F(x) — @) ¢(x; 1, 0)dx, (7)

where ¢(x), ®(x) are the PDF and CDF of the normal distribution, respectively. The
simpler form of the CM statistic is

CM=—+3", [fb(x(i)) B i_:l)'s]z‘ Y

12n
The CM test is also presented in the second version, namely (Stephens, 1974)
1
M, = (1+5-)cm. 9)

We define the modified CM (MCM) statistic using the Bloom formula. The MCM
statistic is given by

MCVM(a, ) = =+ S1, [@(xw) — Fap(x)]” (10)

where a,f € [0,1]. Note that MCVM(0.5,0.5) = CVM. H, is rejected for large
MCV M statistic values.

3. Similarity measure

Let us assume that
- _ 1 2 1 -N\2 _ (X(l‘)—f)
X =YX, st = N (g — %)%,z = =

. m (i

1 Nk _
my = ;Z?ﬂ(x(i) - x) V1 = 5_33> V2= "

Let us remember that the Malachov inequality is defined as y, = y,% — 2.
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A review of recent statistical literature shows that the small skewness y; and
excess kurtosis y, values do not dominate in testing for normality. It is very
interesting to see how the GoFTs respond to samples coming from alternatives close
to the normal distribution.

Let f(x;0) be a PDF of the alternative with vector of parameters 0. Similarity
measure M of alternative (A) to the normal distribution is defined as (Sulewski, 2022)

M8 1,0) = [© min[f(x; 0), d(x; , 0)]dx, (12)

where ¢(x; u, o) is the PDF of the normal distribution. M,(0; 4, o) takes on the
values of [0, 1]. M,(0; i, 0) = 1 when PDFs are identical.

Figure 1 shows the values of similarity measure (12) when an alternative is the
skew normal (SN) distribution (Azzalini, 1985) with PDF foy(x;a) =
2¢(x;0,1)®(ax; 0,1) (a € R). Note that if a » Foo, then Mgy (a; 0,1) = 0.5.

Figure 1. Similarity measure Mgy (a; 0, 1) for the skew normal distribution

Similarity measure M

Source: authors’ work.

4, Alternative distributions

As mentioned earlier, there are many articles devoted to testing for normality. In
these articles, a lot of alternative distributions (alternatives) were used, including
both asymmetric and symmetric ones. Symmetric distributions with undefined y;
and ¥, are Cauchy and slash distributions.

According to the statistical literature, alternatives can be divided into four groups,
depending on the support and shape of their densities (see e.g. Esteban et al., 2001;
Torabi et al., 2016). These groups include symmetric alternatives with support
(—00, ), asymmetric alternatives with support (—oo, ), alternatives with support
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(0, ) and alternatives with support (0, 1). Gan and Koehler (1990), Krauczi (2009)
and Torabi et al. (2016) divided alternatives into five groups: asymmetric short-
tailed, asymmetric long-tailed, symmetric short-tailed, symmetric close to normal
and symmetric long-tailed alternatives.

Our idea is to divide alternatives into nine groups according to their y; and y,
signs. Groups O-H are defined in Table 2.

Table 2. Groups of alternatives with signs of y; and 7,

Group V1 V2
(o) zero zero
A positive positive
B negative positive
C zero positive
D zero negative
E positive negative
F negative negative
G positive zero
H negative zero

Source: authors’ work.

The main criterion for selecting an alternative for the Monte Carlo simulation is
that y; and y, calculated for the alternative parameters belong to the O, A-H
groups. This criterion is fulfilled by distributions defined in an infinite domain such
as:

o the Edgeworth series (ES) with parameters y; and y, as a monolithic distribution;

o the Pearson distribution (P) with parameters y; and ¥, as a monolithic
distribution;

e the normal mixture distribution (NM) with 5 parameters as a mixture of two
normal distributions;

o the normal logistic mixture distribution (NLM) with 5 parameters as a mixture of
normal and non-normal distributions;

e the normal distribution with a plasticising component (NDPC) with six
parameters as a mixture of two various distributions;

e the plasticising component mixture (PCM) with seven parameters as a mixture of
two identical non-normal distributions that characterise multimodality.

We chose values of alternative parameters to obtain desired similarity measure
values of the alternative to the normal distribution. These analysed values, if
possible, are 0.5,0.75, 0.9.

The appendix presents Tables 1A-6A with vectors of alternative parameter 0,
mean [,, standard deviation o,, skewness y;, excess kurtosis ¥, and similarity
measure M for the analysed alternatives. The PDF formulas and PDF curves (see
Figures 1A-6A) for the alternative 8 values are also provided in the Appendix. As
can be seen in Figure 1A, the ES distribution is not suitable for simulation studies as
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negative PDF values are observed even though the normalisation condition is met.
Figure 2A indicates very interesting bimodal shapes. Figure 3A and Figure 5A
present both unimodal and bimodal shapes. Figure 4A shows unimodal shapes,
while very interesting multimodal shapes may be observed in Figure 6A.

5. Power comparisons

The new MCM (a, B) test, where MCM (0.5, 0.5) = CM was compared with the CMg,
AD, LF and the Shapiro-Wilk (SW) (Shapiro & Wilk, 1965) tests. To study the
power of each of the discussed tests, critical values cvg o5 (type I error equals a =
0.05) were estimated using m = 10° order statistics. The power of tests (PoTs) was
calculated based on rep = 105 test statistic values.

Table 3 shows critical values and test sizes of the analysed GoFTs for sample sizes
n =10,20 and a = 0.05. The TS values are close to 0.05, so the simulation
procedures are correct.

Table 3. Critical values (CV) and test sizes (TS) of the analysed GoFTs for sample sizesn = 10, 20

cv TS
No GOFT
n=10 n =20 n=10 n=20
1 MCM (0,1) 0.15247 0.14008 0.051 0.051
2 MCM(1,0) 0.15232 0.13992 0.051 0.051
3 MCM (0,0) 0.11423 0.11992 0.052 0.051
4 MCM (0.3,0.3) 0.11487 0.12035 0.052 0.051
5 IMCM (1,1) o 0.14934 0.13820 0.052 0.052
6 IMCM (0.375,0.375) ... 0.11612 0.12101 0.052 0.051
7 MCM(0.3175,0.3175) .. 0.11510 0.12048 0.052 0.051
8 IMCM(0.5,0.5) = CM .. 0.11922 0.12285 0.051 0.051
9 CM 0.12518 0.12593 0.051 0.051
10 IAD 0.68511 0.72118 0.052 0.051
11 LF 0.26186 0.19187 0.051 0.050
12 sw” 0.84451 0.90441 0.051 0.050

Note. H, is rejected for small statistical values.
Source: authors’ work.

Tables 7A-14A show how a selection of the EDF influences the power of the
MCM test. The alternatives are indexed. The larger the index (ID), the more the
distribution resembles a normal distribution, i.e. the PoTs should decrease as the
index value increases. ID = 1 denotes similarity measure M = 0.5, while ID =4
denotes similarity measure M = 0.95. The highest PoTs of the MCM (a, 8) values
are underlined. The highest PoTs for all the analysed tests are in bold.

The simulation results in Tables 7A-14A show that the MCM test with the analysed
EDFs is the most powerful for all the considered similarity measures, alternatives and
n = 10,20 (n = 10) in 83.75% (94.38%.). The new proposal for group of alternatives
A and n = 10, 20, (n = 10) is the most powerful in 82.5% (100%), for group B and
n = 10,20, (n = 10) is the most powerful in 85% (100%), for group C and n =
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10, 20, (n = 10) is the most powerful in 67.50% (90%), for group D and n = 10, 20,
(n = 10) is the most powerful in 77.5% (85%), for group E and n = 10, 20, (n = 10)
is the most powerful in 92.5% (95%), for group F and n = 10, 20, (n = 10) is the
most powerful in 90% (95%), for group G and n = 10,20, (n = 10) is the most
powerful in 87.5% (95%) and for group H and n = 10,20, (n = 10) is the most
powerful in 87.5% (95%). MCM (0, 1) with Fy; (x()) = i dominates for groups A, E
and G. MCM(1,0) with F, (x(l-)) = % dominates for groups B, F and H.
MCM(0,0) with F1,1(x(i)) =% dominates for group C and MCM(0,0) with
FO,O(x(i)) = ﬁ dominates for group D. Powers of the CM and CM; tests are the
same. We assume that a GoFT detects abnormal samples if its power is at least 0.06.
Thanks to similarity measures M = 0.9,0.95, this situation occurs in 30%. For
alternatives P, NM, NLM, NDPC and PCM, the test power is less than 0.6 in 14%, 45%,

4%, 44% and 43% of cases, respectively. For alternative groups A - H, the test power is
less than 0.6 in 20%, 18%, 22%, 49%, 32%, 35%, 27% and 37% of cases, respectively.

6. Real data examples

In this section, we present an application of the MCM test in eight real data sets to
illustrate its potentiality. Details related to examples I — VIII are presented in Table
4.

Table 4. Real data examples with sources, sample size, skewness and excess kurtosis values

Ex Description Source n\|vil|v
| Strength measured in GPA for single carbon fibres and impregnated
1,000-carbon fibre tows (gauge lengths of 20 mm):1.312, 1.314, 1.479, ~
1.552, 1.7, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, =y
2.027,2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.24, 2.253, 2.27,2.272, 2.274, S = =¥
2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.49, 2.511, it NS 3lg
2.514, 2.535, 2.554, 2.566, 2.57, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, % | I
2.697, 2.726, 2.77, 2.773, 2.8, 2.809, 2.818, 2.821, 2.848, 2.88, 2.809, 2.818, ”26
2.821, 2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.09, 3.096, 3.128, 3.233,
3.433, 3.585, 3.585.
I Macroeconomic data set with information on the number of members of o F
the armed forces o El IS
xx @ O]
9 g T |lo|o
Qs | |
11l Socio-economic data (percentage of males involved in agriculture as ° —
occupation) for 47 French-speaking provinces of Switzerland o =l &
o X a ~N on ~
us |Y|3S|c
s 2 T
Q n
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Table 4. Real data examples with sources, sample size, skewness and excess kurtosis values (cont.)

v Socio-economic data (percentage of draftees receiving the highest mark © — .
on army examination) for 47 French-speaking provinces of Switzerland 20 3| =
~ o
o % ) A B =
S 2 S
aQ & |
\% Average heights for American women aged 30-39 o=
> =
=£E |2lel8
c 5 |
ez
Vi Percent proportion of favourable responses to the question on v
promotion opportunities from a survey of the clerical employees of a 3 = o
large financial organisation; the data are aggregated from the § g I g %
questionnaires of approximately 35 employees for each of the 30 ;— = [
©
(randomly selected) departments.
Vi Percent proportion of favourable responses to the question on °© =
opportunities to learn from a survey of the clerical employees of a large 9 o |
! . N . . X T ol |~
financial organisation; the data are aggregated from the questionnaires 9 3 @la| S
of the approximately 35 employees for each of the 30 (randomly g— k= S|
selected) departments. ©
Vil Percent proportion of favourable responses to the question whether the ~
organisation does not allow special privileges from a survey of the clerical 5T NS
. . . . ©
employees of a large financial organisation; the data are aggregated from | o =2 g b g Lo"?
the questionnaires of the approximately 35 employees for each of the 30 3 E [N
©
(randomly selected) departments.

Source: authors’ work.

analysed GoFTs based on 10° statistic values (see Table 5).

Table 5. The p-values for the GoFTs related to examples |-Vl

When fitting the normal distribution to the data, we calculate the p-values for the

GoFT | 1l 1 \% \'% Vi Vil Vil
MCM(0,1) 0.829 | 0.237 | 0.304 | 0.250 | 0.906 | 0.027 | 0.215 | 0.638
MCM(1,0) 0.660 | 0.090 | 0.149 | 0.493 | 0.907 | 0.005 | 0.455 | 0.516
MCM(0,0) 0.775 | 0.119 | 0.171 | 0.380 | 0.797 | 0.011 | 0315 | 0.533
MCM(0.3,0.3) 0.763 | 0.127 | 0.192 | 0.362 | 0.897 | 0.010 | 0312 | 0.563
MCM(1,1) 0.724 | 0.162 | 0.256 | 0.327 | 0.996 | 0.010 | 0.313 | 0.630
MCM(0.375,0.375) .coovercrvrrrcrrsrnnncnans 0.759 | 0.129 | 0.198 | 0.358 | 0.918 | 0.010 | 0312 | 0.571
MCM(0.3175,0.3175) 0.762 | 0.127 | 0.193 | 0.361 | 0.902 | 0.010 | 0312 | 0.565
MCM(0.5,0.5) = CM 0.753 | 0.134 | 0.208 | 0.352 | 0.946 | 0.010 | 0.311 0.584
CM 0.753 | 0.134 | 0.208 | 0.352 | 0.946 | 0.010 | 0.311 0.584
AD 0.756 | 0.106 | 0.195 | 0.362 | 0.925 | 0.015 | 0.417 | 0.567
LF 0.826 | 0.094 | 0.231 | 0.287 | 0.996 | 0.028 | 0.529 | 0.568
sw 0.728 | 0.111 | 0.191 | 0.254 | 0.729 | 0.034 | 0.640 | 0.552

Note. The optimal MCM(a,B) test is underlined. The lowest p-value for all the analysed tests are in bold.

Source: authors’ work.

The optimal MCM (a, B) test for examples I-I1I, VI and VIII is the MCM(1,0)
test. The obtained result is consistent with the simulation results showing that for
groups B (y; < 0,7, > 0) and F (y; < 0,7, < 0), the most powerful is MCM (1, 0).
Non-normality is the most pronounced by the MCM (1, 0) test.



P. SULEWSKI, D. STOLTMANN Modified Cramer-von Mises goodness-of-fit test for normality 11

The optimal MCM (a, B) test for examples IV and VII is the MCM (0, 1) test. The
obtained result is consistent with the simulation results indicating that for groups E
(y1 > 0,7, < 0), the most powerful is MCM (0, 1). The non-normality is the most
pronounced by the MCM (0, 1) test.

The optimal MCM (e, B) test for example V is the MCM (0, 0) test. The obtained
result is consistent with the simulation results stating that for groups D (y; =
0,7, < 0), the most powerful is MCM(0,0). The non-normality is the most
pronounced by the SW test.

7. Real data examples

The obtained results show that the methods of calculating the EDF depend on the
nature of the non-normal (alternative) distribution. There is a method of calculating
the EDF F, g(x;) for groups A - H which maximises the power of the MCM (a, )
test. MCM (0, 1) dominates for alternative groups A, E and G, MCM (1, 0) for groups
B, Fand H, MCM (1, 1) for group C and MCM (0, 0) for group D.

The new proposal is the most powerful in 95% of the cases for n = 10 and in 84%
of the cases for n = 20.

The new GoFT is the best in 100% of cases in groups A and B, in 90% of cases in
group C, in 85% of cases in group D and in 95% of cases in groups E - H.

For the normal logistic mixture and Pearson distributions, the analysed tests do not
detect abnormal samples in only 4% and 14% of cases, respectively. With regards to the
alternative groups, the best results are achieved by groups B, A and C (asymmetric
alternatives with a positive excess kurtosis), while the worst by group D (symmetrical
alternatives with a negative excess kurtosis).

The good performance of the MCM test against other most popular GoFTs is illustrated
through the analysis of real data sets.

Appendix

Edgeworth series distribution
PDF of the Edgeworth series (ES) with parameters y; and ¥, is given by

_ 1 1 _
fes(x:v1,72) = 9(x;0,1) (1 + 271, (63 = 3%) + 7 (x* — 6x% + 3)) (x €R),

wherey; € R,7, = —2.
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Table 1A. Vectors of ES parameter 0, mean y,, standard deviation o,, skewness y,,
excess kurtosis 7, and similarity measure M. Groups O, A-H

Group 0= (y1,72) Ha Oa V1, V2 M(8; u,0)
0 (0,0) 0 1 0 0 M(0;0,1) = 1

0.4,3.33 0 1 0.4 3.33 M(6;0,1) = 0.8

A 0.3,2.499 0 1 0.3 2.499 M(0;0,1) = 0.85
0.2, 1.666 0 1 0.2 1.666 M(6;0,1) = 0.9

0.1,0.833 0 1 0.1 0.833 M(0;0,1) = 0.95
-0.4,3.33 0 1 -0.4 3.33 M(6;0,1) = 0.8

B -0.3, 2.499 0 1 -0.3 2.499 M(6;0,1) = 0.85
-0.2, 1.666 0 1 -0.2 1.666 M(0;0,1) =0.9

-0.1,0.833 0 1 -0.1 0.833 M(0;0,1) = 0.95
0,3.428 0 1 0 3.428 M(0;0,1) =0.8

c 0,2.571 0 1 0 2.571 M(0;0,1) = 0.85
0,1.71 0 1 0 171 M(8;0,1) = 0.9

0,0.85 0 1 0 0.85 M(0;0,1) = 0.95
0,-3.428 0 1 0 -3.428 M(6;0,1) = 0.8

5 0,-2.571 0 1 ol 257 M(8;0,1) = 0.85
0,-1.71 0 1 0 -1.71 M(6;0,1) = 0.9

0,-0.85 0 1 0 -0.85 M(8;0,1) = 0.95

1.39,-0.067 0 1 1.39 -0.067 M(0;0,1) = 0.825

E 1.175,-0.46 0 1 1.175 -0.46 M(6;0,1) = 0.85
0.775,-0.408 0 1 0.775 -0.408 M(0;0,1) =0.9

0.39,-0.15 0 1 0.39 -0.15 M(0;0,1) = 0.95

-1.39,-0.067 0 1 -1.39 -0.067 M(0;0,1) = 0.825

E -1.175,-0.46 0 1 -1.175 -0.46 M(0;0,1) = 0.85
-0.775,-0.408 0 1 -0.775 -0.408 M(0;0,1) = 0.9

-0.39,-0.15 0 1 -0.39 -0.15 M(0;0,1) = 0.95

1.391,0 0 1 1.391 0 M(0;0,1) = 0.825

G 1.19,0 0 1 1.19 0 M(0;0,1) = 0.85
0.795,0 0 1 0.795 0 M(6;0,1) = 0.9

04,0 0 1 0.4 0 M(0;0,1) = 0.95

-1.391,0 0 1 -1.391 0 M(0;0,1) = 0.825

H -1.19,0 0 1 -1.19 0 M(0;0,1) = 0.85
-0.795,0 0 1 -0.795 0 M(0;0,1) =0.9

-04,0 0 1 -0.4 0 M(0;0,1) =0.95

Source: authors’ work.



P. SULEWSKI, D. STOLTMANN  Modified Cramer-von Mises goodness-of-fit test for normality 13

Figure 1A. PDF curves of the Edgeworth series distribution for parameter values
presented in Table 1A
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Pearson distribution

Let a= 372_31/12 b= 'ZMZ?) , €= 47f_3Y122+12 ,A =b?—4ac, then the
10y, —-5y;+12 10y,-5y;+12 10y,—5y; +12
PDF of the Pearson (P) distribution is given by
( exp [ 2ab—b
a(2ax + b) A= 0
C,(2ax + b)1/a
exp [ b—2ab tan-1 < 2ax +b )]
o070, 72) = av4dac — b? Vdac — b? A< 0
P C,(ax? + bx + ¢)/(Ca)
b—2ab
<2ax +b—+Vh% - 4ac)2a\/b2-4a€
2ax + b + Vb2 — 4ac AS 0
C3(ax? + bx + c)V/ )
( exp [ 2ab—b
a(2ax + b) A= 0
C,(2ax + b)1/a
exp [ b—2ab tan-1 < 2ax +b )]
(70, 72) = av4dac — b? Vdac — b? A< 0
P C,(ax? + bx + ¢)1/ () ’
b—2ab
<2ax + b — Vb2 — 4ac)2a\/b2-4a€
2ax + b + Vb2 — 4ac AS 0

C;(ax? + bx + ¢)¥/ (2

where x € R,y;, € R,¥, = —2 and C;, C;, C3 are normalising constants defined as

ex [ 2ab—b ]
= ® pa(2ax+b)d
17 ). Rax+bp)ve X
exp[ b — 2ab an‘1< 2ax+b )]
C, = ° av4ac — b? V4ac — b? dx
27 ). (ax? + bx + ¢)V/(29) ’
b—2ab
2ax + b — VA 2aVa
*® \2ax +b + VA
C3 = > o) dx.
—oo Cglax? + bx +¢)
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Table 2A. Vectors of the Pearson distribution parameter 8, mean y,, standard deviation g,
skewness y;, excess kurtosis y, and similarity measure M. Groups O, A-H

Group 0= (y1,72) Ha Oa Y1, V2 M(6; u,0)

0 0,0) 0 1 0 0 M(8;0,1) = 1
(2.04,4.1) 0 1 2.04| 4.1 M(6;0,1) =0.5

A (1.62, 3.845) 0 1 1.62] 3.845 M(6;0,1) =0.75
(0.9,2) 0 1 0.9 2 M(@®;01)=09

(0.4,0.94) 0 1 04 094  M(8;0,1) = 0.95

(-2.04,4.1) 0 1 -2.04 41 M(8;0,1) = 05

B (-1.62, 3.845) 0 1 -1.62 3.845 M(6;0,1) =0.75
(-0.9,2) 0 1 09 2 M(®01)=09

(-0.4,0.94) 0 1 -0.4 0.94] M(6;0,1) = 0.95

0,11.2) 0 1 o 1.2 M(8;0,1) = 0.9

c (0,3.65) 0 1 0 365  M(8;0,1) = 0.925
(0,1.521) 0 1 0 1.521 M(0;0,1) = 0.95

(0,0.55) 0 1 0 0.55 M(6;0,1) = 0.975

(0,-1.695) 0 1 0 -1.695 M(6;0,1) =0.5

D (0,-1.315) 0 1 0 -1.315 M(6;0,1) =0.75
(0,-0.89) 0 1 0 089  M(8;0,1) = 0.9

(0,-0.588) 0 1 o 0588  M(8;0,1) = 0.95

(0.985, -0.5) 0 1 0.985 -0.5 M(6;0,1) =0.5

E (0.715,-0.475) 0 1 0.715 -0.475| M(6;0,1) =0.75
(0.515,-0.2) 0 1 0515 02 M(8;01) =09

(0.315,-0.16) 0 1 0.315 -0.16 M(6;0,1) =0.95

(-0.985, 0.5) 0 1 -0.985 05 M(8;0,1) = 0.5

F (-0.715, -0.475) 0 1 -0.715 -0.475| M(0;0,1) =0.75
(-0.515,-0.2) 0 1 -0.515 -0.2 M(6;0,1) =09

(-0.315,-0.16) 0 1 -0.315 -0.16| M(6;0,1) =0.95

(1.164, 0) 0 1 1.164| 0 M(6;0,1) =0.5

. (0.879, 0) 0 1 0.879 0  M(8;01) =075
(0.578,0) 0 1 0.578 0 M(8;0,1) = 0.9

(0.354,0) 0 1 0.354 o M(8;0,1) =095

(-1.164,0) 0 1 164 o M(®;01)=05

H (-0.879, 0) 0 1 -0.879 0 M(6;0,1) =0.75
(-0.578,0) 0 1 0578 o  M(®;0,1) =09

(-0.354, 0) 0 1 -0.354 0  M(8;01) =095

Source: authors’ work.

Figure 2A. PDF curves of the Pearson distribution for parameter values presented in Table 2A
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Figure 2A. PDF curves of the Pearson distribution for parameter values presented in Table 2A (cont.)
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Normal mixture distribution

PDF of the normal mixture (NM) distribution is given by

fam(x;0) = wp(x; uy, 00) + (1 — w)P(x; pyp, 05) (x €R),

where 0 = (yq, 04, 3, 05, @) and Yy, Uy € R, 01,0, > 0,w € [0, 1]. Special cases of
the NM distribution are:

e normal N(uy,0;) for w = 1, N(uy, g;) for w = 0;

e Jocation contaminated normal (LCN)
frem (6 e, @) = fum (% 11, 1,0,1, w);

e scale contaminated normal (SCN)

fsem(x; 01, @) = fyu(x;0,01,0,1, w).
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Table 3A. Vectors of the NM parameter 8, mean u,, standard deviation ag,, skewness y;, excess

kurtosis 7, and similarity measure M. Groups O, A-H

Group 0 = (i1, 04, {3, 03, @) Ha Oq Y1, V2 M(8; u,0)

o (1, 01, 42,02, 1) 0 1 0 0 M py,00) =1
(141,01, 13,02, 0) Y 1 0 0 M(®;pp,0,) =1

0.572,2.472,5.614, 3.454,0.787 1.646/ 3.408 0.685 0.755 M(0;0,1) =0.5

A -0.215, 1.254,1.979, 1.99, 0.639 0.577 1.883| 0.645 0.502] M(6;0,1) = 0.75
0.497, 1.376,-0.268, 0.884, 0.612 0.2l 1.265 0.287| 0.249 M(6;0,1) =09

-0.098, 0.857,0.31, 1.007, 0.767 -0.003] 0.911 0.09 0.099 M(6;0,1) = 0.95

0.502, 2.019, 1.708, 0.953, 0.36 1.274 1.544) -0.748 1.502 M(6;0,1) =05

B 0.06, 1.437,1.004, 0.609, 0.634 0.406| 1.285 -0.5 0.499 M(6;0,1) = 0.75
0.709, 0.368, -0.072, 1.115,0.193 |  0.079| 1.06| -0.301 0.15 M(6;0,1) =09

0.159, 0.955,-0.123,1.158,0.271 | -0.047] 1.114] -0.05] 0.059 M(6;0,1) = 0.95

0.519, 6.599, 0.519, 1.058, 0.665 0.519 5.416 0 1.398 M(6;0,1) =0.5

C 0.137,0.581,0.137, 2.391, 0.294 0.137| 2.034 0 1.054 M(6;0,1) =0.75
0.225,1.106, 0.225, 0.335, 0.89 0.225| 1.049| 0 0.299 M(0;0,1) =09

-0.09, 1.029,-0.09, 1.37,0.825 -0.09 1.096 0 0.201 M(6;0,1) = 0.95
2.303,0.51,0.624,0.481,0.515 1.489] 0.975] 0 -1.099 M(0;0,1) =0.5

D 2.707,0.013,0.017,1.125,0.238 0.657| 1.509 0 -1.001 M(6;0,1) = 0.75
1.243,0.621,-0.39,0.811, 0.347 0.111 1.09 0 -0.63 M(6;0,1) =09
-1.112,0.794, 0.023,0.974,0.13 0 0.897 0 -0.329 M(6;0,1) = 0.95
-0.475,2.22,5.318,2.427,0.721 1.141] 3.457 0.5 -0.204 M(6;0,1) =05

E -0.019, 1.369, 2.979, 1.15, 0.829 0.494 1.748 0.339 -0.1 M(6;0,1) = 0.75
0.077,0.844, 1.108, 0.779, 0.845 0.237, 0914, 0.074] -0.035 M(6;0,1) =09

1.091, 0.969,-0.111, 1.056, 0.1 0.009] 1.108 0.05| -0.01 M(6;0,1) = 0.95

-0.692, 0.705, 2.1, 0.679, 0.324 1.195 1.476| -0.542| -0.852 M(0;0,1) =0.5

E -0.055, 1.277,1.781,0.443,0.775 0.358 1.377 -0.3] -0.5] M(6;0,1) =0.75
-0.09, 1.08, -1.581,0.92, 0.9 -0.239 1.155| -0.071| -0.042 M(0;0,1) =09

0.386, 0.845, -0.145,0.918, 0.1 -0.092] 0.925 -0.01] -0.011 M(6;0,1) = 0.95

2.686, 3.099, -0.964, 2.217,0.471 0.755] 3.232 0.4 0 M(0;0,1) =0.5

G -0.56, 1.465,1.411,1.45,0.8 -0.166, 1.661| 0.151 0 M(6;0,1) = 0.75
-0.286, 1.114, 0.984, 1.105,0.801 | -0.033] 1.222| 0.101 0] M(6;0,1) =09
-0.232,0.938,0.727,0.897,0.878 | -0.115 0.984] 0.051 0] M(6;0,1) = 0.95
2.425,1.101,0.272, 1.693, 0.526 1404, 1.775| -0.499 0 M(6;0,1) =05

H 0.864, 1.125,-1.339, 1.241, 0.735 0.28 1.511] -0.386 0 M(6;0,1) = 0.75
0.429, 1.078, -0.364, 1.228, 0.434 -0.02 1.23 -0.1 0 M(6;0,1) =09

0.108, 1.088,-0.524, 1.073,0.879 | 0.032] 1.106] -0.01 0] M(6;0,1) = 0.95

Source: authors’ work.
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Figure 3A. PDF curves of the normal mixture distribution for parameter values presented in

Table 3A (cont.)
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Source: authors’ work.

Normal logistic mixture distribution
PDF of the normal logistic mixture (NLM) distribution is given by

.0) — . _ exp[—(x—p2)/ 0]
fNLM(xi e) - a)(l)(x, [11,0'1) + (1 (IJ) oo {1+xp[~(x—pz)/ 03]} (x € R)’
where 0 = (1q, 0, U3, 05, w) and Yy, Uy € R, 01,0, > 0,w € [0, 1]. Special cases of
the NLM distribution are:
e normal N(uy,0;) forw = 1;
e logistic (L) f,(x; uy, 05) for w = 0.
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Table 4A. Vectors of NLM parameter 8, mean p,, standard deviation g, skewness y;, excess
kurtosis 7, and similarity measure M. Groups O, A-H

Group 0= (:ulr 01, Uz, 02, (.0) Ha Oq Y1, ]72 M(e: H U)
o (11,01, 43, 0, 1) 0 1 0 0 MO py,0) =1
0.003, 0.223,1.17,0.701, 0.823 0.209 | 0.571 | 2.012 | 4307 M(6;0,1) =05
A 2.179,2.001,-0.212,0.917,0.15 | 0.146 | 1.429 | 1.408 | 3.475 M(6;0,1) = 0.75
0.089, 1.119, 0.66, 1.78, 0.9 0.146 | 1.214 | 0.173 | 0.585 M(6;0,1) =0.9
-0.063, 1.019, 1.533,0.962, 0.9 0.096 | 1.121 | 0.173 | 0.093 M(6;0,1) = 0.95
1.305,0.572,0.281, 1.747,0.545 | 0.839 | 1.351 | -0.851 | 1.731 M(6;0,1) = 0.5
B 0.449,0.572,0.281, 1.669,0.479 | 0.361 | 1.271 [ -0.151 | 1.731 M(6;0,1) = 0.75
0.146, 0.843, 0.128, 1.669, 0.73 0.141 | 1.127 | -0.015 | 1.578 M(6;0,1) =09
0.034, 0.974, 0.038, 0.767,0.535 | 0.035 | 0.884 | -0.002 | 0.158 M(6;0,1) = 0.95
1.382,0.88, 1.382, 1.769, 0.242 1.382 1.6 0| 0.465 M(6;0,1) =0.5
c 0.536, 1.412,0.536, 1.855,0.9 0.536 | 1.462 0] 0.124 M(6;0,1) = 0.75
0.107,0.595,0.107,0.528,0.142 | 0.107 | 0.538 0| 0.025 M(6;0,1) =09
0.021, 0.875, 0.021, 0.756, 0.9 0.021 | 0.864 0] 0018 M(6;0,1) = 0.95
2.664, 1.103, 0.28, 1.333, 0.352 1.119 | 1.696 0 [-0.458 M(6;0,1) = 0.5
D 0.772,1.253,-1.236,0.706, 0.899| 0.569 | 1.353 0 [ -0.268 M(6;0,1) =0.75
0.952, 0.489, 0.008, 0.682, 0.12 0.121 | 0.729 0[-0.176 M(6;0,1) = 0.9
0.321,0.631, -0.209, 0.665, 0.268| -0.066 | 0.697 0 [-0.035 M(6;0,1) = 0.95
2.917,1.445,0.207,1.5,0.292 0.999 | 1.929 | 0.201 | -0.237 M(6;0,1) = 0.5
E 0.277,0.569, 1.43,0.334,0.9 0.392 | 0.650 | 0.162 | -0.205 M(6;0,1) = 0.75
0.425,0.956,-0.714,0.775,0.673| 0.053 | 1.047 | 0.106 | -0.199 M(6;0,1) =09
-0.19, 0.909, 0.928, 0.889,0.778 | 0.058 | 1.017 | 0.107 | -0.034 M(6;0,1) = 0.95
0.757,0.486, 1.444, 0.459, 0.45 1.134 | 0.582 | -0.105 | -0.24 M(6;0,1) =0.5
E 0.263, 0.905, 1.505,0.832,0.571 | 0.795 | 1.069 | -0.040 | -0.232 M(6;0,1) = 0.75
-0.435,0.71,0.495,0.765,0.286 | 0.229 | 0.859 | -0.038 | -0.123 M(6;0,1) =0.9
0.004,1.011,-1.433,0.77,0.9 -0.139 | 1.079 | -0.038 | -0.115 M(6;0,1) = 0.95
0.131,0.191, 2.38, 1.824, 0.393 1.497 1.8 | 0.807 0 M(6;0,1) = 0.5
G 1.419,1.558,-0.332,0.321,0.649| 0.804 | 1.520 | 0.688 0 M(6;0,1) =0.75
-0.049, 0.982, 1.642,0.994,0.781| 0.322 | 1.208 | 0.275 0 M(6;0,1) = 0.9
-0.104, 0.984, 0.585, 0.981, 0.802| 0.032 | 1.021 | 0.028 0 M(6;0,1) = 0.95
1.558,1.02,-2.125,0.982, 0.794 0.8 1.8 -0.8 0 M(6;0,1) = 0.5
H 0.769,1.037,-1.115, 1.083, 0.762| 0.320 | 1.320 | -0.320 0 M(6;0,1) = 0.75
-0.071, 0.854, 0.669, 0.714, 0.496| 0.302 | 0.869 | -0.186 0 M(6;0,1) =09
0.176, 0.841,-0.229, 0.858,0.64 | 0.030 | 0.869 | -0.019 0 M(6;0,1) = 0.95

Source: authors’ work.

Figure 4A. PDF curves of the normal logistic mixture distribution for parameter values
presented in Table 4A
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Figure 4A. PDF curves of the normal logistic mixture distribution for parameter values
presented in Table 4A (cont.)
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Source: authors’ work.

Normal distribution with plasticising component
PDF of the normal distribution with plasticising component (NDPC) is given by

c c
X—Ha|™? 2

a2

"ol

o2

1) (x € R),

fNDPC(x; 0) = w¢(x; #1'0'1) +(1- w)z_z

where 0 = (uy, 04, Uz, 05,¢5,w) and pq, 4, € R, 04,0, >0,¢c, 21,0 € [0,1].
Special cases of the NDPC distribution are:

e N(uy,0y) forw = 1and N(u,,0;) forc, = 1,0 = 0;

e plasticising component (PC) fpc(X; U, 05, ¢;) for w = 0.
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Table 5A. Vectors of NDPC parameter 0, mean u,, standard deviation o, skewness y;, excess
kurtosis 7, and similarity measure M. Groups O, A-H

Group 0 = (g, 01, i, 02, €3, ®) Ha Oq Y1, V2 M(0;u,0)

0 M1, 01, g, 02, C2, 1 0 1 0 0 M(0;uy,00) =1
1,01, Up,05,1,0 0 1 0 0| M(O; u,,0,) =1
1.948,1.27,1.143,0.793, 1.482,0.324 1.404{ 1.009| 0.599 0.853 M(6;0,1) =05

A 0.265, 0.415,0.996, 1.541, 1.16,0.313 0.767| 1.288| 0.426| 0.152] M(6;0,1) =0.75
0.173,0.358,0.289, 1.268, 1.132,0.198 | 0.266| 1.104| 0.056| 0.071 M(6;0,1) =09
0.047,1.02,-0.014,0.872,1,0.214 -0.001| 0.906| 0.012] 0.06 M(6;0,1) = 0.95
0.895,0.421,-0.141, 1.9, 3.141, 0.872 0.762| 0.804] -2| 5.085 M(6;0,1) = 0.5

B 0.539,0.632,-1.078,2.061, 1.174,0.741 | 0.12] 1.34/-1.499 2.986 M(0;0,1) = 0.75
-0.966, 1.824, 0.259, 0.889, 1.1, 0.26 -0.059| 1.305|-0.899| 1.999 M(6;0,1) = 0.9

-0.099, 0.938, 0.399, 0.646, 1.204, 0.831 [-0.015| 0.911]-0.125| 0.036| M(6;0,1) = 0.95
1.592,1.867,1.596, 1.215, 1.2, 0.249 1.595| 1.365|-0.002| 0.528 M(6;0,1) =05

C 0.571,1.023,0.571, 1.962, 1.15, 0.505 0.571| 1.508 0| 0.325 M(6;0,1) =0.75
-0.097, 1.332,-0.097, 1.058,1.1,0.614  |-0.097| 1.223 0 0.101 M(6;0,1) =09

0.003, 1.135, 0.003, 0.95, 1.05, 0.874 0.003| 1.112] 0] 0.026) M(6;0,1) = 0.95

-0.692, 2.203, -0.692, 2.544,1.759,0.25 |-0.692| 2.265 0 -1 M(6;0,1) =05

D 0.323,1.312,0.605, 1.335, 1.2, 0.01 0.602| 1.266 0/-0.587| M(6;0,1) =0.75
0.179,0.494,0.179, 1.163, 1.426,0.443 | 0.179| 0.862 0/-0.202, M(6;0,1) =09

0.195, 0.96,-0.719, 0.858, 1.109, 0.918 0.12] 0.983 0 -0.05 M(0;0,1) = 0.95
0.675,0.284,2.122, 1.968, 2.104,0.374 | 1.581| 1.565| 0.749/-0.849 M(6;0,1) = 0.5

E 0.423,1.032, 1.058, 2.077, 1.815,0.494 | 0.744| 1.544| 0.311|-0.667| M(0;0,1) = 0.75
0.159, 0.389, 0.296, 1.257, 1.649,0.326 | 0.251| 0.96| 0.116|-0.597| M(6;0,1) =09
1.081,0.621,-0.216, 0.755, 1, 0.24 0.095| 0.912] 0.1/-0.298 M(6;0,1) = 0.95

1.609, 0.59, 0.322, 2.194, 1.609, 0.309 0.72| 1.784/-0.491(-0.728 M(6;0,1) =05

E 0.617,0.737,0.129, 1.752, 1465, 0.332 | 0.291| 1.395|-0.239-0.526 M(6;0,1) =0.75
0.189, 0.39, 0.007, 1.336, 1.739,0.414 0.082| 0.957|-0.195|-0.422] M(6;0,1) =09
0.155,0.882,0.019, 1.184, 1.175,0.581 | 0.098] 0.995| -0.05|-0.188| M(6;0,1) = 0.95
1.877,0.829,0.573,0.583, 2.562,0.383 | 1.072| 0.912| 0.669|-0.001 M(6;0,1) =05

G 0.362,1.583,-1.112, 1.026, 1.283, 0.608 [-0.216| 1.55| 0.405| 0 M(6;0,1) =0.75
0.055,0.702, 0.474, 1.586, 1.328,0.473 | 0.276| 1.191| 0.31 0 M(6;0,1) =09
0.212,1.443,-0.012, 1.057, 1.088, 0.1 0.01] 1.079] 0.05 0) M(0;0,1) = 0.95

1.064, 0.408, 0.687, 0.908, 2, 0.699 0.951| 0.587|-0.601 0 M(6;0,1) =0.5

H 0.186, 0.259,-0.072, 0.973, 1.697, 0.499 | 0.057| 0.659|-0.473| 0 M(6;0,1) = 0.75
0.116, 1.127,-0.443, 1.588, 1.225,0.816 | 0.013| 1.223|-0.143| 0 M(6;0,1) =09

0.029, 1.105,0.161, 0.958, 1.036,0.329 | 0.118] 1.003|-0.028, 0) M(6;0,1) = 0.95

Source: authors’ work.

Figure 5A. PDF curves of the NDPC for parameter values presented in Table 5A
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Figure 5A. PDF curves of the NDPC for parameter values presented in Table 5A (cont.)
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Source: authors’ work.
Plasticising component mixture distribution

PDF of the plasticising component mixture (PCM) distribution is given by
feem(x;8) = wfpc(x; 1y, 01, ¢1) + (1 — @) fpe (X5 1, 02, ¢2) (x € R),
where fpc(x;p,0,¢) = SI=E

ol o C_ld)(%c;o’l) (x €R) and

0 = (w1, 01, €1, 3, 02, C2, W), g, iz E R,
ay,0, > 0,¢1,¢, = 1, w € [0, 1]. Special cases of the PCM distribution are:
e N(uj,0¢)forcy =1, w=1;N(uy,0,) forc, =1, w =0,

o plasticising component PC(uy,0y,¢1), PC(uy, 05,¢c;) for w=1,w=0,
respectively.
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Table 6A. Vectors of PCM parameter 8, mean p,, standard deviation o,, skewness y;, excess
kurtosis 7, and similarity measure M. Groups O, A-H

Group 0 = (1,04, €1, U, 02, €2, ) Ha Oa "1, V2 M(8; p,0)

o M1, 01, 1,15, 02,C,1 0 1 0 0 M(®;py,00) =1
M1, 01, €1, Uy, 05, 1,0 0 1 0 0 M@®u,o)=1
1.415,1.684,2.194, 11.252,5.474,2.331,0.9 2.399| 3.622| 2.647| 7.663 M(6;0,1) =05

A 0.444, 0.899, 1.602, 1.653, 2.506, 1.876, 0.64 0.879| 1.604{ 0.913| 0.412 M(6;0,1) = 0.75
-0.076, 1.056, 1.1, 0.701, 1.646, 1.095, 0.71 0.149| 1.268| 0.374| 0.374 M(6;0,1) =09
0.026, 1.078, 1.001, 0.701, 1.646, 1.174, 0.95 0.06| 1.117| 0.099| 0.148| M(6;0,1) = 0.95
1.366,0.572,1.11,0.502, 1.669, 1.253, 0.658 1.071] 1.099|-0.978| 1.565| M(6;0,1) =0.5

B 0.67,0.425, 1.576,-0.323, 1.696, 1.05, 0.349 0.024| 1.444]-0.569| 0.606 M(6;0,1) =0.75
-0.204, 2.209, 1.205, 0.133, 1.139, 1.05,0.076 | 0.107| 1.224{-0.122| 0.457 M(6;0,1) =09
0.121,0.936, 1.05,-0.17,1.917, 1.411, 0.95 0.106] 0.982| -0.1| 0.204 M(6;0,1) = 0.95
1.597,2.518, 1.263, 1.596, 0.856, 1.285,0.526 | 1.597| 1.797 0] 0.601 M(6;0,1) =0.5

C 0.012,0.274,1.256,0.012, 2.046, 1.01, 0.183 0.012] 1.846| 0 0.598| M(6;0,1) = 0.75
0.127,1.089, 1.01,0.127,0.183, 1.01, 0.863 0.127| 1.01 0] 0.401 M(6;0,1) =09
0.075, 0.973, 1.01, 0.075, 1.964, 1.362, 0.867 0.075] 1.119| 0] 0.387| M(6;0,1) = 0.95
1.631,0.893, 1.05, 1.632, 2.104, 1.554, 0.498 1.632| 1.488] 0-0.268| M(6;0,1) =05

D 0.639, 1.576, 1.167, 0.64, 1.085, 1.199, 0.163 0.64) 1.12 0/-0.251 M(6;0,1) = 0.75
0.666, 1.123, 4.041, 0.233, 1.069, 1.05, 0.01 0.237| 1.052 0/-0.198| M(6;0,1) =09
0.225, 1.087, 1.05, -0.067, 1.094, 1.05, 0.233 0.001| 1.081 0 -0.18] M(6;0,1) = 0.95
1.472,0.782,1.11,0.236, 0.291, 3.203, 0.692 1.091| 0.861] 0.38 -0.8 M(6;0,1) =0.5

E -0.196, 0.341, 1.064, 0.613, 0.758, 1.204, 0.153 | 0.489| 0.734| 0.201| -0.7 M(6;0,1) =0.75
0.722,0.703, 1.304, -0.57, 0.598, 1.05, 0.455 0.018] 0.893| 0.179/-0.617 M(6;0,1) =09
0.584,1.171,9.804, -0.016, 1.024, 1.076,0.05 | 0.014] 1.013] 0.028/-0.351 M(0;0,1) = 0.95
0.261, 1.419, 1.909, 3.099, 0.744, 1.567, 0.57 1.481| 1.757] -0.3(-1.107 M(6;0,1) =0.5

E 0.037,1.295, 1.076, 1.316, 1.171, 1.654, 0.485 | 0.696| 1.326(-0.204] -0.4 M(6;0,1) = 0.75
0.201,0.121,1.573,0.184,1.177,1.161,0.066 | 0.185| 1.087(-0.003|-0.331 M(6;0,1) =09
0.049, 1.063, 1.088, 1.392,0.511, 1.05, 0.99 0.062| 1.038/-0.008|-0.328| M(6;0,1) = 0.95
1.088, 0.894, 3.782, 1.969, 2.71, 1.792, 0.55 1.484| 1.793 0.6| 0 M(6;0,1) =05

G 1.515, 2.553,3.55,0.07, 1.328, 1.619, 0.07 0.171] 1.359| 0.501 0 M(6;0,1) = 0.75
-0.034,1.072,1.159, 1.146, 1.51, 1.301,0.756 | 0.254| 1.238| 0.401 0 M(6;0,1) =09
0.825,1.615, 1.868, 0.067, 0.934, 1.05, 0.141 0.174] 1.044] 0.336 0) M(6;0,1) = 0.95
0.816, 1.867, 1.24, 1.787, 1.272,1.05, 0.278 1.517| 1.475/-0.302 0 M(0;0,1) =0.5

H -0.364, 1.889, 1.057,0.29, 1.413, 1.05, 0.527 -0.055| 1.682|-0.154| 0 M(6;0,1) =0.75
0.286, 0.405, 1.27,-0.263, 1.261, 1.05,0.112 -0.202| 1.188|-0.128 0 M(6;0,1) =09
F0.153, 1.344, 1.349, -0.024, 0.539, 1.05, 0.565 |-0.097 1 -0.12] 0 M(6;0,1) = 0.95

Source: authors’ work.

Figure 6A. PDF curves of the PCM distribution for parameter values presented in Table 6A
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Figure 6A. PDF curves of the PCM distribution for parameter values presented in Table 6A (cont.)
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Table 7A. The power of GoFTs for group of alternatives A (ALTs)

Numbered GoFT (see Table 3)
ALT N
1 2 3 4 5 6 7 8 9 10 11 12

P, 10 |0.853 | 0.614| 0.789 | 0.792 | 0.764 | 0.791 | 0.792 | 0.789 | 0.789 | 0.817 | 0.658 | 0.847
20 | 0.993 | 0.965 | 0.987 | 0.987 | 0.984 | 0.987 | 0.987 | 0.987 | 0.987 | 0.993 | 0.957 | 0.997
10 {0.374| 0.126 | 0.260 | 0.270 | 0.269 | 0.272| 0.270 | 0.273 | 0.273 | 0.293 | 0.219| 0.316
P 20 | 0.650 | 0.380 | 0.533 | 0.544 | 0.541 | 0.545 | 0.544 | 0.546 | 0.546 | 0.599 | 0.421 | 0.670
10 [0.149 | 0.049 | 0.093 | 0.099 | 0.107 | 0.101 | 0.100 | 0.103 | 0.103 | 0.108 | 0.092 | 0.111
i 20 [0.227 | 0.092 | 0.149 | 0.158 | 0.174 | 0.161 | 0.159 | 0.164 | 0.164 | 0.181 | 0.138 | 0.208
10 |0.092 | 0.048 | 0.064 | 0.069 | 0.076 | 0.070 | 0.069 | 0.072 | 0.072 | 0.074 | 0.067 | 0.076
Fa 20 (0.117 | 0.060 | 0.080 | 0.086 | 0.100 | 0.088 | 0.087 | 0.091 | 0.091 | 0.098 | 0.081 | 0.108
10 {0.146 | 0.045 | 0.087 | 0.094 | 0.105 | 0.096 | 0.095 | 0.099 | 0.099 | 0.103 | 0.090 | 0.105
NM, 20 |0.221 | 0.087 | 0.142 | 0.153| 0.170 | 0.156 | 0.153 | 0.159 | 0.159 | 0.171 | 0.136 | 0.185
NM, 10 [0.143 | 0.042 | 0.087 | 0.092 | 0.098 | 0.093 | 0.092 | 0.095 | 0.095 | 0.099 | 0.089 | 0.100
20 [0.224 | 0.084 | 0.147 | 0.155| 0.165 | 0.157 | 0.156 | 0.159 | 0.159 | 0.169 | 0.138 | 0.179
10 |0.084 | 0.041 | 0.059 | 0.061 | 0.065 | 0.062 | 0.062 | 0.063 | 0.063 | 0.063 | 0.061 | 0.063
NM, 20 {0.102| 0.048 | 0.071 | 0.073 | 0.079 | 0.075| 0.074 | 0.075 | 0.075 | 0.078 | 0.071 | 0.081
10 {0.057 | 0.048 | 0.052 | 0.053 | 0.054 | 0.053 | 0.053 | 0.054 | 0.054 | 0.054 | 0.051 | 0.053
NM, 20 [0.061 | 0.047 | 0.053 | 0.053 | 0.055 | 0.054 | 0.054 | 0.054 | 0.054 | 0.055 | 0.053 | 0.056
10 [0.628 | 0.469 | 0.552 | 0.577 | 0.604 | 0.581 | 0.578 | 0.588 | 0.588 | 0.596 | 0.541 | 0.591
NLM; 20 [0.881 | 0.832 | 0.846 | 0.860 | 0.879 | 0.863 | 0.861 | 0.867 | 0.867 | 0.878 | 0.832 | 0.885
10 [0.112 | 0.059 | 0.075 | 0.083 | 0.098 | 0.086 | 0.084 | 0.089 | 0.089 | 0.092 | 0.083 | 0.092
NLM, 20 {0.153| 0.084 | 0.102| 0.115| 0.139| 0.118| 0.116 | 0.123 | 0.123 | 0.131 | 0.106 | 0.137
10 | 0.138 | 0.116 | 0.114 | 0.127 | 0.149 | 0.130| 0.128 | 0.135| 0.135| 0.142 | 0.121 | 0.145
NLM; 20 | 0.220 | 0.193 | 0.181| 0.201 | 0.239 | 0.206 | 0.202 | 0.214 | 0.214 | 0.237 | 0.181 | 0.267
10 {0.113 | 0.058 | 0.076 | 0.083 | 0.096 | 0.085 | 0.084 | 0.087 | 0.087 | 0.093 | 0.081 | 0.095
NLM, 20 |0.157 | 0.087 | 0.106 | 0.118 | 0.141 | 0.121| 0.119| 0.126 | 0.126 | 0.138 | 0.107 | 0.159
10 [0.117 | 0.058 | 0.093 | 0.092 | 0.088 | 0.091 | 0.092 | 0.091 | 0.091 | 0.096 | 0.084 | 0.100
NDPG, 20 | 0.170| 0.082 | 0.127 | 0.128 | 0.128 | 0.129| 0.128 | 0.129 | 0.129 | 0.150 | 0.115| 0.179
10 |0.183 | 0.065| 0.131 | 0.135| 0.131 | 0.135| 0.135| 0.135| 0.135| 0.131 | 0.126 | 0.121
NDPC, 20 [0.306 | 0.157 | 0.243 | 0.246 | 0.242 | 0.247 | 0.246 | 0.246 | 0.246 | 0.231 | 0.224| 0.188
10 {0.063 | 0.049 | 0.053 | 0.056 | 0.059 | 0.056 | 0.056 | 0.057 | 0.057 | 0.057 | 0.056 | 0.054
NDPC, 20 [0.071 | 0.052 | 0.056 | 0.060 | 0.067 | 0.061 | 0.060 | 0.062 | 0.062 | 0.060 | 0.062 | 0.053
10 {0.052 | 0.051 | 0.051 | 0.051 |0.052 | 0.051 | 0.051 | 0.051 | 0.051 |0.052 | 0.051 | 0.051
NDPC, 20 |0.053 | 0.051| 0.051 | 0.051|0.053 | 0.051 | 0.051 | 0.052 | 0.052 | 0.052 | 0.051 | 0.053
10 | 0.594 | 0.476 |0.608 | 0.595 | 0.540 | 0.590 | 0.594 | 0.581 | 0.581 | 0.593 | 0.527 | 0.594
M, 20 | 0.888 | 0.821 | 0.874| 0.874| 0.854 | 0.874| 0.874 | 0.871 | 0.871 | 0.895 | 0.814 | 0.896
pCM, 10 [0.296 | 0.081 | 0.192 | 0.201 | 0.203 | 0.202 | 0.201 | 0.204 | 0.204 | 0.219 | 0.172| 0.228
20 [0.549 | 0.267 | 0.416 | 0.431| 0.439| 0.433 | 0.431 | 0.437 | 0.437 | 0.481 | 0.342 | 0.494
pCM, 10 {0.085 | 0.041 | 0.061 | 0.063 | 0.065 | 0.063 | 0.063 | 0.064 | 0.064 | 0.066 | 0.062 | 0.067
20 |0.104 | 0.048 | 0.073 | 0.076 | 0.079 | 0.076 | 0.076 | 0.077 | 0.077 | 0.083 | 0.070 | 0.093
pcM, 10 {0.058 | 0.049 | 0.053 | 0.053 | 0.055 | 0.054 | 0.053 | 0.054 | 0.054 | 0.055 | 0.053| 0.054
20 [0.062 | 0.049 | 0.053 | 0.054 | 0.057 | 0.055| 0.054 | 0.055 | 0.055 | 0.056 | 0.054 | 0.058

Note. The highest PoTs of the MCM(a,3) values are underlined. The highest PoTs for all the analysed tests are
in bold.
Source: authors’ work.
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Table 8A. The power of GoFTs for group of alternatives B (ALTs)

ALT

N

Numbered GoFT (see Table 3)

1 2 3 4 5 6 7 8 9 10 11 12

P, 10 | 0.612|0.853 | 0.788 | 0.790 | 0.762 | 0.789 | 0.790 | 0.786 | 0.786 | 0.815 | 0.657 | 0.846
20 | 0.964 |0.993 | 0.986 | 0.987 | 0.984 | 0.987 | 0.987 | 0.986 | 0.986 | 0.993 | 0.957 | 0.997

10 | 0.1250.372 | 0.260 | 0.268 | 0.267 | 0.269 | 0.269 | 0.271 | 0.271 | 0.292 | 0.217 | 0.315

P2 20 | 0.380 | 0.655 | 0.537 | 0.545 | 0.542 | 0.547 | 0.546 | 0.548 | 0.548 | 0.603 | 0.423 | 0.673
10 | 0.047 | 0.149 | 0.092 | 0.099 | 0.107 | 0.100 | 0.099 | 0.102 | 0.102 | 0.107 | 0.091 | 0.112

& 20 | 0.093 |0.228 | 0.150 | 0.160 | 0.175| 0.163 | 0.161 | 0.166 | 0.166 | 0.181 | 0.140 | 0.207
10 | 0.048 |0.092 | 0.065 | 0.069 | 0.076 | 0.070 | 0.069 | 0.072 | 0.072 | 0.074 | 0.067 | 0.074

Fa 20 | 0.059 |0.119 | 0.079 | 0.086 | 0.100 | 0.088 | 0.087 | 0.091 | 0.091 | 0.098 | 0.081 | 0.107
10 | 0.068 |0.182| 0.112| 0.125| 0.144 | 0.128 | 0.126 | 0.132| 0.132| 0.138 | 0.116 | 0.139

N, 20 | 0.141|0.293 | 0.194 | 0.214 | 0.249 | 0.219| 0.215 | 0.226 | 0.226 | 0.244 | 0.189 | 0.256
NM, 10 | 0.049 |0.151 | 0.097 | 0.102 | 0.107 | 0.103 | 0.102 | 0.105 | 0.105 | 0.107 | 0.096 | 0.106
20 | 0.101 {0.237 | 0.165 | 0.173 | 0.182| 0.175| 0.174| 0.177 | 0.177 | 0.180 | 0.152 | 0.175

10 | 0.042|0.108 | 0.077 | 0.078 | 0.076 | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 | 0.073 | 0.077

NM; 20 | 0.066 |{0.153 | 0.114| 0.114 | 0.110| 0.114 | 0.114| 0.113 | 0.113 | 0.113 | 0.102 | 0.108
10 | 0.048 |0.055 | 0.051| 0.051 | 0.052 | 0.051 | 0.051 | 0.051 | 0.051 | 0.052 | 0.052 | 0.051

NM, 20 | 0.046 |0.056 | 0.050 | 0.051 | 0.052 | 0.051 | 0.051 | 0.051| 0.051 | 0.052 | 0.051 | 0.052
10 | 0.318| 0.446 | 0.369 | 0.404 | 0.451 | 0.412 | 0.406 | 0.423 | 0.423 | 0.416| 0.377 | 0.382

NLM, 20 | 0.683 | 0.758 | 0.695 | 0.729 [0.776 | 0.736 | 0.730 | 0.746 | 0.746 | 0.735 | 0.666 | 0.659
10 | 0.301 | 0.322 | 0.289 | 0.326 |0.378 | 0.333 | 0.328 | 0.346 | 0.346 | 0.338 | 0.310 | 0.305

NLM; 20 | 0.593 | 0.609 | 0.562 | 0.604 [0.671 | 0.613 | 0.606 | 0.628 | 0.628 | 0.613 | 0.549 | 0.534
10 | 0.248 | 0.250 | 0.225| 0.255|0.302 | 0.262 | 0.257 | 0.272 | 0.272 | 0.281 | 0.237 | 0.275

NLM: 20 | 0.458 | 0.460 | 0.414 | 0.455(0.524 | 0.464 | 0.458 | 0.478 | 0.478 | 0.504 | 0.402 | 0.508
10 | 0.075| 0.075 | 0.067 | 0.073 | 0.084 | 0.075 | 0.074 | 0.077 | 0.077 | 0.080 | 0.072 | 0.081

NLM, 20 | 0.094 | 0.094 | 0.080 | 0.090 | 0.111 | 0.092 | 0.091 | 0.096 | 0.096 | 0.106 | 0.083 | 0.120
10 | 0.265 (0.439 | 0.348 | 0.378 | 0.414 | 0.384 | 0.380 | 0.393 | 0.393 | 0.410| 0.343 | 0.415
NDPC, 20 | 0.581 | 0.684 | 0.609 | 0.638 | 0.680 | 0.644 | 0.639 | 0.653 | 0.653 | 0.686 | 0.590 | 0.714
10 | 0.197 | 0.436 | 0.310| 0.338 | 0.370 | 0.344 | 0.340 | 0.351 | 0.351 | 0.364 | 0.304 | 0.365
NDPC, 20 | 0.532(0.722 | 0.612| 0.640 | 0.683 | 0.647 | 0.642 | 0.656 | 0.656 | 0.681 | 0.573 | 0.688
10 | 0.067|0.181 | 0.111| 0.124 | 0.143 | 0.127 | 0.125| 0.131| 0.131 | 0.140 | 0.116 | 0.146
NDPC, 20 | 0.132|0.284 | 0.185| 0.205 | 0.240 | 0.210| 0.206 | 0.217| 0.217 | 0.245 | 0.177 | 0.282
10 | 0.044|0.060 | 0.052 | 0.052 | 0.053 | 0.052 | 0.052 | 0.052 | 0.052 | 0.053 | 0.053 | 0.052
NDPC, 20 | 0.043 |0.062 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.054 | 0.052| 0.055
pcM, 10 | 0.103 {0.290 | 0.184 | 0.204 | 0.230 | 0.209 | 0.205 | 0.215 | 0.215| 0.224 | 0.186 | 0.224
20 | 0.289 | 0.507 | 0.380 | 0.408 | 0.450 | 0.414 | 0.410| 0.423 | 0.423 | 0.444 | 0.351 | 0.441

pcM, 10 | 0.095|0.251 | 0.179| 0.187 | 0.189 | 0.189 | 0.188 | 0.190 | 0.190 | 0.188 | 0.174 | 0.177
20 | 0.258 |0.442 | 0.358 | 0.369 | 0.375| 0.371| 0.370 | 0.374 | 0.374 | 0.359 | 0.335| 0.307

pcM, 10 | 0.052]0.062 | 0.056 | 0.057 | 0.058 | 0.057 | 0.057 | 0.058 | 0.058 | 0.059 | 0.056 | 0.059
20 | 0.055| 0.070| 0.061 | 0.063 | 0.066 | 0.063 | 0.063 | 0.064 | 0.064 | 0.069 | 0.059 | 0.077

pcM, 10 | 0.048 |0.058 | 0.054 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.054 | 0.052 | 0.055
20 | 0.050 |0.062 | 0.057 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | 0.058 | 0.054 | 0.063

Note. As in Table 7A.
Source: authors’ work.



P. SULEWSKI, D. STOLTMANN Modified Cramer-von Mises goodness-of-fit test for normality 27

Table 9A. The power of GoFTs for group of alternatives C (ALTs)

Numbered GofT (see Table 3)

ALT N 1 2 3 4 5 6 7 8 9 10 i 12
P, 10 10.110 | 0.110 | 0.095 | 0.108 [0.130 {0.111 {0.109 | 0.116 | 0.116 | 0.121 | 0.105 | 0.123
20 | 0.170 | 0.170 | 0.143 | 0.163 | 0.202 | 0.169 | 0.165 | 0.176 | 0.176 | 0.191 | 0.148 | 0.208

10 [ 0.092 | 0.092 | 0.079 | 0.090 [0.108 | 0.093 | 0.091 | 0.097 | 0.097 |0.101 | 0.088 | 0.101

P2 20 | 0.130 | 0.130 | 0.108 | 0.124 | 0.155 | 0.128 | 0.125 | 0.134 | 0.134 | 0.147 | 0.115 | 0.162
10 | 0.076 | 0.075 | 0.067 | 0.074 |0.085 | 0.075 | 0.074 | 0.078 | 0.078 | 0.080 | 0.072 | 0.081

P2 20 [ 0.092 | 0.094 | 0.079 | 0.089 |0.110 | 0.092 |0.089 |0.096 |0.096 |0.104 |0.084 | 0.116
10 | 0.061 | 0.061 | 0.057 | 0.061 [0.067 | 0.062 | 0.061 | 0.063 | 0.063 | 0.064 | 0.060 | 0.063

Fa 20 | 0.067 | 0.067 | 0.060 | 0.065 | 0.075 | 0.066 | 0.065 | 0.067 | 0.067 | 0.071 | 0.063 | 0.078
10 [ 0.194 | 0.196 | 0.179 | 0.204 |0.238 | 0.209 | 0.205 | 0.217 | 0.217 | 0.205 [ 0.203 | 0.174

NM, 20 | 0.366 | 0.368 | 0.335 | 0.369 (0.427 | 0.377 | 0.371 | 0.389 | 0.389 | 0.356 | 0.351 | 0.265
10 {0.122 | 0.121 | 0.105 | 0.122 |0.147 | 0.125 | 0.122 [ 0.131 [ 0.131 | 0.128 | 0.121 | 0.115

NM: 20 | 0.200 | 0.200 | 0.171 | 0.197 (0.244 | 0.203 | 0.198 | 0.213 | 0.213 | 0.202 | 0.186 | 0.162
10 | 0.061 | 0.061 | 0.056 | 0.060 [0.067 | 0.061 | 0.060 |0.063 | 0.063 | 0.062 | 0.061 | 0.060

NM 20 | 0.068 | 0.069 | 0.059 | 0.066 (0.079 |0.067 |0.066 |0.069 |0.069 |0.069 |0.066 | 0.066
10 | 0.053 | 0.054 | 0.051 | 0.053 [0.055 | 0.054 | 0.053 | 0.054 | 0.054 | 0.055 | 0.052 | 0.055

NM, 20 | 0.056 | 0.055 | 0.053 | 0.055 (0.059 | 0.055 | 0.055 | 0.056 | 0.056 | 0.057 | 0.055 | 0.059
10 {0.132 {0.133 | 0.113 | 0.132 [0.163 | 0.136 | 0.133 | 0.142 | 0.142 | 0.144 | 0.129 | 0.137

NLM, 20 | 0.223 | 0.224 | 0.188 | 0.218 [0.272 | 0.225 | 0.220 | 0.236 | 0.236 | 0.239 | 0.198 | 0.224
10 | 0.094 | 0.095 | 0.086 | 0.095 |0.108 | 0.096 | 0.095 | 0.099 | 0.099 |0.105 | 0.090 | 0.107

NLM, 20 {0.139 [ 0.142 | 0.120 | 0.136 | 0.164 | 0.139 | 0.137 | 0.146 | 0.146 | 0.162 | 0.123 | 0.186
10 | 0.082 | 0.081 | 0.071 | 0.079 [0.093 | 0.081 | 0.080 |0.085 | 0.085 | 0.088 | 0.077 | 0.088

NLM, 20 | 0.105 | 0.105 | 0.086 | 0.099 | 0.126 | 0.103 | 0.100 | 0.108 | 0.108 | 0.117 | 0.093 | 0.130
10 | 0.060 | 0.062 | 0.058 | 0.061 [0.066 | 0.062 | 0.061 | 0.063 | 0.063 | 0.065 | 0.060 | 0.064

NLM, 20 | 0.071 | 0.071 | 0.064 | 0.069 |0.078 | 0.070 | 0.069 | 0.072 | 0.072 | 0.077 | 0.067 | 0.086
10 | 0.061 | 0.061 | 0.065 | 0.063 | 0.061 | 0.063 | 0.063 | 0.062 | 0.062 | 0.065 | 0.061 | 0.066
NDPC, 20 [ 0.072 | 0.072 | 0.076 | 0.074 | 0.072 | 0.074 | 0.074 | 0.073 | 0.073 | 0.080 |0.070 | 0.092
10 | 0.059 | 0.060 | 0.054 | 0.057 [0.062 | 0.057 | 0.057 | 0.059 | 0.059 | 0.060 | 0.057 | 0.060

NDPC, 20 | 0.064 | 0.064 | 0.058 | 0.062 |0.071 | 0.063 | 0.062 | 0.065 | 0.065 | 0.067 | 0.061 | 0.068
10 | 0.053 | 0.052 | 0.053 | 0.053 | 0.052 [ 0.053 | 0.053 | 0.053 | 0.053 |0.054 | 0.052 | 0.053
NDPC, 20 | 0.054 | 0.054 | 0.055 | 0.055 [ 0.054 | 0.055 | 0.055 | 0.054 | 0.054 | 0.055 | 0.053 | 0.057
10 [ 0.051 | 0.051 | 0.050 | 0.050 {0.051 | 0.050 | 0.050 | 0.050 | 0.050 |0.051 [0.051 | 0.050

NDPC, 20 | 0.051 | 0.050 | 0.050 | 0.050 [{0.051 |0.050 |0.050 | 0.050 | 0.050 | 0.050 | 0.051 | 0.051
10 | 0.080 | 0.081 | 0.069 | 0.078 [0.092 | 0.080 | 0.079 |0.083 | 0.083 | 0.084 | 0.078 | 0.082

PeMy 20 (0.103 | 0.103 | 0.086 |0.099 (0.125 |0.103 |0.100 | 0.108 | 0.108 | 0.110 | 0.093 | 0.101
pCM, 10 | 0.101 | 0.101 | 0.091 | 0.102 [0.119 | 0.104 | 0.102 | 0.108 | 0.108 | 0.102 | 0.107 | 0.089
20 {0.151 {0.152 | 0.132 | 0.150 |0.181 | 0.154 | 0.151 | 0.161 | 0.161 | 0.144 | 0.156 | 0.110

pcM, 10 | 0.075 | 0.074 | 0.066 | 0.073 [0.085 | 0.075 | 0.074 | 0.077 | 0.077 | 0.075 | 0.076 | 0.069
20 | 0.096 | 0.096 | 0.082 | 0.093 (0.114 | 0.096 | 0.094 | 0.100 | 0.100 | 0.094 | 0.096 | 0.079

pcM, 10 | 0.060 | 0.059 | 0.056 | 0.058 |0.062 | 0.059 | 0.058 | 0.060 | 0.060 | 0.061 | 0.058 | 0.061
20 | 0.062 | 0.061 | 0.056 | 0.059 | 0.067 |0.060 |0.059 | 0.061 | 0.061 | 0.065 | 0.058 | 0.071

Note. As in Table 7A.
Source: authors’ work.
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Table 10A. The power of GoFTs for group of alternatives D (ALTs)

Numbered GoFT (see Table 3)

ALT N
1 2 3 4 5 6 7 8 9 10 11 12
P, 10 [0.468 |0.467 (0.629 |0.572 |0.390 |0.556 |0.568 |0.526 |0.526 [0.600 |0.367 |0.667
20 |0.871 |0.871 |0.932 [0.910 [0.815 [0.903 |0.909 |0.890 |0.890 |0.950 [0.715 [0.980
10 {0.090 |0.093 |0.154 |0.125 [0.064 |0.118 [0.123 |0.105 |0.105 [0.118 |0.082 |0.127
P2 20 |0.212 |0.211 |0.311 [0.262 [0.149 |0.251 |0.260 |0.230 |0.230 |0.287 |0.148 (0.350
10 |0.044 |0.042 [0.061 |0.052 [0.033 |0.049 [0.051 |0.046 |0.046 [0.045 |0.045 |0.043
& 20 |0.057 |0.056 [0.085 |0.070 [0.039 |0.066 [0.069 |0.059 |0.059 [0.063 |0.053 |0.059
10 |0.040 |0.041 |0.050 |0.045 [0.035 [0.044 |0.045 |0.041 |0.041 |0.041 |0.043 [0.039
P 20 |0.043 |0.043 [0.057 |0.050 [0.034 |0.048 [0.049 |0.044 |0.044 [0.044 |0.045 |0.038
10 {0.098 |0.099 [0.160 |0.132 [0.073 |0.125 |[0.131 |0.113 |0.113 [0.112 |0.101 |0.104
NI, 20 |0.229 |0.233 |0.330 (0.284 (0.172 |0.272 |0.281 |0.251 |0.251 |0.247 |0.195 [0.212
10 |0.157 |0.128 [0.208 |0.184 [0.116 |0.177 |0.183 |0.167 |0.167 [0.201 |0.142 |0.216
NI 20 [0.311 |0.262 |0.365 [0.333 |0.241 |0.325 [0.331 [0.309 |0.309 |0.432 |0.325 |0.477
10 |0.051 |0.043 |0.062 |0.054 [0.039 [0.052 |0.054 |0.049 |0.049 |0.048 |0.049 [0.046
NM, 20 |0.064 |0.055 [0.082 |0.069 [0.045 |0.067 [0.069 |0.062 |0.062 [0.060 |0.058 |0.054
NM, 10 [0.047 |0.048 |0.049 |0.048 |0.047 |0.048 |0.048 [0.048 |0.048 [0.048 |0.048 [0.047
20 |0.047 |0.048 |0.050 [0.049 [0.046 (0.049 |0.049 |0.048 |0.048 |0.047 |0.048 [0.045
10 |0.046 |0.130 [0.090 |0.092 [0.092 |0.092 [0.092 |0.092 |0.092 [0.096 |0.084 |0.097
NLM; 20 (0.082 |0.197 (0.139 |0.143 |0.146 [0.144 |0.144 |0.145 |0.145 [0.156 |0.123 [0.170
10 |0.044 |0.069 [0.056 |0.057 [0.058 |0.057 |0.057 |0.057 |0.057 [0.058 |0.056 |0.058
NLM, 20 |0.045 |0.080 [0.060 |0.062 [0.066 |0.063 [0.062 |0.063 |0.063 [0.066 |0.061 [0.072
10 [0.058 |0.089 (0.067 |0.072 |0.081 |0.073 |0.072 |0.075 |0.075 [0.079 |0.070 {0.080
NLM, 20 |0.076 |0.116 [0.085 |0.093 [0.110 |0.096 |0.094 |0.098 |0.098 [0.108 |0.086 |0.122
NLM, 10 |0.069 |0.106 [0.078 |0.087 [0.101 |0.088 |0.087 |0.091 |0.091 [0.095 |0.083 |0.096
20 |0.097 |0.148 |0.103 [0.117 [0.145 [0.121 |0.118 |0.126 |0.126 |0.138 |0.108 (0.150
10 |0.097 |0.096 [0.155 |0.128 [0.072 |0.121 [0.126 |0.109 |0.109 [0.109 |0.098 |(0.101
NDPC, 20 |0.223 |0.224 |0.321 |0.276 [0.165 |0.264 (0.273 |0.243 |0.243 [0.237 |0.189 |0.204
10 |0.052 |0.051 |0.069 |0.060 [0.042 [0.058 [0.060 |0.055 |0.055 |0.054 |0.055 |0.051
NDPC, 20 |0.068 |0.068 [0.095 |0.081 [0.051 |0.078 [0.081 |0.072 |0.072 [0.069 |0.069 |0.059
10 [0.047 |0.046 (0.048 |0.047 |0.045 [0.046 |0.046 [0.046 |0.046 [0.046 |0.047 |0.045
NDPC, 20 |0.046 |0.045 |0.048 [0.046 [0.043 |0.046 |0.046 |0.045 |0.045 |0.044 |0.048 [0.040
10 |0.050 |0.050 [0.051 |0.050 [0.049 |0.051 |[0.051 |0.051 |0.051 [0.050 |0.051 |0.049
NDPC, 20 (0.047 |0.050 (0.049 |0.049 |0.048 [0.048 |0.048 [0.048 |0.048 [0.048 |0.049 (0.047
10 |0.046 |0.046 |0.050 |0.048 [0.043 [0.047 [0.048 [0.046 |0.046 |0.045 |0.046 |0.043
pPcM, 20 |0.045 |0.044 [0.049 |0.046 [0.041 |0.046 |0.046 |0.045 |0.045 [0.043 |0.047 |0.039
10 [0.054 |0.054 (0.067 |0.061 |0.047 |0.059 |0.060 [0.056 |0.056 [0.055 |0.056 [0.054
PCM, 20 |0.065 |0.066 |0.084 |0.074 [0.054 |0.072 |0.074 |0.068 |0.068 [0.066 |0.068 |0.062
pcM, 10 |0.048 |0.047 [0.053 |0.049 [0.044 |0.049 |0.049 |0.048 |0.048 [0.048 |0.049 |0.046
20 |0.049 |0.047 |0.055 [0.051 [0.043 [0.050 |0.051 |0.048 |0.048 |0.047 |0.050 [0.045
pcM, 10 |0.046 |0.047 [0.051 |0.048 [0.044 |0.047 |0.048 |0.046 |0.046 [0.046 |0.047 |0.046
20 (0.046 |0.048 |0.053 |0.050 |0.043 [0.049 |0.050 [0.048 |0.048 [0.046 |0.048 (0.045

Note. As in Table 7A.
Source: authors’ work.
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Table 11A. The power of GofTs for group of alternatives E (ALTs)

Numbered GoFT (see Table 3)
ALT N
1 2 3 4 5 6 7 8 9 10 11 12

P, 10 | 0.753 | 0.537 | 0.739 | 0.719 [ 0.635 | 0.712 | 0.717 | 0.700 | 0.700 | 0.737 | 0.579 | 0.775
20 | 0.972 | 0.927 | 0.972 | 0.967 | 0.942 | 0.965 | 0.966 | 0.961 | 0.961 | 0.979 | 0.901 | 0.990
10 |0.264 | 0.081 | 0.212 | 0.200 | 0.162 | 0.196 | 0.199 | 0.189 | 0.189 | 0.206 | 0.150 | 0.224
P 20 | 0.496 | 0.259 | 0.440 | 0.419 | 0.352 | 0.414 | 0.418 | 0.402 | 0.402 | 0.459 | 0.296 | 0.530
10 |0.106 | 0.031 | 0.074 | 0.071 | 0.064 | 0.070 | 0.071 | 0.069 | 0.069 | 0.072 | 0.065 | 0.074
P 20 |0.158 | 0.052 | 0.116 | 0.110 | 0.096 | 0.109 [ 0.110 | 0.106 | 0.106 | 0.115 | 0.096 | 0.127
10 (0.073 | 0.033 | 0.057 | 0.054 | 0.050 | 0.054 | 0.054 | 0.054 | 0.054 | 0.054 | 0.053 | 0.054
Pa 20 |0.086 | 0.036 | 0.067 | 0.064 | 0.058 | 0.064 | 0.064 | 0.062 | 0.062 | 0.064 | 0.060 | 0.066
10 |0.139 | 0.036 | 0.094 | 0.094 | 0.086 | 0.093 | 0.094 | 0.092 | 0.092 | 0.093 | 0.086 | 0.092
N, 20 |0.227 | 0.085 | 0.169 | 0.166 | 0.152 | 0.166 | 0.166 | 0.163 | 0.163 | 0.165 | 0.141 | 0.157
10 |0.094 | 0.035 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.066 | 0.066 | 0.066 |0.063 | 0.065
NM; 20 (0.124 | 0.048 | 0.088 | 0.088 | 0.086 | 0.088 | 0.088 | 0.088 | 0.088 | 0.089 | 0.082 | 0.085
10 [0.054 | 0.045 | 0.050 | 0.050 | 0.049 | 0.050 | 0.050 | 0.049 |0.049 | 0.049 | 0.049 | 0.048
NM; 20 |0.056 | 0.044 | 0.050 | 0.051 | 0.049 | 0.051 | 0.051 | 0.050 | 0.050 | 0.051 | 0.051 | 0.051
10 [0.054 | 0.047 | 0.052 | 0.051 {0.051 | 0.051 [ 0.051 | 0.051 | 0.051 | 0.052 | 0.050 | 0.051
NM, 20 |0.054 | 0.046 | 0.050 | 0.050 | 0.050 |0.050 |0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050
NLM, 10 | 0.044 [0.094 | 0.068 | 0.070 | 0.072 | 0.070 | 0.070 | 0.071 | 0.071 | 0.074 | 0.066 | 0.075
20 | 0.057 |0.122 | 0.086 | 0.089 | 0.095 | 0.090 | 0.089 | 0.091 | 0.091 [ 0.099 | 0.082 | 0.114
10 |0.092 | 0.043 | 0.063 | 0.068 | 0.073 | 0.068 | 0.068 | 0.070 | 0.070 | 0.071 | 0.066 | 0.072
NLM, 20 {0.119 | 0.053 | 0.079 | 0.085 | 0.096 | 0.086 | 0.085 | 0.087 | 0.087 | 0.093 | 0.080 | 0.101
NLM, 10 | 0.050 |0.104 | 0.070 | 0.076 | 0.084 | 0.077 | 0.076 | 0.079 | 0.079 | 0.081 | 0.074 | 0.083
20 | 0.068 |0.137 | 0.090 | 0.099 [ 0.116 | 0.102 | 0.100 | 0.105 | 0.105 | 0.115 | 0.091 | 0.129
10 |10.131 | 0.062 | 0.086 | 0.096 | 0.111 | 0.099 | 0.097 | 0.102 | 0.102 | 0.106 | 0.092 | 0.109
NLM, 20 |0.194 | 0.103 | 0.129 | 0.144 [ 0.172 | 0.147 | 0.145 | 0.152 | 0.152 | 0.169 | 0.130 | 0.192
10 | 0.703 | 0.463 |0.716 | 0.689 | 0.567 | 0.679 | 0.687 | 0.660 | 0.660 | 0.648 | 0.597 | 0.603
NDPG, 20 | 0.979 | 0.949 [0.983 | 0.979 [ 0.954 | 0.977 | 0.978 | 0.974 | 0.974 | 0.969 | 0.940 | 0.940
10 (0.105 | 0.033 | 0.088 | 0.080 | 0.061 | 0.077 | 0.079 | 0.074 | 0.074 | 0.074 | 0.071 | 0.072
NDPC, 20 |0.172 | 0.072 | 0.154 | 0.139 [ 0.104 | 0.136 | 0.138 | 0.129 | 0.129 [ 0.128 | 0.111 | 0.115
10 [0.060 | 0.033 | 0.057 | 0.051 [ 0.041 | 0.050 [ 0.051 | 0.048 | 0.048 | 0.047 | 0.048 | 0.044
NDPC, 20 |0.073 | 0.038 | 0.071 | 0.063 | 0.046 | 0.061 | 0.063 | 0.058 | 0.058 | 0.056 | 0.056 | 0.048
NDPC, 10 |0.057 | 0.038 | 0.053 | 0.049 | 0.044 | 0.048 | 0.049 | 0.047 | 0.047 | 0.048 | 0.048 | 0.046
20 (0.062 | 0.038 | 0.057 | 0.053 | 0.045 | 0.052 | 0.053 | 0.051 | 0.051 [ 0.050 | 0.052 | 0.047
PeM, 10 (0.146 | 0.058 | 0.143 | 0.125 | 0.084 | 0.120 [ 0.124 {0.113 | 0.113 | 0.116 | 0.105 | 0.117
20 | 0.272 | 0.151 |0.280 | 0.248 [ 0.172 | 0.241 | 0.247 | 0.226 | 0.226 | 0.243 | 0.208 | 0.255
10 | 0.085 | 0.043 [0.089 | 0.077 | 0.053 | 0.074 | 0.077 | 0.069 | 0.069 | 0.068 | 0.067 | 0.065
PCM, 20 | 0.137 | 0.077 |0.148 | 0.128 [ 0.083 | 0.123 | 0.127 | 0.114 | 0.114 [ 0.111 | 0.102 | 0.097
pcM, 10 |0.071 | 0.031 | 0.062 | 0.057 | 0.045 | 0.055 | 0.056 | 0.053 | 0.053 | 0.052 | 0.052 | 0.050
20 |0.091 | 0.040 | 0.082 | 0.073 | 0.054 | 0.072 | 0.073 | 0.068 | 0.068 | 0.070 | 0.061 | 0.064
10 | 0.054 | 0.041 |0.055 | 0.052 | 0.043 | 0.050 | 0.051 | 0.049 | 0.049 | 0.049 | 0.049 | 0.046
PCM, 20 | 0.059 | 0.042 (0.061 | 0.055 | 0.043 | 0.054 | 0.055 | 0.052 | 0.052 | 0.049 | 0.053 | 0.044

Note. As in Table 7A.
Source: authors’ work.
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Table 12A. The power of GoFTs for group of alternatives F (ALTs)

Numbered GoFT (see Table 3)

ALT N 1 2 3 4 5 6 7 8 9 10 11 12
P, 10 |0.538 |0.755 [0.741 |0.721 |0.636 |0.714 |0.720 |0.701 |0.701 [0.740 |0.582 |0.777
20 (0.926 |0.971 |0.972 [0.966 |0.942 [0.964 |0.965 [0.961 |0.961 |0.979 |0.900 |0.990

10 |0.081 |0.268 |0.214 |0.203 [0.164 [0.199 [0.202 (0.192 |0.192 |0.209 |0.152 |0.227

& 20 (0.261 |0.498 |0.441 [0.420 |0.356 [0.415 |0.419 |0.404 |0.404 |0.461 |0.298 |0.532
10 |0.030 |0.106 |0.075 |0.072 [0.064 [0.071 [0.071 |0.070 |0.070 |0.072 |0.066 |0.073

i 20 |0.052 |0.156 [0.115 |0.110 [0.095 |0.108 |0.110 [0.106 |0.106 [0.114 |0.095 |0.127
10 (0.032 |0.074 |0.056 |0.054 |0.051 [0.054 |0.054 [0.053 |0.053 (0.054 |0.052 |0.053

Py 20 |0.036 |0.086 [0.065 |0.062 [0.056 |0.062 |0.062 [0.061 |0.061 [0.063 |0.059 |0.064
10 {0.120 |0.326 [0.297 |0.274 |0.204 |0.267 |0.272 |0.255 |0.255 [0.254 |0.216 |0.240

N, 20 (0.447 |0.656 |0.642 |0.614 |0.517 [0.606 |0.612 [0.591 |0.591 [0.584 |0.476 |0.530
10 {0.041 |0.087 [0.086 |0.075 [0.053 |0.072 |0.074 |0.068 |0.068 [0.069 |0.064 |0.069

NM, 20 |0.067 |0.129 [0.129 |0.114 |0.077 |0.110 |0.113 |0.103 |0.103 [0.109 |0.091 |[0.110
10 |0.045 |0.055 |0.051 |0.050 [0.050 [0.050 [0.050 [0.050 |0.050 |0.050 |0.050 |0.050

NM, 20 |0.044 |0.057 [0.051 |0.051 [0.050 |0.050 |[0.051 [0.050 |0.050 [0.050 |0.050 |0.048
10 [0.049 |0.049 |0.050 |0.049 |0.049 [0.049 |0.049 [0.049 |0.049 (0.049 |0.049 |0.049

NM, 20 |0.049 |0.051 [0.051 [0.051 [0.051 |0.051 |0.051 |0.051 |0.051 |0.051 [0.050 [0.050
10 {0.112 |0.047 [0.074 |0.079 |0.087 |0.080 |0.080 [0.082 |0.082 [0.086 |0.077 |0.087

NLM; 20 (0.162 |0.074 |0.108 |0.116 |0.130 [0.118 |0.117 [0.121 |0.121 [0.131 |0.105 |0.146
10 |0.125 |0.050 |0.080 |0.087 [0.097 [0.089 [0.087 [0.091 |0.091 |0.094 |0.083 |0.096

NLM, 20 |0.181 |0.082 [0.118 |0.129 |(0.148 |0.131 |0.130 |0.135 |0.135 [0.148 |0.116 |0.163
10 (0.108 |0.057 |0.075 |0.081 |0.091 [0.082 |0.081 [0.085 |0.085 (0.088 |0.078 [0.090

NLM; 20 |0.149 |0.080 [0.101 |0.111 (0.130 |0.114 |0.112 |0.117 |0.117 [0.128 |0.101 |0.142
10 {0.050 |0.086 [0.062 |0.067 [0.073 |0.068 |0.067 [0.069 |0.069 [0.071 |0.065 |0.072

NLM, 20 |0.059 |0.103 (0.073 [0.078 [0.089 |0.080 |0.079 |0.082 |0.082 |0.088 [0.074 [0.100
10 {0.101 |0.281 [0.251 |0.234 (0.181 |0.228 |0.233 [0.219 |0.219 [0.211 |0.202 |0.192

NDPC, 20 |0.365 |0.567 [0.549 |0.523 (0.436 |0.516 |0.522 |0.502 |0.502 [0.473 |0.439 |0.394
NDPC, 10 |0.034 |0.091 |0.076 |0.070 [0.056 [0.068 |0.070 (0.066 |0.066 |0.065 |0.064 |0.062
20 |0.057 |0.133 [0.119 |0.108 (0.083 |0.106 |0.108 [0.101 |0.101 [0.097 |0.095 |0.082

10 {0.034 |0.079 [0.061 |0.060 [0.056 |0.060 (0.060 [0.059 |0.059 [0.057 |0.058 |0.052

NDPC, 20 |0.044 |0.104 [0.081 [0.079 (0.072 |0.078 |0.079 |0.077 |0.077 |0.073 [0.075 [0.058
10 {0.045 |0.052 [0.053 |0.050 [0.046 |0.049 |0.050 [0.048 |0.048 [0.048 |0.049 |0.047
NDPC, 20 (0.043 |0.055 |0.054 |0.051 |0.045 [0.050 |0.051 [0.049 |0.049 (0.048 |0.049 |0.046
10 |0.065 |0.150 |0.158 |0.135 [0.084 [0.129 [0.134 [0.119 |0.119 |0.128 |0.101 |0.130

pPcM, 20 |0.183 |0.321 [0.336 |0.298 (0.201 |0.288 |0.296 [0.271 |0.271 [0.322 |0.195 |0.340
pcM, 10 [0.051 |0.055 |0.065 |0.060 |0.047 [0.058 |0.059 [0.056 |0.056 [0.055 |0.055 [0.052
20 |0.062 |0.068 [0.082 [0.075 [0.056 |0.073 |0.074 |0.069 |0.069 |0.070 [0.066 [0.066

pCM, 10 {0.045 |0.046 [0.051 |0.048 [0.042 |0.047 |0.047 |0.046 |0.046 [0.045 |0.047 |0.043
20 (0.043 |0.045 |0.050 [0.047 |0.039 [0.046 |0.046 [0.044 |0.044 (0.043 |0.046 |0.040

pcw, 10 {0.047 |0.047 [0.054 |0.050 [0.042 |0.049 |0.050 [0.048 |0.048 [0.047 |0.048 |0.046
20 |0.049 |0.051 [0.060 |0.055 [0.042 |0.053 |0.054 [0.051 |0.051 [0.049 |0.052 |0.046

Note. As in Table 7A.
Source: authors’ work.
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Table 13A. The power of GoFTs for group of alternatives G (ALTs)

Numbered GoFT (see Table 3)

ALT N
1 2 3 4 5 6 7 8 9 10 11 12
P, 10 |0.790 |0.565 [0.760 |0.747 [0.678 |0.742 |0.746 |0.733 |0.733 [0.767 |0.612 |0.800
20 |0.981 |0.940 [0.977 |0.974 [0.959 |0.973 |0.973 |0.971 |0.971 [0.984 |0.922 (0.992
10 [0.298 |0.089 |0.224 |0.217 |0.189 [0.215 |0.217 [0.210 |0.210 [0.229 |0.167 [0.250
i 20 |0.551 |0.288 [0.467 |0.456 [0.410 |0.453 |0.455 |0.445 |0.445 [0.505 |0.330 |0.584
10 |0.114 |0.031 |0.077 |0.075 [0.070 |0.075 |0.075 |0.074 |0.074 [0.078 |0.069 |0.080
P 20 (0.172 |0.057 |0.121 |0.119 |0.109 [0.118 |0.119 [0.117 |0.117 [0.127 |0.102 (0.143
10 {0.079 |0.034 |0.058 |0.057 [0.056 |0.057 |0.057 |0.056 |0.056 [0.058 |0.055 |0.057
P 20 |0.095 |0.038 [0.068 |0.068 [0.065 |0.067 [0.068 |0.067 |0.067 [0.070 |0.064 |0.074
10 |0.096 |0.033 |0.065 |0.065 [0.064 [0.065 |0.065 |0.065 |0.065 |0.066 |0.064 [0.066
NM, 20 |0.128 |0.047 |0.088 |0.089 [0.086 |0.089 (0.089 |0.089 |0.089 [0.091 |0.081 [0.092
10 {0.061 |0.043 [0.053 |0.052 [0.052 |0.052 [0.052 |0.052 |0.052 [0.052 |0.052 |0.052
NM; 20 |0.068 |0.042 |0.055 [0.054 [0.054 (0.055 |0.054 |0.055 |0.055 |0.055 |0.054 [0.055
10 {0.057 |0.045 [0.051 |0.050 [0.050 |0.050 [0.050 |0.050 |0.050 [0.051 |0.050 [0.050
NI 20 (0.059 |0.043 |0.050 |0.051 |0.051 [0.051 |0.051 [0.051 |0.051 [0.052 |0.050 [0.052
10 |0.054 |0.048 |0.051 |0.051 [0.050 [0.051 [0.051 [0.051 |0.051 |0.051 |0.050 |0.049
NM, 20 |0.054 |0.047 [0.052 |0.051 [0.052 |0.052 [0.052 |0.051 |0.051 [0.052 |0.051 |[0.052
10 0.526 |0.351 |0.472 |0.482 |0.468 [0.482 |0.482 [0.481 |0.481 [0.473 |0.454 |0.431
NLM, 20 |0.803 |0.709 |0.767 [0.777 (0.779 |0.778 |0.777 |0.780 |0.780 |0.766 |0.753 [0.672
10 |0.189 |0.056 [0.143 |0.137 [0.118 |0.136 |0.137 |0.133 |0.133 [0.134 |0.119 |0.133
NLM, 20 |0.332 |0.156 |0.277 [0.268 [0.233 |0.265 |0.268 |0.260 |0.260 |0.263 |0.222 [0.254
10 |0.170 |0.066 [0.105 |0.117 [0.135 |0.119 [0.118 |0.123 |0.123 [0.130 |0.109 |0.134
NLM, 20 |0.265 (0.129 [0.176 |0.195 [0.226 |0.199 [0.196 |0.205 |0.205 [0.224 |0.173 |0.251
10 |0.106 |0.068 |0.076 |0.084 [0.099 [0.086 [0.084 (0.089 |0.089 |0.094 |0.081 |0.097
NLM, 20 |0.148 |0.099 [0.105 |0.119 [0.145 |0.122 |0.120 |0.127 |0.127 [0.141 |0.109 |0.161
10 |{0.180 (0.071 [0.144 |0.141 [0.124 |0.139 |0.140 |0.137 |0.137 [0.144 |0.133 |0.145
NDPCy 20 |0.333 |0.140 |0.257 [0.256 [0.234 |0.255 |0.256 |0.251 |0.251 |0.301 |0.236 (0.336
10 |0.087 |0.032 [0.060 |0.060 [0.059 |0.060 [0.060 |0.060 |0.060 [0.061 |0.059 |0.061
NDPC, 20 (0.113 |0.042 |0.078 |0.078 |0.075 [0.078 |0.078 |0.078 |0.078 [0.083 |0.071 [0.092
10 |0.097 |0.037 |0.067 |0.068 [0.068 [0.068 [0.068 [0.068 |0.068 |0.068 |0.067 |0.067
NDPC, 20 |0.130 |0.053 [0.092 |0.093 [0.093 |0.094 (0.094 |0.094 |0.094 [0.093 |0.088 |0.087
NDPC, 10 [0.050 |0.047 (0.052 |0.050 |0.045 [0.049 |0.050 [0.048 |0.048 [0.049 |0.049 (0.049
20 |0.056 |0.051 [0.060 |0.057 [0.051 |0.056 [0.057 |0.055 |0.055 [0.056 |0.054 |0.058
10 |0.260 (0.106 [0.203 |0.204 [0.189 |0.203 |0.204 |0.202 |0.202 [0.206 |0.198 |0.194
pPeM,y 20 (0.484 |0.265 |0.400 |0.405 |0.391 [0.406 |0.405 [0.405 |0.405 [0.409 |0.402 [0.339
pCM, 10 |0.143 |0.088 [0.165 |0.144 [0.097 |0.139 |(0.143 |0.129 |0.129 [0.131 |0.118 |0.127
20 |0.278 |0.194 [0.302 |0.275 [0.197 |0.268 (0.273 |0.253 |0.253 [0.261 |0.210 |0.260
pcM, 10 |0.084 |0.034 |0.061 |0.060 [0.058 [0.060 [0.060 |0.060 |0.060 |0.061 |0.058 |0.061
20 |0.106 |0.041 [0.074 |0.074 [0.071 |0.074 |0.074 |0.074 |0.074 [0.078 |0.070 |0.086
pcM, 10 |0.083 (0.036 [0.060 |0.060 [0.060 |0.060 [0.060 |0.060 |0.060 [0.061 |0.059 |0.061
20 |0.102 |0.041 |0.071 [0.072 [0.071 |0.072 |0.072 |0.072 |0.072 |0.075 |0.069 [0.077

Note. As in Table 7A.
Source: authors’ work.
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Table 14A. The power of GoFTs for group of alternatives H (ALTs)

Numbered GoFT (see Table 3)

ALT n
1 2 3 4 5 6 7 8 9 10 11 12
P, 10 |0.565 |0.792 [0.761 |0.748 [0.680 |0.743 |0.747 |0.733 |0.733 [0.767 |0.612 |0.801
20 |0.942 |0.982 [0.978 |0.975 [0.960 |0.974 (0.975 |0.972 |0.972 [0.985 |0.924 (0.993
10 [0.086 |0.299 (0.222 |0.217 |0.190 |0.215 |0.217 [0.210 |0.210 [0.229 |0.164 [0.250
& 20 |0.284 |0.552 [0.467 |0.456 [0.408 |0.452 |0.455 |0.445 |0.445 [0.504 |0.329 |0.583
10 |0.032 |0.116 |0.080 |0.078 [0.072 |0.077 |0.077 |0.076 |0.076 [0.079 |0.072 |0.081
P 20 (0.057 |0.169 (0.120 |0.118 |0.108 [0.117 |0.118 [0.116 |0.116 [0.125 |0.101 [0.142
10 {0.034 |0.078 [0.058 |0.057 [0.055 |0.056 |0.057 |0.056 |0.056 [0.058 |0.055 [0.058
P 20 |0.039 |0.096 [0.069 |0.069 [0.066 |0.069 [0.069 |0.068 |0.068 [0.070 |0.065 |0.075
10 |0.033 |0.119 |0.080 |0.079 [0.076 [0.079 |0.079 |0.079 |0.079 |0.080 |0.074 [0.080
NM, 20 |0.065 |0.182 [0.130 |0.129 (0.121 |0.128 [0.129 |0.128 |0.128 [0.132 |0.113 |0.134
10 |0.034 |0.097 [0.066 |0.066 [0.066 |0.066 |0.066 |0.067 |0.067 [0.067 |0.064 |0.067
NM; 20 |0.047 |0.129 |0.088 [0.089 (0.088 (0.089 |0.089 |0.089 |0.089 |0.091 |0.082 [0.092
10 |0.045 |0.058 [0.052 |0.052 [0.051 |0.052 [0.052 |0.051 |0.051 [0.052 |0.050 [0.050
NM, 20 (0.044 |0.060 (0.051 |0.051 |0.051 [0.051 |0.051 [0.052 |0.052 [0.052 |0.051 |[0.051
10 |0.049 |0.051 |{0.050 |0.049 [0.050 [0.049 (0.049 |0.049 |0.049 |0.050 |0.049 [0.049
NM, 20 |0.049 |0.051 [0.050 |0.050 {0.050 |0.050 (0.050 |0.050 |0.050 [0.050 |0.050 [0.050
10 [0.119 |0.360 (0.241 |0.257 |0.269 |0.260 |0.258 [0.264 |0.264 [0.273 |0.229 (0.274
NLM, 20 |0.378 |0.638 |0.510 [0.529 [0.548 |0.533 |0.530 |0.538 |0.538 |0.559 |0.456 [0.567
10 |0.067 |0.184 [0.115 |0.127 [0.145 |0.130 (0.128 |0.135 |0.135 [0.141 |0.118 |0.144
NLM, 20 |0.143 |0.297 |0.199 [0.218 [0.251 |0.223 |0.219 |0.230 |0.230 |0.250 |0.192 [0.276
NLM, 10 |0.094 |0.058 [0.068 |0.074 [0.086 |0.075 |0.074 |0.078 |0.078 [0.082 |0.072 |0.084
20 |0.127 |0.074 |0.087 |0.096 [0.116 |0.099 |0.097 |0.102 |0.102 [0.113 |0.090 (0.128
10 |0.082 |0.115 |0.085 |0.097 [0.115 [0.099 [0.098 |0.103 |0.103 |0.109 |0.093 |0.111
NLM, 20 |0.122 |0.167 [0.121 |0.138 [0.173 |0.142 |0.139 |0.149 |0.149 [0.165 |0.127 |0.186
10 |0.041 |0.157 |[0.098 |0.101 [0.103 |0.102 [0.101 |0.103 |0.103 [0.106 |0.094 |0.104
NDPCy 20 |0.100 |0.261 |0.181 [0.186 (0.187 (0.187 |0.186 |0.188 |0.188 |0.196 |0.160 [0.193
10 |0.066 |0.188 [0.130 |0.136 [0.140 |0.137 |0.136 |0.139 |0.139 [0.135 |0.129 |0.121
NDPC, 20 (0.166 |0.328 (0.250 |0.260 |0.265 [0.261 |0.260 [0.263 |0.263 [0.247 |0.237 [0.194
10 |0.042 |0.064 |0.053 |0.052 [0.053 [0.052 [0.052 [0.053 |0.053 |0.053 |0.052 |0.052
NDPC, 20 |0.042 |0.068 [0.056 |0.055 [0.055 |0.055 |[0.055 |0.055 |0.055 [0.055 |0.055 |[0.055
10 [0.049 |0.052 (0.051 |0.051 |0.050 |0.050 |0.051 [0.050 |0.050 [0.051 |0.050 [0.050
NDPC, 20 |0.048 |0.052 [0.051 |0.051 [0.050 |0.051 [0.051 |0.051 |0.051 [0.051 |0.050 |[0.051
10 |0.036 |0.077 [0.057 |0.057 [0.056 |0.057 |[0.057 |0.057 |0.057 [0.058 |0.055 [0.057
pPeM,y 20 (0.039 |0.094 (0.067 |0.067 |0.065 [0.067 |0.067 |0.067 |0.067 [0.068 |0.064 [0.070
10 |0.042 |0.063 [0.053 |0.053 [0.052 |0.053 |0.053 |0.053 |0.053 [0.054 |0.051 |0.053
pPeM, 20 |0.041 |0.067 [0.055 |0.055 [0.053 |0.055 [0.055 |0.054 |0.054 [0.055 |0.054 |0.056
pcM, 10 |0.042 |0.073 |0.058 |0.058 [0.058 [0.058 |0.058 |0.058 |0.058 |0.058 |0.057 [0.056
20 |0.046 |0.087 [0.069 |0.068 [0.066 |0.068 [0.068 |0.068 |0.068 [0.066 |0.066 |0.063
pcM, 10 |0.041 |0.067 [0.052 |0.054 [0.056 |0.054 |0.054 |0.055 |0.055 [0.055 |0.054 |0.054
20 |0.044 |0.074 |0.057 [0.059 [0.062 [0.059 |0.059 |0.060 |0.060 |0.059 |0.059 [0.054

Note. As in Table 7A.
Source: authors’ work.
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Reduce extreme losses and retain extreme profits
through hedging with gold and cryptocurrencies:
A global stock market perspective

Krzysztof Echaust,® Matgorzata Just®

Abstract. The study focuses on the safe-haven and hedging properties of gold and selected
cryptocurrencies against stock markets' extreme risk observed during the COVID-19 pandemic
and the Russian invasion of Ukraine. The loss reduction is compared with the profit sacrifice
obtained through hedging in terms of the tail thickness of the return distribution. The findings
show that gold is able to reduce extreme losses more intensively than extreme profits. Tether
reduces volatility and tail risk the most effectively but it is characterised by the worst profit/risk
ratio. Bitcoin and Ether increase investment risk; thus, they fail to act as an effective hedge or a
safe haven. On the other hand, these cryptocurrencies added to the stock portfolio increase the
probability of extreme profits more than extreme losses. The paper provides new insights into
the benefits of safe-haven or hedging strategies.

Keywords: gold, cryptocurrencies, conditional value at risk, distribution tail, hedging, safe
haven

JEL: C13,C58,G11,G15

1. Introduction

In December 2019, a new virus called SARS-CoV-2 had started to spread rapidly all
over the globe, causing the COVID-19 disease and about seven million deaths.
A series of unprecedented government interventions to control the infection
brought the economy to a standstill. Financial markets also replied with crashes to
an extent that had not been observed since the global financial crisis of 2008. In
February 2022, the Russian invasion of Ukraine threw global financial and
commodity markets into further turmoil. At times like these, investors avoid risky
stocks searching for safe-haven assets which, when added to their investments,
protect the portfolio from enormous losses. The term ‘safe haven’, introduced by
Baur and Lucey (2010), delineates an instrument that exhibits either uncorrelated or
negatively correlated behaviour with the held assets during a market crash. If it is
uncorrelated or negatively correlated with the held assets on average, it is called
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a hedge. In this paper, the term ‘hedging’ is employed in a broad sense,
encompassing events occurring in extreme market conditions. Finally, if an
instrument is positively (but not perfectly) correlated with the held assets on average,
it is called a diversifier.

Gold is most commonly considered as a safe-haven asset for stock markets (Baur
& McDermott, 2010; Beckmann et al., 2015; Boubaker et al., 2020; Giirgiin &
Unalmis, 2014) due to its relatively low volatility and low correlation with stock
markets. Additionally, the fundamental price of gold depends on the economic state
of other markets (Baur & Glover, 2014). However, its ability to become a shelter
against stock market risk weakened during the COVID-19 period (Akhtaruzzaman
et al., 2021; Al-Nassar et al., 2023; Chemkha et al., 2021; Echaust & Just, 2022; Hasan
et al., 2021; Salisu et al., 2021). At that time, cryptocurrencies have gained enormous
popularity as candidates for ‘a port in the storm’ (Corbet et al., 2020). The potential
of cryptocurrencies stems from the fact that they are independent from central
authorities. Mariana et al. (2021) find that the two largest cryptocurrencies (Bitcoin
and Ether) are suitable as short-term safe-haven assets as their daily returns tended
to be negatively correlated with S&P 500 returns during the pandemic. Bouri et al.
(2020) indicate cryptocurrencies as safe-haven assets for the aggerate US equity
index and selected sectors, whereas Bedowska-Sdjka and Kliber (2021) as weak safe
havens for selected equity indices. On the other hand, the opposite results were
presented by Conlon et al. (2020), Conlon and McGee (2020) and Long et al. (2021).
They found that Bitcoin and Ether failed in the role of a safe-haven asset. Baur et al.
(2022) show that for extreme levels of volatility, Bitcoin does not reduce the risk
when added to a benchmark stock portfolio. They consider portfolios consisting of
an optimal allocation of Bitcoin (that aims for a minimum variance or a maximum
Sharpe ratio) relative to holding the underlying S&P 500. Moreover, Conlon et al.
(2020) show evidence of increased downside risk for portfolios consisting of any
weight of Bitcoin and Ether relative to the stock index (MSCI World, S&P 500, FTSE
100, FTSE MIB, IBEX). Recently, Just and Echaust (2024) examined the role of five
cryptocurrencies as safe havens against the G7 and BRICS stock market risk. The
authors find that the conditional probability that Bitcoin can reduce at least 10% of
volatility given that index returns fell below the 1st percentile ranges only from 2%
to 28% for various stock indices. Moreover, the probabilities calculated for other
cryptocurrencies are lower. Xu and Kinkyo (2023) suggest that investing in G7
stocks and Bitcoin in the short term as well as investing in stocks and gold in the
long term are reasonable investments for investors. Gold provides higher hedging
effectiveness and downside risk reduction than Bitcoin in the long term. The third
cryptocurrency considered in our empirical study whose safe-haven properties are
widely discussed is Tether. It belongs to a category of cryptocurrencies called
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stablecoins which aim to keep its valuation stable. The low volatility of Tether is
perceived as a desired property of safe havens. Cheema et al. (2022) show that during
a pandemic, investors should look for liquid and stable assets rather than gold.
Meanwhile, Tether could act as a safe-haven investment for global stock markets
(Conlon et al., 2020; Kliber, 2022).

Although cryptocurrencies may potentially yield high returns, which is
encouraging for investors, they also entail high volatility and downside risk
compared to gold and other conventional asset classes (Igbal et al., 2023). Indeed,
investors with a limited risk-aversion do not restrict their perception to risk
reduction and they also consider profits for investment in their hedging decisions.
Given the limited possibility of Bitcoin and Ether to reduce risk, their ability to
generate profits in extreme market conditions may be the main argument for their
application in hedging strategies. The implementation of any such strategy, which is
essentially intended to protect the investment from losses, is bound to have an
unfavourable impact on the profit potential. The prospect theory of Kahneman and
Tversky (1979) indicates that people are more sensitive to losses than gains. Loss
aversion means that investors perceive more disutility from losses than utility from
gains of equal size. The preferable hedge strategy should offer asymmetry between
risk and profit reductions. Based on stocks traded in China, Japan, Korea and
Taiwan, Eom et al. (2021) investigate a trade-off relationship between loss avoidance
and a profit sacrifice through a portfolio diversification strategy. According to their
results, investors reduce the likelihood of high losses through portfolio
diversification; however, their potential for higher profits is thus sacrificed. We
adopt this concept to verify the relative benefits from a hedging strategy against
stock market tail risk using gold and cryptocurrencies. We study the unexplored
relationship between high loss avoidance and high profit sacrifice relative to the
hedging strategy.

The first aim of this research is to compare the ability of gold and
cryptocurrencies (Bitcoin, Ether and Tether) to act as safe-haven assets against
global stock market risk in the context of the COVID-19 pandemic and the Russia—
Ukraine war. The second and most important aim is to verify the asymmetry
between risk reduction and profit sacrifice. The third aim is to compare two
methods of the asymmetry analysis. The approach based on tail thickness is
compared to the conditional value at risk (CVaR). To achieve these objectives, we
first follow Kroner and Ng’s (1998) optimisation procedure based on Engle’s (2002)
dynamic conditional correlation (DCC) model. We thus estimate the optimal
weights of a hedging portfolio. We then calculate the reduction in volatility offered
by pair-wise portfolios and estimate the asymmetry between downside and upside
risk. To obtain a comprehensive view of the extrema, we focus on the tails of return
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distribution which represent extreme losses and extreme profits on investment. We
propose to use the peaks over threshold (POT) method to compare the tail
behaviour of hedged and unhedged trading positions as well as the upper (profits)
and lower (losses) tails of the return distribution. Subsequently, we compare the tail
behaviour approach with the estimates of the CVaR, which is recognised as
a credible tool for the assessment of the diversification benefits (Conlon et al., 2020;
Conlon & McGee, 2020).

Our main findings can be summarised as follows. Firstly, in line with the
literature, gold and Tether are found to have been effective hedges in the research
period, whereas Bitcoin and Ether increased the investment risk, thus failing to act as
an effective shelter against stock market risk. Secondly, and most importantly, gold is
the only asset which is able to reduce extreme losses more intensively than extreme
profits for chosen indices. Bitcoin and Ether, added to the stock portfolio, increase
the probability of extreme profits more than extreme losses. The return distributions
of the hedged portfolios consisting of Bitcoin or Ether indicate much fatter upper
tails relative to the lower tails. Therefore, cryptocurrencies provide investors with a
valuable profit-loss relationship in terms of extreme values. Thirdly, we found that
an inference based on CVaR may lead investors to misleading conclusions and
decisions. The investigation of the tail behaviour outperforms the approach based on
CVaR offering a broader and more reliable view of extreme losses in relation to
extreme profits in a trading strategy.

The remainder of the paper is organised as follows. The next section provides data
and an in-depth description of the methodological approach adopted in the
empirical part of the paper. Section 3 shows detailed results relating to the research
objectives. The final section summarises the main findings and presents the
conclusions.

2. Data and methodology
2.1.Data

We analyse the log-returns of global stock indices, gold and three cryptocurrencies.
Our sample includes stock indices from the world’s largest exchanges by market
capitalisation (World Federation of Exchanges, 2023). We selected two indices from
each of the three regions: the Americas (S&P 500, SPX - United States; S&P/TSX
Composite Index, TSX - Canada), the Asia-Pacific region (Shanghai Composite
Index, SHC - China; Nikkei 225, NKX - Japan), and Europe, the Middle East and
Africa (CAC 40, CAC - France; FTSE 250, FTM - Great Britain). We focus on the
leading stock markets to represent viable investors’ interests. Our sample includes
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three cryptocurrencies with the largest market capitalisation: two non-stable
(Bitcoin, BTC-USD; Ether, ETH-USD) and one stable (Tether, USDT-USD). These
cryptocurrencies are most often considered as hedging assets or safe havens. The
analysis is based on daily data for the period from 2nd January 2019 to 14th August
2023. Gold is quoted on the London Metal Exchange and its prices are sourced from
kitco.com. The cryptocurrency prices and the stock indices are obtained from
finance.yahoo.com and stooq.pl, respectively.

The descriptive statistics in Table 1 show that Ether has the highest mean return.
On the other hand, Tether is the only asset which has a negative mean/median
return. Tether and gold have the lowest volatility among the considered assets,
whereas the volatility of Bitcoin and Ether exceeds the volatility level of the indices
several times over. Gold, Bitcoin and Ether are positively correlated with indices,
while Tether negatively (Table 2). Tether appears to have the desired characteristics
of a hedging instrument with low volatility and a negative correlation. However, at
the same time, it shows a negative mean return, much lower than the other
candidates for hedging instruments. It can be a good hedge for risk-averse investors
but its usefulness seems to be undermined when return on investment gains
importance.

Table 1. Descriptive statistics of asset returns

Asset Min Median Mean Max SD
-12.77 0.0954 0.0511 8.97 1.40
-13.18 0.1001 0.0305 11.29 1.19
-8.04 0.0302 0.0233 5.55 1.09
-6.27 0.0829 0.0453 7.73 1.24
-13.10 0.1062 0.0387 8.06 1.35
-9.82 0.0440 0.0056 8.04 1.24
-5.26 0.0531 0.0339 5.13 0.96
-5.26 -0.0010 -0.0021 5.34 0.35
-46.47 0.1048 0.1726 20.30 4.42
-55.07 0.1205 0.2127 34.35 5.65
Source: authors’ work.
Table 2. Correlation between asset returns
Asset/ Index SPX TSX SHC NKX CAC FTM
0.1420%* 02179%  0.1097**¥  0.0309 0.0826** 0.1073%**
-0.2034*** -0.2428***| -0.0051 -0.0067 -0.1498*** -0.0839%**
0.3242%*¥ 0.3492%*¥ 0.0459 0.0709** 0.2516%*% 0.2205%**
0.3459%*¥ 0.3630%*% 0.0959%*¥ 0.0980%** 0.2680%*¥ 0.24071%**

*

Note. Correlation means the Pearson correlation between indices and assets; ™ and ™ indicate significance
at the level of 1% and the level of 5%, respectively.

Source: authors' work.


https://www.kitco.com/
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2.2. Methodology

Hedging stocks implies a combined position consisting of stocks and a hedging
instrument. In our setting, investors hold stocks and wish to hedge the stock market
risk by adding a hedge instrument in a long position. We can model the hedge
portfolio as:

Tpt = (1 = Wit) Tindgext + WitTie (1)

where T gex ¢ is the return of the stock market at time ¢, and 7;; is the return of the
i-th hedge price at time t, w;, represents the time-varying weights of the i-th
hedging instrument.

If investors add gold or cryptocurrencies to their stock portfolios with the aim to
reduce risk, the optimal weights of the individual assets (w;;,i = GOLD, USDT,
BTC, ETH) to obtain minimum risk portfolios are calculated from the following
formula (Kroner & Ng, 1998):

Wi, = hlndex,t_hlndex/i,t (2)
bl
L Rindex,t=2Rimdexy/it+hit

where Appgexr and h; . are the conditional variances of the index returns and safe-
haven candidate returns, respectively. hpgeyx /i is the covariance between index and
gold, Bitcoin, Ether and Tether returns on the t-th day. We use the DCC model
(Engle, 2002) to compute the conditional variance and covariance. Moreover, we
assume no short selling of the assets.

We employ the GARCH(1,1) model® (Bollerslev, 1986) to obtain conditional
volatility (h; ;) of asset returns (7; ¢):

Tie = Wi t € €¢ = JRhyi&iss €¢~N(0,1), (3)
hie = w; + aiefe_y + Bihi—1, (4)

where w;, a;, 8; > 0, a; + 5; < 1.

! Akhtaruzzaman et al. (2021) used four models: DCC, asymmetric DCC, corrected DCC and DCC-DECO to
describe the relationship between gold and major stock indices during the COVID-19 pandemic, and
obtained consistent results. Therefore, we use the simple DCC model.

2 Although the GARCH(1,1) model is relatively simple, it provides relatively good estimates and predictions
of volatility compared to much more complex models (see e.g. Hansen & Lunde, 2005).
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Then, we estimate the bivariate DCC model parameters. Let us denote the two-
dimensional vector by e, = (em: ez,t)'. The DCC model assumes that (Engle, 2002):

ec|l;-1~N(0, H,),H, = D(R.Dy, (5)

where I;_; is the information set available at time ¢-1, D, = diag(,/hl,t, 1/h2,t) and
conditional variance h;; is modelled using the GARCH model. In turn, conditional
correlation matrix R, is given by

R, = (diag(Q,)) ™ "*Q.(diag(@)) " (6)

with
Q:=(1—-a—-b)Q+ag_1&_1+bQ¢_1, (7)

where Q is the unconditional covariance matrix of &, (Ei,t =e;; /,/hi‘t); a,b are
parameters such thata,b > 0anda + b < 1.

In the second stage of the analysis, we investigate how adding gold or
cryptocurrencies to a portfolio can reduce the risk of a stock portfolio. We examine
the conditional variance of portfolio returns by applying the following formula:

Rportrotiont = (1 = Wit)*Ringex + Wie?hie + 2(1 = Wy OW; thingexyie- (8)

In the third stage, we focus on extreme returns, i.e. using an extreme-value-
theory-based method, we compare the distribution tails and the values of the tail risk
measure of stock indices and two-component portfolios consisting of these indices
and hedging assets. We need to adequately fit the tails of the return distributions to
compare the relationship between high loss avoidance and high profit sacrifice. They
can be easily modelled using the peaks over threshold method. This method is an
approach of the extreme value theory (EVT) that allows modelling all observations
in a sample that exceed a high threshold using the generalised Pareto (GP)
distribution.

Let R be a random variable of returns with unknown cumulative distribution
function (cdf) F, and excess distribution function F,, over high threshold u is defined

by

Fu()’)=P(R—uSy|R>u)=m:+(_£(u)forogygro_u’ 9)
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where 1y < oo is the right endpoint of F.

According to the Pickands-Balkema-de Haan Theorem (Balkema & de Haan,
1974) for a large class of underlying distribution functions F and high enough
threshold u, a function B (u) exists so that:

lim sup |E,() = Gepay®)| = 0. (10)

U=To 0<y<ry—u

As an after-effect of the theorem, F, can be approximated by a GP distribution,
which is defined as:

VNS

i) = {1(1%%)_ for £ %0
k 1 —exp(—%) foré =0,

(11)

where $ >0,y >=0for§ > 0and 0 <y < —f/& for £ < 0. Parameters of the GP
distribution are scale parameter § and shape parameter ¢.

An approximation of cdf for returns exceeding a sufficiently high threshold can
be obtained by transforming (9) and (11):

F(r) = Gep(r—uw)(1 — F(w) + F(u) forr > u. (12)

In order to obtain a useful closed form of distribution (12), F(u) can be simply
replaced with the empirical estimator of exceedance over threshold u. The estimator
is given by (n — ky)/n, where n represents the total number of observations
(returns), and k,, is the number of observations exceeding threshold u.

The log-likelihood method is used to estimate the parameters of the GP
distribution. The estimator of cumulative distribution F is then given as:

(13)

Value at risk (VaR) and conditional value at risk (CVaR) are the most commonly
used measures of tail risk. These measures differ in terms of their mathematical
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properties, stability of statistical estimation, simplicity of optimisation procedures
and acceptance by regulators (Sarykalin et al., 2008), which determine the choice of
their application. We use CVaR to measure the tail risk for long and short positions
at a 95% confidence level as it provides an adequate picture of the risks reflected in
the extreme tails (Sarykalin et al., 2008). Since CVaR is defined in terms of VaR, we
begin by presenting VaR, which can be seen as a quantile of F. Therefore, the
g-quantile of the GP distribution for a sample size of length n is calculated as:

(u+§<(:—u(1—q))_f—1> foré #0

VaR, = { n (14)
u+ﬁln(—(1 —q)) foré = 0.
\ ke
CVaR provides the expected size of return that exceeds VaR:
CVaR, = E(R|R = VaR,). (15)
Hence, CVaR is given as (Dowd, 2005):
NTAD  — Va\Rq _ E-Eu
CVaR, = % % foré #0 (16)
and
CVaR, =VaR, + f for & = 0. (17)

3. Empirical results

3.1. Optimal hedging

Figure 1 displays the time-varying weights for all the portfolios considered in this
study. The optimal weight for gold behaves in a different way than for
cryptocurrencies. It rose significantly in the first quarter of 2020, when global
financial markets suffered high losses and then displayed a significant downward
trend. The same phenomenon occurred during the Russian invasion of Ukraine in
February 2022. The result indicates that in the first phase of the COVID-19
pandemic and later, at the beginning of the war in Europe, investors should have
held more gold to reduce risk, thereby the cost of an optimal hedging strategy was
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relatively high during those periods. Optimal weights for Ether and Bitcoin are small
and often equal to zero. Both cryptocurrencies are not able to reduce risk effectively
when added to an equity portfolio. Such a result confirms the findings of Baur et al.
(2022). The authors prove that the benefits of Bitcoin in the portfolio come from the
expected returns and can enhance the risk-return relationship but do not
substantially lower the risk. Tether has different characteristics compared to the
foregoing assets. It negatively correlates to most indices and demonstrates low
volatility. The effect is that the optimal weight in the portfolio is close to one for
most of the time from the second half of 2020. Such a result shows that investors
should sell off equity portfolios and replace them with Tether. However, the benefit
of this strategy is questionable since it generates a high cost of hedging and entirely
changes the investment profile. Additionally, we must not overlook the importance
of Tether’s lowest median returns compared to other assets.

Figure 1. Optimal weights for hedging instruments

1 Portfolios with SPX —— Gold —— USDT —— BTC —— ETH
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Figure 1. Optimal weights for hedging instruments (cont.)
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Table 3 shows the descriptive statistics for optimal portfolios. Adding Bitcoin or
Ether to the base portfolio significantly increases downside risk expressed in the
minimum return. Gold in the portfolio substantially lowers volatility and range.
Note that the portfolio that consists of gold is the only one which can improve the
ratio of index performance to volatility (mean/SD) for all the considered assets. On
the other hand, Tether is the only hedge instrument which destroys the ratio for all
assets. The low risk of the portfolio corresponds to a negative median return and
finally makes the mean/risk ratio unattractive. Statistics for the portfolio with Tether
are close to those for Tether itself since it almost replaces equities in the optimal

hedge strategy.
Table 3. Descriptive statistics of optimal portfolio returns
Portfolio Min Median Mean Max SD Mean/SD

] 20 QRO -12.77 0.0954 0.0511 8.97 1.40 0.0366
SPX + Gold ... -5.51 0.0846 0.0469 5.34 0.77 0.0612
SPX + USDT . -3.04 -0.0006 0.0050 5.28 0.32 0.0157
SPX +BTC...... -24.24 0.1054 0.0421 8.88 1.52 0.0277
SPX+ETH ... -18.82 0.1015 0.0455 8.96 1.48 0.0307
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Table 3. Descriptive statistics of optimal portfolio returns (cont.)

Portfolio Min Median Mean Max SD Mean/SD
I, G -13.18 0.1001 0.0305 11.29 1.19 0.0257
TSX + Gold ... -5.41 0.0567 0.0352 5.30 0.70 0.0501
TSX + USDT .. . -3.52 -0.0008 0.0044 5.26 0.31 0.0140
TSX 4 BTC orverrererrrenne -28.40 0.0961 0.0190 10.36 1.38 0.0138
TSX 4+ ETH oo -22.86 0.1001 0.0214 11.29 1.31 0.0164
1) [ -8.04 0.0302 0.0233 5.55 1.09 0.0213
SHC + Gold ............... -4.17 0.0420 0.0218 3.67 0.74 0.0293
SHC + USDT ............... -2.89 -0.0002 0.0035 5.09 0.33 0.0106
SHC + BTC .....coeeee -6.49 0.0224 0.0328 5.30 1.08 0.0303
SHC + ETH -7.05 0.0233 0.0342 5.64 1.09 0.0313
NKX ........ -6.27 0.0829 0.0453 7.73 1.24 0.0364
NKX + Gold .. . -5.01 0.0213 0.0407 5.87 0.78 0.0522
NKX + USDT ......ooee. -5.85 -0.0013 0.0030 5.02 0.36 0.0084
NKX + BTC verrerrerrrenne -7.77 0.0740 0.0499 7.48 1.24 0.0404
NKX + ETH .oveeerreenne -6.64 0.0644 0.0514 7.58 1.24 0.0413
[ Y -13.10 0.1062 0.0387 8.06 1.35 0.0286
CAC + Gold ........eu..... -5.98 0.0402 0.0321 5.31 0.77 0.0418
CAC+USDT ..o -4.12 -0.0005 0.0013 5.11 0.33 0.0038
CAC+ BTC .... -19.80 0.1093 0.0452 8.06 1.42 0.0319
CAC+ETH ... -17.71 0.1148 0.0404 8.06 1.40 0.0288
FTM ............ . -9.82 0.0440 0.0056 8.04 1.24 0.0045
FTM + Gold ................ -5.94 0.0277 0.0221 5.30 0.75 0.0296
FTM + USDT ... -4.12 -0.0009 -0.0014 5.06 0.35 -0.0040
FTM + BTC ... -14.41 0.0454 0.0073 7.87 1.27 0.0057
FTM + ETH ..o -12.42 0.0415 0.0064 8.04 1.26 0.0050

Source: authors’ work.

Figure 2. Reduction in conditional volatility (in pp.) by optimal portfolios relative to indices
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Figure 2. Reduction in conditional volatility (in pp.) by optimal portfolios relative to indices (cont.)
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Source: authors’ work.

Figure 2 demonstrates how much the conditional volatility of an equity portfolio
is reduced by applying an optimal hedging strategy. Gold and Tether can
significantly decrease volatility (the Wilcoxon signed rank test for median equality
with significance level of 1%), especially in times when the financial market
collapsed. Bitcoin and Ether can decrease the risk only to a small extent. Even in
periods of a volatility explosion, in March 2020, when optimal weights were
relatively high, both cryptocurrencies were not able to significantly reduce the risk.
This result proves that Bitcoin and Ether cannot be considered as safe-haven assets.

3.2. Extreme losses versus extreme profits in optimal hedging

Risk-averse investors have no motivation to apply Bitcoin or Ether in the hedging
role. This result confirms the findings of Echaust et al. (2024) who compared the
hedging effectiveness of cryptocurrencies in a short hedge strategy with favoured
index futures contracts. However, the ability of cryptocurrencies to generate
abnormal profits may be the key argument to consider in hedging decisions. Their
independence from financial market fundamentals might on the one hand provide
diversification benefits and generate high returns during financial crashes on the
other. The aim is to indicate to what extent hedging strategies reduce extreme risk
compared to extreme profits. We propose the comparison of the tail behaviour of
the considered assets and portfolios, and compare the findings with the results based
on the CVaR. The tails of return distributions are estimated using the peaks over
threshold method. The first task involves choosing the appropriate tail threshold
which separates the extrema from the middle part of the return distribution. The
appropriate selection of a threshold level is considered to be a complex and
challenging task. While there are many concepts and approaches presented in the
literature, none of them have been indicated to be suitable, and there is no single
answer as to where the distribution tail begins. Searching for the tail of the
distribution is always a trade-off between bias and variance. If the chosen threshold
is too low, the tail estimates indicate a high bias. The more the threshold is away
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from the tail, the more the empirical distribution of extrema deviates from the
theoretical model. On the other hand, a too high threshold results in high variance of
the model estimates since not much data exceeds the threshold. Numerous authors
applied a fixed percentile of the total sample size as the threshold, usually 10%, 5% or
1% of the upper statistics (Bee et al., 2016; Echaust, 2021; Fernandez, 2005; Gengay et
al., 2003; Longin, 2000; McNeil & Frey, 2000; Toti¢ & Bozovi¢, 2016). More
sophisticated approaches use a threshold selection based on graphical techniques
based on a mean excess plot (Aboura, 2014; Cifter, 2011; Gilli & Kéllezi, 2006;
Luczak & Just, 2020) or the graphical representation of the Hill estimator (Hill,
1975). However, the choice procedures of the graphical-based threshold require the
identification of the stable regions in the graphs; therefore, they are highly subjective
and difficult to apply in empirical studies. Finally, in some studies, the choice of the
threshold is based on optimisation procedures. An extensive overview of such
methods is provided in Caeiro and Gomes (2016) and Danielsson et al. (2016).
A simulation study of Just and Echaust (2021) showed that most of the optimisation
algorithms return a too high threshold to calculate tail risk measures according to
the requirements of the Basel Committee. We decided to apply the widely accepted
in the literature thresholds equal to the 5th percentile for the lower tail and the 95th
for the upper tail. Parameters of the general Pareto distribution (Formula 11) for
threshold exceedances are computed with the evir R package. For the sake of brevity,
we do not present the estimations of the parameters and they are available from the
authors upon request. Finally, according to Formula (13), we obtained the estimate
of the upper tail of the unconditional distribution for returns. A lower tail can be
considered in the same way as the upper tail after the multiplication of returns by
minus one.

Figure 3 shows the return distribution tails for the S&P 500 index as well as the
tails of an optimal pair-wise portfolio combined with an index and a hedging
instrument. The solid black line represents the upper tail of the index returns, the
solid grey line represents the lower tail of the index, while the dashed lines show the
tails of the portfolio distribution (in black for the upper tail and in grey for the lower
tail). Since the tails for different assets represent different data ranges, we decided to
show the entire upper tail area of 5% for each index and the other tails against its
background. Figures Al1-A5 in the Appendix show the same for the other
considered stock indices. As expected, most index distributions exhibit a fatter lower
tail than the upper one. The highest differences are evident for the S&P 500 and
CAC indices. From an intuitive point of view, it seems to be clear that the lower tails
for financial markets must be heavier than the upper tails. This is due to the fact that
the growth trends are built over long-time horizons but the crashes are more volatile
and the price movements in absolute value are much larger. However, from



K. ECHAUST, M. JUST Reduce extreme losses and retain extreme profits through hedging with... 51

a statistical point of view, the problem is much more complex. In empirical studies,
the differences are not significant or distributions exhibit symmetry as the Canadian
TSX returns distribution has shown in Figure Al. For instance, Longin (1996) found
the equality of tail thickness for the S&P 500 returns. Similarly, Jondeau and
Rockinger (2003) did not find statistically significant asymmetry in mature, Asian,
Eastern European and Latin American markets. The similarity between the lower
and upper tails of returns has been reported in e.g. Chen and Ibragimov (2019),
Danielsson and de Vries (1997) and Koedijk and Kool (1992). Only the minority of
studies report heavier lower tails than upper tails, e.g. Gregory-Allen et al. (2012) or
Hartmann et al. (2004). Contrary to those studies, we do not compare the estimates
of the tail index which is a measure of the tail behaviour. The tail index cannot
measure the extreme risk level independently. To properly quantify the probability
of extreme events, both threshold and tail behaviour must be taken into account.
Graphical analysis enables us to consider the tails in a more complex way than any
estimate of tail fatness. Tails for hedge portfolios are presented in Figure 3 and
Figures A1-A5 as the dashed lines demonstrate symmetry between lower and upper
tails, especially for the highest extrema. The differences between solid and dashed
lines represent the effectiveness of the hedge. We can notice significant differences
between the tails of the hedged and unhedged trading positions for gold and Tether,
which confirms the ability of both assets in the extreme risk reduction. The result
supports our findings for volatility presented in Section 3.1. Moreover, Tether
reduces extreme risk the most effectively. The highest reduction in the probability of
extreme losses compared to the reduction in the probability of extreme profits is
noticeable for the S&P 500 and CAC indices. The result is the effect of heavier lower
tails of return distribution for these indices. The tails for the portfolios with Bitcoin
and Ether do not indicate any differences in relation to the index. Weight close to
zero for these hedge instruments makes them have only a minor effect on the
extreme returns of the pair-wise portfolios. A more interesting issue is to check their
usefulness in generating profits in the suboptimal portfolios described in Section 3.4.

For comparison, we carried out a similar analysis based on the CVaR measure,
which takes an average of returns in the tail of distribution. We calculate the CVaR
under the generalised Pareto distribution (Formulas 16 and 17) with a threshold
equal to the 5th percentile. The results of the computations are presented in Table 4;
the second and third column shows the CVaRs for the lower and upper tails,
respectively, while the next two columns exhibit the change in CVaR as an effect of
the hedging strategy. The inference based on the CVaR is mostly the same as that
based on the distribution tails. However, findings regarding the asymmetry between
the reduction in losses and profits indicate differences. Based on CVaR, we find that
both gold and Tether reduce losses more effectively than profits for all the
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considered indices, excluding NKX. Both hedging instruments against the TSX
index demonstrate the highest asymmetry of reduction in the extreme returns,
which was not reflected in tail plots. TSX returns have the highest extrema among
the considered returns and have not too many outliers; therefore, the CVaR defined
as an expected value of VaR exceedances is highly affected by extreme returns.
Bitcoin and Ether in an optimal portfolio only slightly change CVaR and rather

increase the risk in the lower tail.

Figure 3. Distribution tails (pdf) of the SPX returns and an optimal portfolio consisting of an
index and hedge asset. Black line — 5% upper tail, grey line — lower tail (symmetrical
image), solid line — index, dashed line - optimal portfolio
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Table 4. Reduction in 5% CVaR (in pp.) by optimal portfolios relative to indices

Portfolio CVaR CVaR ACVaR ACVaR
Lower tail Upper tail Lower tail Upper tail

3.47 3.04
SPX + Gold ..... 1.74 1.76 1.73 1.28
SPX + Tether . 0.69 0.76 2.78 2.28
SPX + Bitcoin 3.57 291 -0.10 0.13
SPX + Ether 3.60 3.01 -0.14 0.03
TSX e 3.09 2.33
TSX + Gold ..... 1.68 1.57 1.41 0.76
TSX + Tether .. 0.65 0.73 2.44 1.60
TSX + Bitcoin 3.14 2.27 -0.05 0.06
TSX + Ether 3.29 2.30 -0.20 0.03
SHC ... 2.62 2.35
SHC + Gold ... 1.80 1.61 0.82 0.74
SHC + Tether . 0.94 0.79 1.68 1.56
SHC + Bitcoin ... 2.58 240 0.05 -0.05
SHC + Ether 2.61 2.38 0.01 -0.03
NKX oo 2.77 2.82
NKX + Gold 1.76 1.81 1.01 1.01
NKX + Tether . 0.74 0.83 2.03 2.00
NKX + Bitcoin ... 2.82 2.74 -0.05 0.08
NKX + Ether 2.81 2.80 -0.04 0.03
CAC . 3.4 2.94
CAC + Gold 1.80 1.71 1.61 1.23
CAC + Tether. 0.75 0.78 2.66 2.16
CAC + Bitcoin ... 3.50 2.92 -0.10 0.02
CAC + Ether 3.50 3.00 -0.09 -0.07
FTM o 3.03 2.82
FTM + Gold 1.71 1.73 1.32 1.09
FTM + Tether 0.78 0.80 224 2.03
FTM + Bitcoin .... 3.07 2.77 -0.05 0.05
FTM + Ether ...oveceeennn. 3.07 2.85 -0.04 -0.03

Source: authors’ work.

3.3. Hedging for an equal-weighted portfolio

As indicated in Section 3.1, optimal hedging seems to be a reasonable investment
strategy only for gold. This section provides a similar analysis for equal-weighted
portfolios. There is no consensus in the literature on the proportion of hedge assets
that should be included in a strategic portfolio allocation (Akhtaruzzaman et al.,
2021; Lucey et al.,, 2021). An equal-weighted portfolio is only one example portfolio
chosen for analysis; however, such a choice enables capturing the important features
of the considered instruments. Table 5 shows the descriptive statistics for these
portfolios. Statistics for gold do not differ substantially from the statistics presented
in Table 3 for the optimal portfolio since the optimal weight oscillates around 50%.
Tether is still the most effective hedge and reduces volatility and extrema the most
efficiently. Nevertheless, Tether is the only hedge that performs worse than the index
in terms of the mean/SD ratio. Bitcoin and Ether added to an index significantly
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increase the volatility and extrema. The overall and extreme risks of the portfolio far
exceed the risks of the base investment. However, the profit-to-risk ratio has
improved. Therefore, it seems reasonable to check the relative benefits from the
trading strategy.

Figure 4 shows the reduction in conditional volatility of indices hedged with gold
and Tether. There is no reason to present the results for Bitcoin and Ether since their
application in the portfolio substantially increases the volatility relative to index. The
results coincide with the descriptive statistics. Tether significantly outperforms gold
in the hedging role since it reduces volatility to a greater extent. We confirmed the
finding with the Wilcoxon signed rank test for the medians at the significance level
of 1%. The analysis leads us to the conclusion that Tether is a better hedge and safe-
haven asset than gold for all stock markets. Risk reduction may be the primary
criterion for investment strategy in turbulent times; however, Tether is the worst
option in normal market conditions when profits become the goal of an investment.

Figure 4. Reduction in conditional volatility (in pp.) by equal-weighted portfolios relative to

indices
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Table 5. Descriptive statistics of equal-weighted portfolio returns

Portfolio Min Median Mean Max SD Mean/SD
] 2 G -12.77 0.0954 0.0511 8.97 1.40 0.0366
SPX + Gold . -8.84 0.0738 0.0429 7.05 0.90 0.0475
SPX + USDT ... -6.51 0.0409 0.0245 4.67 0.68 0.0358
SPX + BTC ... -28.23 0.1288 0.1139 10.07 2.54 0.0448
SPX + ETH ... -32.53 0.1479 0.1345 16.43 3.17 0.0425
HIS), QR -13.18 0.1001 0.0305 11.29 1.19 0.0257
TSX + Gold . -9.16 0.0617 0.0326 8.21 0.84 0.0387
TSX + USDT -5.39 0.0435 0.0142 5.83 0.58 0.0246
SPX + BTC.... . -29.82 0.1038 0.1037 10.24 249 0.0417
SPX+ETH ... -34.12 0.1305 0.1242 17.45 3.12 0.0399
SHC e -8.04 0.0302 0.0233 5.55 1.09 0.0213
SHC + Gold -4.19 0.0550 0.0298 3.72 0.77 0.0385
SHC + USDT ........ -3.99 0.0188 0.0105 3.05 0.57 0.0183
SPX + BTC... -24.00 0.0490 0.1038 10.78 2.37 0.0437
SPX+ETH ... -28.30 0.0574 0.1252 17.60 3.03 0.0413
110, QR -6.27 0.0829 0.0453 7.73 1.24 0.0364
NKX + Gold -4.83 0.0229 0.0408 6.01 0.81 0.0506
NKX + USDT ........ -5.77 0.0262 0.0218 3.77 0.65 0.0338
SPX + BTC.... -25.49 0.0831 0.1157 10.62 243 0.0476
SPX+ETH ... -29.79 0.1261 0.1363 15.91 3.09 0.0441
CAC e -13.10 0.1062 0.0387 8.06 1.35 0.0286
CAC + Gold -9.13 0.0558 0.0363 6.59 0.86 0.0422
CAC+USDT ... -4.35 0.0587 0.0183 4.21 0.67 0.0272
SPX + BTC.... -29.79 0.1338 0.1058 9.81 2.47 0.0428
SPX+ETH ... -34.09 0.1738 0.1259 17.51 3.08 0.0409
FTM e -9.82 0.0440 0.0056 8.04 1.24 0.0045
FTM + Gold -7.49 0.0509 0.0197 6.59 0.82 0.0240
FTM + USDT ... -4.19 0.0188 0.0017 4.20 0.63 0.0027
SPX + BTC ... -28.15 0.0978 0.0891 9.62 2.42 0.0368
SPX + ETH ........... -32.45 0.1340 0.1091 17.30 3.03 0.0360

Source: authors’ work.

3.4. Extreme losses versus extreme profits in an equal-weighted portfolio

In Section 3.2, we take an optimal weight which is close to zero for Bitcoin and Ether
and close to one for Tether. In the case of the first two assets, the optimal portfolios
do not differ significantly from the index, whereas in the case of the third one,
Tether dominates in the portfolio. Such an assumption gives us a nearly one-
component portfolio and prevents us from comparing the relative benefits from
hedging. By using an equal-weighted portfolio, we are able to verify the potential of
the considered assets for extreme risk reduction in comparison to extreme profit
sacrifice.

Figure 5 and Figures A6-A10 show the tails of the return distributions for the
indices and equal-weighted portfolios. In the same way as in the previous figures, we
present the index right tail area of 5% and the other tails against its background. The
distribution tails for portfolios consisting of particular indices and Tether are the
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thinnest; thus, Tether outperforms other assets in terms of extrema reduction. The
asymmetry between risk reduction and profit sacrifice (for gold and Tether) is
interpreted as the inequality of differences between the grey lines and the black lines,
respectively. More precisely, the difference shows how much the hedging instrument
added to a portfolio makes the return distribution tail thinner than the tail for the
index. It is more profitable for investors to reduce the lower tail (difference in grey
lines) more intensively than the upper tail (difference in black lines), which is
interpreted as a higher risk reduction over profit sacrifice. The beneficial asymmetry
is the most visible for the S&P 500-gold and FTM-gold pairs, whereas adverse
asymmetry is for the NKX-Tether pair. Bitcoin and Ether increase substantially the
tail risk of a base investment. Distribution tails of hedge portfolios begin at much
higher return levels and decay at a slower rate than the tails for indices. For instance,
for the NKX-Ether portfolio, the upper tail begins in a place where the upper tail for
the index disappears. In terms of the relative benefits of investment in pair-wise
portfolios with Bitcoin or Ether, portfolios with Bitcoin indicate much greater
differences between the black lines than between the grey lines for almost all indices.
The results show that Bitcoin added to the index increases potential profits much
more than the downside risk. It is evident that along with the inclusion of Bitcoin in
the portfolio, investors benefit from higher probability of extreme profits in relation
to the probability of extreme losses. We observed a similar effect to the Bitcoin case
in the Ether portfolio with S&P 500 or TSX. For SHC, CAC and FTM, the same
relation holds, however, the differences are not as distinct as for the former indices.
The result is ambiguous only for NKX.

As in the previous section, we have done computations of CVaR which are
presented in Table 6. The results based on the tail measure do not coincide with
those based on the distribution tails. Even when gold and Tether decrease the CVaR
more in the lower tail than in an upper tail, the differences are not as clear as shown
in the tail plots (e.g. FTM-gold pair). The highest discrepancy between the results
from the used methods is noticeable for Bitcoin and Ether. CVaR yields the opposite
results relative to the tail analysis for SPX, NKX, CAC and FTM indices in pair with
both Bitcoin or Ether, which suggests a higher risk increase of extreme losses
compared to the potential extreme profits. These exceptions indicate the need for
caution when interpreting results based on a single risk measure. CVaR provides an
adequate picture of the risks reflected in the most extreme values in the tail, but it
fails to properly capture most of the data from the tail. An analysis based on the
entire tail of the return distribution is more general and reliable.
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Figure 5. Distribution tails (pdf) of the SPX returns and an equal-weighted portfolio consisting
of an index and hedge asset. Black line - 5% upper tail, grey line — lower tail
(symmetrical image), solid line - index, dashed line — equal-weighted portfolio
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Table 6. Reduction in 5% CVaR (in pp.) by equal-weighted portfolios relative to indices

Portfolio CVaR CVaR ACVaR ACVaR
Lower tail Upper tail Lower tail Upper tail

SPX evirietsnsssssnessssnssnns 347 3.04

SPX + Gold 2.08 1.99 1.39 1.05
SPX + Tether . 1.69 1.44 1.78 1.60
SPX + Bitcoin 6.17 5.55 -2.70 -2.51
SPX + Ether 777 6.86 -4.30 -3.82
TSX 3.09 233

TSX + Gold 2.01 1.73 1.08 0.60
TSX + Tether .. 1.46 1.14 1.63 1.19
TSX + Bitcoin 5.99 5.55 -2.90 -3.22
TSX + Ether 7.56 6.81 -4.47 -4.48
SHC ... 2.62 2.35

SHC + Gold ... 1.83 1.69 0.79 0.66
SHC + Tether . 1.41 1.22 1.22 1.13
SHC + Bitcoin ... 5.56 547 -2.94 -3.12
SHC + Ether ..o 7.17 6.98 -4.55 -4.63
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Table 6. Reduction in 5% CVaR (in pp.) by equal-weighted portfolios relative to indices (cont.)

Portfolio CVaR CVaR ACVaR ACVaR
Lower tail Upper tail Lower tail Upper tail
2.77 2.82
1.85 1.85 0.92 0.97
1.43 1.40 1.34 1.42
NKX + Bitcoin .. 5.97 543 -3.20 -2.61
NKX + Ether . 7.86 6.86 -5.09 -4.03
(@7 YR— 341 2.94
CAC+ Gold . . 2.09 1.80 1.31 1.14
CAC + Tether .cveernennne 1.71 1.50 1.70 1.43
CAC + Bitcoin ...eeeeveeveeerenns 5.98 543 -2.57 -2.49
CAC + Ether 7.48 6.74 -4.07 -3.80
FTM ... 3.03 2.82
FTM + Gold 1.93 1.81 1.09 1.01
FTM + Tether 1.55 1.42 1.48 1.40
FTM + Bitcoin .. . 5.91 5.34 -2.88 -2.52
FTM + Ether ....oneceeennns 7.45 6.62 -4.43 -3.80

Source: authors’ work.

4. Conclusions

Hedging strategies against the risk of six global stock markets are considered in this
paper. We compare the effectiveness of two hedging strategies, i.e. optimal hedging
and equal-weighted portfolio hedging using gold and cryptocurrencies in the
research period covering the COVID-19 pandemic and the Russia-Ukraine war. The
empirical study provides an examination of the relative risk reduction in the lower
and upper tails of the return distribution through the analysis of the portfolio tail
thickness. We are able to verify how much the extreme risk is reduced with the
hedging instrument relative to the profit sacrifice. We find several results that shed
new light on the benefits of hedging with cryptocurrencies and gold, and thus
provide findings relevant for individual and institutional investors.

The optimal hedge strategy is appropriate only when gold is applied as a hedge or
a safe-haven instrument. The optimal weight for Tether is close to one; thus, it
almost replaces equities from the portfolio built on variance minimisation. On the
other hand, optimal weights for Bitcoin and Ether are close to zero. The high
volatility of both assets does not allow for an effective risk reduction. Meanwhile,
gold provides a good shelter for stock markets, since it reduces volatility, downside
risk and provides the highest profit/risk ratio. Moreover, gold is able to reduce the
probability of extreme losses more intensively than the probability of extreme
profits.

In the equal-weighted portfolio strategy, Tether can still reduce the risk more
effectively than gold. However, Tether is an asset which demonstrates the lowest
profit/risk ratio among the considered hedges. Moreover, along with the reduction
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of volatility both extreme losses and extreme profits are reduced at the same rate.
Identifying which one is a better shelter for the global stock markets is ambiguous
and highly depends on investor preferences. Bitcoin and Ether fail to act as effective
hedges or safe-haven assets since they substantially increase volatility and the
downside risk. However, we provide convincing arguments that the latter
instruments added to stock market indices increase the extreme potential profits on
investments more intensively than extreme losses for most of the returns from the
tail area of 5%.

Our empirical findings have significant implications for the financial market
participants. We address the key question: Is it possible to reduce extreme losses and
save extreme profits in a hedging strategy? The answer is negative, safe-haven assets
added to the base portfolio always reduce the potential extreme profits along with
the unwanted huge losses. Profit sacrifice is an alternative cost of downside risk
reduction. However, the relationship between losses and profits depends on the type
of the hedging strategy and the hedging assets. The empirical results presented in
this study reveal which popular safe-haven candidates offer a beneficial profit/loss
relationship. Using the findings, investors can improve their asset allocation and
hedging effectiveness by taking into account the asymmetry between profits and
losses according to individual expectations and risk tolerance.

References

Aboura, S. (2014). When the U.S. Stock Market Becomes Extreme?. Risks, 2(2), 211-225.
https://doi.org/10.3390/risks2020211.

Akhtaruzzaman, M., Boubaker, S., Lucey, B. M., & Sensoy, A. (2021). Is gold a hedge or a safe-
haven asset in the COVID-19 crisis?. Economic Modelling, 102, 1-26. https://doi.org/10.1016
/j.econmod.2021.105588.

Al-Nassar, N. S., Boubaker, S., Chaibi, A., & Makram, B. (2023). In search of hedges and safe
havens during the COVID-19 pandemic: Gold versus Bitcoin, oil, and oil uncertainty.
The Quarterly Review of Economics and Finance, 90, 318-332. https://doi.org/10.1016
/j.qref.2022.10.010.

Balkema, A. A., & de Haan, L. (1974). Residual Life Time at Great Age. The Annals of Probability,
2(5), 792-804. https://doi.org/10.1214/a0p/1176996548.

Baur, D. G., & Glover, K. J. (2014). Heterogeneous expectations in the gold market: Specification
and estimation. Journal of Economic Dynamics and Control, 40, 116-133. https://doi.org
/10.1016/j.jedc.2014.01.001.

Baur, D. G,, Hoang, L. T., & Hossain, M. Z. (2022). Is Bitcoin a Hedge? How Extreme Volatility
Can Destroy the Hedge Property. Finance Research Letters, 47B, 1-27. https://doi.org
/10.1016/.fr1.2021.102655.

Baur, D. G., & Lucey, B. M. (2010). Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds
and Gold. The Financial Review, 45(2), 217-229. https://doi.org/10.1111/j.1540-6288.2010.00244 x.


https://doi.org/10.3390/risks2020211
https://doi.org/10.1016/j.econmod.2021.105588
https://doi.org/10.1016/j.econmod.2021.105588
https://doi.org/10.1016/j.qref.2022.10.010
https://doi.org/10.1016/j.qref.2022.10.010
https://doi.org/10.1214/aop/1176996548
https://doi.org/10.1016/j.jedc.2014.01.001
https://doi.org/10.1016/j.jedc.2014.01.001
https://doi.org/10.1016/j.frl.2021.102655
https://doi.org/10.1016/j.frl.2021.102655
https://doi.org/10.1111/j.1540-6288.2010.00244.x

60 Przeglad Statystyczny. Statistical Review 2023 | 4

Baur, D. G., & McDermott, T. K. (2010). Is gold a safe haven? International evidence. Journal of
Banking & Finance, 34(8), 1886-1898. https://doi.org/10.1016/j.jbank{in.2009.12.008.

Beckmann, J., Berger, T., & Czudaj, R. (2015). Does gold act as a hedge or a safe haven for stocks?
A smooth transition approach. Economic Modelling, 48, 16-24. https://doi.org/10.1016
/j.econmod.2014.10.044.

Bee, M., Dupuis, D. J., & Trapin, L. (2016). Realizing the extremes: Estimation of tail-risk measures
from a high-frequency perspective. Journal of Empirical Finance, 36, 86-99. https://doi.org
/10.1016/j.jempfin.2016.01.006.

Bedowska-Séjka, B., & Kliber, A. (2021). Is there one safe-haven for various turbulences? The
evidence from gold, Bitcoin and Ether. The North American Journal of Economics and Finance,
56, 1-12. https://doi.org/10.1016/j.najef.2021.101390.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics, 31(3), 307-327. https://doi.org/10.1016/0304-4076(86)90063-1.

Boubaker, H., Cunado, J., Gil-Alana, L. A., & Gupta, R. (2020). Global Crises and Gold as a Safe
Haven: Evidence from Over Seven and a Half Centuries of Data. Physica A: Statistical Mechanics
and its Applications, 540, 1-13. https://doi.org/10.1016/j.physa.2019.123093.

Bouri, E., Shahzad, S. J. H., & Roubaud, D. (2020). Cryptocurrencies as hedges and safe-havens for
US equity sectors. The Quarterly Review of Economics and Finance, 75, 294-307.
https://doi.org/10.1016/j.qref.2019.05.001.

Caeiro, F., & Gomes, M. 1. (2016). Threshold Selection in Extreme Value Analysis. In D. K. Dey &
J. Yan (Eds.), Extreme Value Modeling and Risk Analysis. Methods and Applications (pp. 71-89).
Chapman and Hall/CRC. https://doi.org/10.1201/b19721.

Cheema, M. A., Faff, R. W., & Szulczyk, K. R. (2022). The 2008 Global Financial Crisis and
COVID-19 Pandemic: How Safe are the Safe Haven Assets?. International Review of Financial
Analysis, 83, 1-13. https://doi.org/10.1016/j.irfa.2022.102316.

Chembkha, R., BenSaida, A., Ghorbel, A., & Tayachi, T. (2021). Hedge and safe haven properties
during COVID-19: Evidence from Bitcoin and gold. The Quarterly Review of Economics and
Finance, 82, 71-85. https://doi.org/10.1016/j.qref.2021.07.006.

Chen, Z., & Ibragimov, R. (2019). One country, two systems? The heavy-tailedness of Chinese A- and H-
share markets. Emerging Markets Review, 38, 115-141. https://doi.org/10.1016/j.ememar.2018.11.007.

Cifter, A. (2011). Value-at-risk estimation with wavelet-based extreme value theory: Evidence from
emerging markets. Physica A: Statistical Mechanics and its Applications, 390(12), 2356-2367.
https://doi.org/10.1016/j.physa.2011.02.033.

Conlon, T., Corbet, S., & McGee, R. J. (2020). Are cryptocurrencies a safe haven for equity
markets? An international perspective from the COVID-19 pandemic. Research in International
Business and Finance, 54, 1-10. https://doi.org/10.1016/j.ribaf.2020.101248.

Conlon, T., & McGee, R. (2020). Safe haven or risky hazard? Bitcoin during the Covid-19 bear
market. Finance Research Letters, 35, 1-5. https://doi.org/10.1016/j.fr1.2020.101607.

Corbet, S., Hou, Y. G, Hu, Y., Larkin, C., & Oxley, L. (2020). Any port in a storm: Cryptocurrency
safe-havens during the COVID-19 pandemic. Economics Letters, 194, 1-7. https://doi.org
/10.1016/j.econlet.2020.109377.


https://doi.org/10.1016/j.jbankfin.2009.12.008
https://doi.org/10.1016/j.econmod.2014.10.044
https://doi.org/10.1016/j.econmod.2014.10.044
https://doi.org/10.1016/j.jempfin.2016.01.006
https://doi.org/10.1016/j.jempfin.2016.01.006
https://doi.org/10.1016/j.najef.2021.101390
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1016/j.physa.2019.123093
https://doi.org/10.1016/j.qref.2019.05.001
https://doi.org/10.1201/b19721
https://www.sciencedirect.com/journal/international-review-of-financial-analysis
https://www.sciencedirect.com/journal/international-review-of-financial-analysis
https://doi.org/10.1016/j.irfa.2022.102316
https://doi.org/10.1016/j.qref.2021.07.006
https://doi.org/10.1016/j.ememar.2018.11.007
https://doi.org/10.1016/j.physa.2011.02.033
https://doi.org/10.1016/j.ribaf.2020.101248
https://doi.org/10.1016/j.frl.2020.101607
https://doi.org/10.1016/j.econlet.2020.109377
https://doi.org/10.1016/j.econlet.2020.109377

K. ECHAUST, M. JUST Reduce extreme losses and retain extreme profits through hedging with... 61

Danielsson, J., & de Vries, C. G. (1997). Tail index and quantile estimation with very high
frequency data. Journal of Empirical Finance, 4(2-3), 241-257. https://doi.org/10.1016/50927-
5398(97)00008-X.

Danielsson, J., Ergun, L. M., de Haan, L., & de Vries, C. G. (2016). Tail Index Estimation: Quantile
Driven Threshold Selection (SRC Discussion Paper No 58). https://doi.org/10.2139/ssrn.2717478.
Dowd, K. (2005). Measuring Market Risk (2nd edition). John Wiley & Sons.

https://doi.org/10.1002/9781118673485.

Echaust, K. (2021). Asymmetric tail dependence between stock market returns and implied volatility.
The Journal of Economic Asymmetries, 23, 1-13. https://doi.org/10.1016/j.jeca.2020.e00190.

Echaust, K., & Just, M. (2022). Is gold still a safe haven for stock markets? New insights through
the tail thickness of portfolio return distributions. Research in International Business and
Finance, 63, 1-19. https://doi.org/10.1016/j.ribaf.2022.101788.

Echaust, K., Just, M., & Kliber, A. (2024). To hedge or not to hedge? Cryptocurrencies, gold and oil
against stock market risk. International Review of Financial Analysis, 94, 1-22.
https://doi.org/10.1016/j.irfa.2024.103292.

Engle, R. (2002). Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized
Autoregressive Conditional Heteroskedasticity Models. Journal of Business & Economic
Statistics, 20(3), 339-350. https://doi.org/10.1198/073500102288618487.

Eom, C,, Kaizoji, T., Livan, G., & Scalas, E. (2021). Limitations of portfolio diversification through
fat tails of the return Distributions: Some empirical evidence. The North American Journal of
Economics and Finance, 56, 1-22. https://doi.org/10.1016/j.najef.2020.101358.

Fernandez, V. (2005). Risk management under extreme events. International Review of Financial
Analysis, 14(2), 113-148. https://doi.org/10.1016/].irfa.2004.06.012.

Gengay, R., Selguk, F., & Ulugiilyagci, A. (2003). High volatility, thick tails and extreme value
theory in value-at-risk estimation. Insurance: Mathematics and Economics, 33(2), 337-356.
https://doi.org/10.1016/j.insmatheco.2003.07.004.

Gilli, M., & Kéllezi, E. (2006). An application of extreme value theory for measuring financial risk.
Computational Economics, 27(2-3), 207-228. https://doi.org/10.1007/s10614-006-9025-7.

Gregory-Allen, R, Lu, H., & Stork, P. (2012). Asymmetric extreme tails and prospective utility of
momentum  returns. Economics  Letters, 117(1), 295-297. https://doi.org/10.1016
/j.econlet.2012.05.040.

Giirgiin, G., & Unalmis, 1. (2014). Is gold a safe haven against equity market investment in
emerging and developing countries?. Finance Research Letters, 11(4), 341-348.
https://doi.org/10.1016/j.fr1.2014.07.003.

Hansen, P. R, & Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a
GARCH (1,1)?. Journal of Applied Econometrics, 20(7), 873-889. https://doi.org/10.1002/jae.800.
Hartmann, P., Straetmans, S., & de Vries, C. G. (2004). Asset market linkages in crisis periods.
The Review of Economics and Statistics, 86(1), 313-326. https://doi.org/10.1162/003465304323023831.

Hasan, Md. B., Hassan, M. K., Rashid, Md. M., & Alhenawi, Y. (2021). Are safe haven assets really
safe during the 2008 global financial crisis and COVID-19 pandemic?. Global Finance Journal,
50, 1-11. https://doi.org/10.1016/}.g£}.2021.100668.


https://doi.org/10.1016/S0927-5398(97)00008-X
https://doi.org/10.1016/S0927-5398(97)00008-X
https://doi.org/10.2139/ssrn.2717478
https://doi.org/10.1002/9781118673485
https://doi.org/10.1016/j.jeca.2020.e00190
https://doi.org/10.1016/j.ribaf.2022.101788
https://doi.org/10.1016/j.irfa.2024.103292
https://doi.org/10.1198/073500102288618487
https://doi.org/10.1016/j.najef.2020.101358
https://doi.org/10.1016/j.irfa.2004.06.012
https://doi.org/10.1016/j.insmatheco.2003.07.004
https://doi.org/10.1007/s10614-006-9025-7
https://doi.org/10.1016/j.econlet.2012.05.040
https://doi.org/10.1016/j.econlet.2012.05.040
https://doi.org/10.1016/j.frl.2014.07.003
https://doi.org/10.1002/jae.800
https://doi.org/10.1162/003465304323023831
https://doi.org/10.1016/j.gfj.2021.100668

62 Przeglad Statystyczny. Statistical Review 2023 | 4

Hill, B. M. (1975). A Simple General Approach to Inference About the Tail of a Distribution.
The Annals of Statistics, 3(5), 1163-1174. https://doi.org/10.1214/a0s/1176343247.

Igbal, F., Zahid, M., & Koutmos, D. (2023). Cryptocurrency Trading and Downside Risk. Risks,
11(7), 1-18. https://doi.org/10.3390/risks11070122.

Jondeau, E., & Rockinger, M. (2003). Testing for differences in the tails of stock-market returns.
Journal of Empirical Finance, 10(5), 559-581. https://doi.org/10.1016/50927-5398(03)00005-7.
Just, M., & Echaust, K. (2021). An Optimal Tail Selection in Risk Measurement. Risks, 9(4), 1-16.

https://doi.org/10.3390/risks9040070.

Just, M., & Echaust, K. (2024). Cryptocurrencies against stock market risk: New insights into
hedging effectiveness. Research in International Business and Finance, 67(A), 1-26.
https://doi.org/10.1016/j.ribaf.2023.102134.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk.
Econometrica, 47(2), 263-292. https://doi.org/10.2307/1914185.

Kliber, A. (2022). Looking for a safe haven against American stocks during COVID-19 pandemic.
The North American Journal of Economics and Finance, 63, 1-21. https://doi.org/10.1016
/j.najef.2022.101825.

Koedijk, K. G., & Kool, C. J. M. (1992). Tail Estimates of East European Exchange Rates. Journal of
Business & Economic Statistics, 10(1), 83-96. https://doi.org/10.1080/07350015.1992.10509889.
Kroner, K. F, & Ng, V. K. (1998). Modeling Asymmetric Comovements of Asset Returns.

The Review of Financial Studies, 11(4), 817-844. https://doi.org/10.1093/rfs/11.4.817.

Long, S., Pei, H., Tian, H., & Lang, K. (2021). Can both Bitcoin and gold serve as safe-haven assets?
- A comparative analysis based on the NARDL model. International Review of Financial
Analysis, 78, 1-12. https://doi.org/10.1016/j.irfa.2021.101914.

Longin, F. M. (1996). The Asymptotic Distribution of Extreme Stock Market Returns. The Journal
of Business, 69(3), 383-408. https://doi.org/10.1086/209695.

Longin, F. M. (2000). From value at risk to stress testing: The extreme value approach. Journal of
Banking & Finance, 24(7), 1097-1130. https://doi.org/10.1016/S0378-4266(99)00077-1.

Lucey, B. M., Peat, M., Sevié, A., & Vigne, S. A. (2021). What is the optimal weight for gold in a
portfolio? Annals of Operations Research, 297(1-2), 277-291. https://doi.org/10.1007/s10479-
019-03496-5.

Luczak, A., & Just, M. (2020). The positional MEF-TOPSIS method for the assessment of complex
economic phenomena in territorial units. Statistics in Transition new series, 21(2), 157-172.
https://doi.org/10.21307/STATTRANS-2020-018.

Mariana, C. D., Ekaputra, I. A., & Husodo, Z. A. (2021). Are Bitcoin and Ethereum safe-havens for
stocks during the COVID-19 pandemic? Finance Research Letters, 38, 1-7.
https://doi.org/10.1016/j.fl.2020.101798.

McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic
financial time series: An extreme value approach. Journal of Empirical Finance, 7(3-4), 271-300.
https://doi.org/10.1016/50927-5398(00)00012-8.

Salisu, A. A., Raheem, I. D., & Vo, X. V. (2021). Assessing the safe haven property of the gold
market during COVID-19 pandemic. International Review of Financial Analysis, 74, 1-7.
https://doi.org/10.1016/j.irfa.2021.101666.


https://doi.org/10.1214/aos/1176343247
https://doi.org/10.3390/risks11070122
https://doi.org/10.1016/S0927-5398(03)00005-7
https://doi.org/10.3390/risks9040070
https://doi.org/10.1016/j.ribaf.2023.102134
https://doi.org/10.2307/1914185
https://doi.org/10.1016/j.najef.2022.101825
https://doi.org/10.1016/j.najef.2022.101825
https://doi.org/10.1080/07350015.1992.10509889
https://doi.org/10.1093/rfs/11.4.817
https://doi.org/10.1016/j.irfa.2021.101914
https://doi.org/10.1086/209695
https://doi.org/10.1016/S0378-4266(99)00077-1
https://doi.org/10.1007/s10479-019-03496-5
https://doi.org/10.1007/s10479-019-03496-5
https://doi.org/10.21307/STATTRANS-2020-018
https://doi.org/10.1016/j.frl.2020.101798
https://doi.org/10.1016/S0927-5398(00)00012-8
https://doi.org/10.1016/j.irfa.2021.101666

K. ECHAUST, M. JUST Reduce extreme losses and retain extreme profits through hedging with... 63

Sarykalin, S., Serraino, G., & Uryasev, S. (2008). Value-at-Risk vs. Conditional Value-at-Risk in
Risk Management and Optimization. In Z.-L. Chen, S. Raghavan & P. Gray (Eds.), State-of-the-Art
Decision-Making Tools in the Information-Intensive Age (pp. 270-294). Informs.
https://doi.org/10.1287/educ.1080.0052.

Toti¢, S., & Bozovi¢, M. (2016). Tail risk in emerging markets of Southeastern Europe. Applied
Economics, 48(19), 1785-1798. https://doi.org/10.1080/00036846.2015.1109037.

World Federation of Exchanges. (2023). Market Statistics. https://focus.world-exchanges.org/issue
/march-2023/market-statistics.

Xu, L., & Kinkyo, T. (2023). Hedging effectiveness of bitcoin and gold: Evidence from G7 stock
markets. Journal of International Financial Markets, Institutions and Money, 85, 1-18.
https://doi.org/10.1016/j.intfin.2023.101764.

Appendix

Figure A1. Distribution tails (pdf) of the TSX returns and an optimal portfolio consisting of an
index and hedge asset. Black line — 5% upper tail, grey line - lower tail (symmetrical
image), solid line - index, dashed line - optimal portfolio
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Figure A2. Distribution tails (pdf) of the SHC returns and an optimal portfolio consisting of an
index and hedge asset. Black line — 5% upper tail, grey line — lower tail (symmetrical
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Figure A3. Distribution tails (pdf) of the NKX returns and an optimal portfolio consisting of an
index and hedge asset. Black line — 5% upper tail, grey line — lower tail (symmetrical
image), solid line — index, dashed line - optimal portfolio
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Figure A4, Distribution tails (pdf) of the CAC returns and an optimal portfolio consisting of an
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Figure A5. Distribution tails (pdf) of the FTM returns and an optimal portfolio consisting of an
index and hedge asset. Black line — 5% upper tail, grey line — lower tail (symmetrical
image), solid line — index, dashed line - optimal portfolio
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Figure A6. Distribution tails (pdf) of the TSX returns and an equal-weighted portfolio consisting
of an index and hedge asset. Black line — 5% upper tail, grey line — lower tail
(symmetrical image), solid line — index, dashed line — equal-weighted portfolio
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Figure A7. Distribution tails (pdf) of the SHC returns and an equal-weighted portfolio
consisting of an index and hedge asset. Black line — 5% upper tail, grey line — lower
tail (symmetrical image), solid line - index, dashed line — equal-weighted portfolio
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A8. Distribution tails (pdf) of the NKX returns and an equal-weighted portfolio
consisting of an index and hedge asset. Black line — 5% upper tail, grey line — lower
tail (symmetrical image), solid line - index, dashed line — equal-weighted portfolio

Gold Tether
[1u]
— o 4
=1
=
_ = _
=
@
[m] =
— o 4
=1
hx - u_MK
a e — — 8 e T S ——
T T T T o T T T T
2 3 4 5 6 2 3 4 5 6
Return Return
Bitcoin Ether
[1u]
— o 4
=1
o = o
=
@
=
N o
& S o k T,
_ e e _— [ = -— Sx==
T T T T T o T T T T T T
2 4 6 8 10 2 4 6 8 10 12
Return Return

authors’ work.



K. ECHAUST, M. JUST Reduce extreme losses and retain extreme profits through hedging with...

Figure

Density
0.04 005 008

0.02

0.00

Density
0.04 006 008

0.02

0.00

Source:

71

A9. Distribution tails (pdf) of the CAC returns and an equal-weighted portfolio
consisting of an index and hedge asset. Black line — 5% upper tail, grey line — lower
tail (symmetrical image), solid line - index, dashed line — equal-weighted portfolio
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Fig. A10. Distribution tails (pdf) of the FTM returns and an equal-weighted portfolio consisting
of an index and hedge asset. Black line - 5% upper tail, grey line — lower tail
(symmetrical image), solid line — index, dashed line — equal-weighted portfolio
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Computational problems in variable selection for
multilevel models using stepwise regression

Hanna Wdowicka?®

Abstract. Multilevel modelling is a methodology that allows the consideration of variability in the
level of the studied variables and the nature of the relationships between them, depending on the
affiliation of study units to higher-level units (groups). Additionally, by dividing the studied
population into groups, it is possible to explain part of the variability of the estimated characteristic
using higher-level characteristics. The usefulness of multilevel modelling in estimating socio-
economic characteristics was investigated in the author's previous works. However, with large
populations characterised by a multilevel structure, a significant drawback of this approach is its
high computational complexity, often resulting in unacceptably long computation times. The main
objective of the article is to propose a simplification in the algorithm of forward stepwise multilevel
regression, allowing a significant reduction in the time required for variable selection in the model.
The considerations will be illustrated by constructing a multilevel model to examine the
determinants of daily flows related to employment based on the matrix of employment-related
population flows developed from the 2021 National Census of Population and Housing (NSP
2021).

Keywords: multilevel modelling, multilevel structure, random effects, cross-model, commuting to
work

JEL: C51, C52, C55

1. Introduction

The idea of multilevel modelling emerged in the early 1970s, when attention was
drawn to the fact students within the same school and students from different
schools displayed different levels of academic achievement. D. Lindley and A. Smith
developed general frameworks for studying nested data with complex structures of
random errors (Lindley & Smith, 1972). Incorporating dependencies among units at
the first level belonging to the same units at higher levels significantly improves
estimation precision compared to classical linear regression, provided the estimated
variable has a multilevel structure (Hox, 2010). The applicability of multilevel
modelling to estimating socio-economic characteristics was analysed in works such
as Gruchociak (2012b), Suchecka and Laszkiewicz (2017) or Weziak (2007).
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The aim of this paper is to present the computational challenges associated with
constructing highly complex multilevel models, along with the proposed solutions.
To achieve this, the first part of the article will introduce the empirical problem that
underlies the construction of this kind of models. A brief overview of the concept of
multilevel modelling will follow. Subsequently, we will explain why this method was
chosen to address the specific empirical problem. We will then discuss the
construction of appropriate models from a formal point of view. In the final part, we
will show any computational difficulties we encountered and will propose relevant
solutions.

The empirical aim of the study was to analsye the determinants of daily
commuting flows and the relationships between them.

In Poland, the analysis of daily commutes to work is possible thanks to the results
of the study carried out periodically by the City Statistics Center of the Statistical
Office in Poznan. So far, the results of four editions of the study have been
published, for the years: 2006, 2011, 2016 and 2021 (Filas-Przybyl & Stachowiak,
2019; Kowalewski, 2014, 2024; Kruszka, 2010). The primary data sources for the first
three editions were the Ministry of Finance’s tax registers. Data from the National
Census of Population and Housing in 2011 and from the Social Insurance Institution
were also used (Filas-Przybyt & Stachowiak, 2019; Kowalewski, 2024). The National
Census of Population and Housing 2021 applied a mixed-method approach,
combining data collected from respondents with administrative data (Lyson, 2024),
which was also the case regarding the latest edition of the commuting survey. All
four editions of the survey present data at the gmina (the smallest administrative
unit in Poland, alternatively referred to as a commune) level, and more specifically
for pairs of gminas, with further breakdowns to urban and rural data in the case of
urban-rural gminas.

In the current study, the latest edition of the above-mentioned survey was
analysed, specifically the ‘Commuting to work’ survey, based on the results of the
National Census of Population and Housing 2021 (Kowalewski, 2024).

2. Multilevel Modelling Methodology

The methodology of multilevel modelling allows the consideration of similarities
among units at the first level of the analysis that belong to the same groups formed
by a grouping variable at the second and higher levels (Bates, 2010; Biecek, 2011;
Raudenbush & Bryk, 2002). Unlike classical linear regression, multilevel modelling
does not assume that all observations are independent; instead, it acknowledges the
dependence among units at the first level that belong to the same units at higher
levels (Twisk, 2010). Failing to account for such dependencies leads to
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underestimated standard errors (Hox, 2010; Klimanek, 2003). Thus, multilevel
models capture two types of variability: differences among units at the first level
belonging to the same units at higher levels, and differences among higher-level
units themselves (Fratczak & Mianowska, 2012). Incorporating dependencies among
units at the first level that belong to the same higher-level units significantly
improves the precision of estimation compared to classical linear regression,
provided the estimated variable has a multilevel structure. This improvement occurs
regardless of whether the classical regression model disregards the division of first-
level units entirely or treats observations belonging to the same groups as a whole
(with estimates conducted for entire groups) (Twisk, 2010).

Additionally, by dividing the studied population into groups, it becomes possible
to explain some of the variability of the estimated characteristic using the
characteristics from the higher levels. The need for aggregating information available
at different levels is also mentioned in the work of Bott et al. (1985).

It should be emphasised that the use of multilevel modelling methodology is
justified only for specific populations and variables. Both the population and the
variable should have a multilevel structure. Regarding the population and the
classical multilevel model, this means that the population can be divided into a finite
number of distinct and collectively exhaustive groups that cover all units at the first
level (alternatively referred to as units at the second level) (Goldstein, 2003; Hox,
2010; Laszkiewicz, 2016).

In the case of a model with more than two levels, units at the second level can also
be divided into distinct and collectively exhaustive groups that cover the entire
population (further referred to as units at the third level), and so on.

If a model has two grouping criteria (known as a cross-level model), units at the
second level are defined twice, with each first-level unit belonging to exactly one
second-level unit defined by each of the two grouping criteria. For units at the
second level defined by both criteria, higher-level units can also be defined (Bates,
2010; Biecek, 2011).

Using a multilevel model is justified when the estimated variable is of a multilevel
structure. This means that its value should significantly differ between groups, i.e.
units, at each of the higher levels. This variability can stem from a direct relationship
between the variable of interest and the fact that the first-level unit belongs to
higher-level units. A classic example from the literature illustrating such a scenario is
the variability in academic achievement, caused both by individual students’ abilities
and predispositions (factors at the first, individual level) and teacher qualifications
and teaching methods (factors at the second, group level) (Goldstein, 2003; Hox,
2010).
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Another reason for the variability of the studied variable between groups can be
the relationship between this variable and the division into groups based on a certain
hidden, often unmeasurable, variable. An example of this is the relationship between
the economic activity and the level of regional development (Gruchociak, 2012a,
2012b). Geographical distribution of factors determining labor demand, such as the
presence of natural resources, industrial facilities, development of technical,
communication, and educational infrastructure, are significant determinants
influencing the economic activity of the population, alongside factors affecting the
degree of entrepreneurship among individuals.

If the dependent variable has a multilevel structure, employing an appropriate
multilevel model can significantly improve the quality of the analysis (Goldstein,
2003; Hox, 2010; Raudenbush & Bryk, 2002; Twisk, 2010).

3. Empirical problem

3.1. Dependent variable and multilevel structure

The study focuses on daily commuting patterns between pairs of gminas. As
mentioned earlier, the analysis of daily employee mobility is based on the results of
the ‘Commuting to work’ survey using data from the 2021 National Census of
Population and Housing (Kowalewski, 2024). Information regarding the number of
individuals commuting to work is available at the gmina level, with a breakdown to
an urban and a rural part in the case of urban-rural gminas. There were 95,890 pairs
of gminas' with non-zero? employment-related flows, and these pairs are treated in
our study as first-level units. The administrative divisions of the country naturally
create a multilevel structure (voivodships consist of powiats, which further down
consist of gminas). Given that the first-level units of the analysis are defined as pairs
of gminas in this study, we are dealing with a cross-level multilevel structure with
two grouping criteria defined at the second level. The second-level units can be
identified as the gminas from which the commuting flows originate and the gminas
of destination, thereby establishing two grouping criteria at the second level. Powiats
and voivodships are considered as third- and fourth-level units respectively, due to
both grouping criteria (see Figure 1).

"Throughout this article, a gmina is understood as a commune divided into urban and rural parts.
2 Due to statistical confidentiality, the flows between communes with fewer than three people were
disregarded.
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Figure 1. Multilevel structure of administrative units in a cross-model with two grouping
criteria defined the at the second level

administrative units of departure administrative units of arrival

P cee voivodships (fourth-level units)
powiats (third-level units)
@

_®
O

e gminas (second-level units)

pairs of gminas (first-level units)

Source: author's work.

The above-described structure of the studied community makes it possible to try
to explain the number of individuals commuting between the gminas using a cross-
level multilevel model with two grouping criteria (related to residential and
workplace territorial units), and subsequent levels defined as successive territorial
units (gmina, powiat, voivodship) determined by both grouping criteria. Obviously,
the inclusion of the multilevel structure in the model will be preceded by verifying
whether the studied characteristic of the commuting patterns has a multilevel
structure, based on the described grouping criteria.

3.2. Explanatory variables

The distance between the place of residence and the place of work is regarded as one
of the most crucial factors influencing the commuting intensity (Gumuta et al,
2007). Therefore, the distance between the gmina of residence and the gmina of
workplace was adopted as the explanatory variable at the first level.

The number of persons commuting to work between gminas is naturally affected
by the sizes of both gminas. Therefore, the characteristics related to these sizes
constitute the second group of potential explanatory variables for the commuting
intensity (see Table). The volume of industry within a gmina might also significantly
impact commuting patterns, and thus the third group of potential explanatory
variables could emerge. It is also plausible that the characteristics related to the
attractiveness of a particular place and the relative ease of commuting from there
would significantly influence the commuting intensity, so we put these factors
together as the fourth group of potential explanatory variables (see Table).

Variations in the intensity of commuting to the workplace might also depend on the
attractiveness of the employment conditions both in the ‘departure’ and the ‘destination’
gminas. According to the literature, a comprehensive set of characteristics illustrating the
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labour market situation should comprise variables representing both the labour demand
and the supply (Gotata, 2004). Therefore, the set of potential explanatory variables has
been expanded to include three additional groups describing the labour market, focusing
in particular on the supply, demand and pricing characteristics (see Table).

Table. A set of potential explanatory variables for commuting to work between gminas

distance

X distance between gminas3
gmina size
Cgal,Cgb1l area of the gmina in square kilometers
Cga2,Cgb2 number of people of working age
Cga3,Cgb3 number of working people
industry volume

Egal ,Egb1 number of national economy entities from the public sector
Ega2 ,Egb2 number of national economy entities from the private sector
Ega3 ,Egb3 number of commercial companies with foreign capital
Ega4 ,Egb4 number of natural persons conducting economic activity
Ega5 ,Egb5 number of national economy entities
Epal ,Epb1 enterprises’ investment outlays per person of working age

location
Lga1l ,Lgb1 distance from the nearest voivodship capital
Lga2 ,Lgb2 distance from the nearest metropolis*
Lga3 ,Lgb3 number of parking lots in the Park & Ride system
Lpal,Lpb1l investment outlays of enterprises in thousands of PLN
Lval,Lvb1 number of railway lines

3 Measured in a straight line between the centroids of gminas (Kopczewska, 2006).

4The metropolis were selected using the following procedure: all gminas were ranked in descending order
according to the number of people employed. In the first step, the set of central centers was defined as the
city with the largest number of employees, then the set was expanded by subsequent gminas ranked
according to the number of employees. For the sets of large cities defined in this way in subsequent stages,
the correlation between the distance and the intensity of trips to work was examined. Then we checked for
which of the defined sets of large cities specified in individual steps the relationship between the distance
and the intensity of trips to work was the strongest. In line with Thiinen's theory that central centers
stimulate the development of areas surrounding them, it was assumed that the distance from each gmina
to the nearest central center should influence the intensity of trips to work. Ultimately, a set of large cities
was selected for which the correlation relationship was the strongest. According to the above procedure,
the following seven metropolis were identified: Warsaw, Krakow, Wroclaw, Poznan, Lodz, Gdansk and
Katowice.
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Table. A set of potential explanatory variables for commuting to work between gminas (cont.)

demand
Dga1 ,Dgb1 ratio of working people to the working-age population
Dga2 ,Dgb2 number of working people per square kilometer
Dga3 ,Dgb3 number of people of working age per square kilometer
Dval,Dvb1 share of graduates of public universities among the working-age population
Dva2 ,Dvb2 share of university graduates among the working-age population

supply
Sgal,Sgb1 intensity® of national economy entities from the public sector
Sga2,Sgb2 intensity of national economy entities from the private sector
Sga3,Sgb3 intensity of commercial companies with foreign capital
Sga4 ,Sgb4 share of natural persons conducting economic activity in the working-age population
Sga5 ,Sgb5 intensity of national economy entities
Sgab ,Sgb6 share of the unemployed among the working-age population
price

Ppa1,Ppb1 average monthly gross salary

Note. The first letter of the subscript indicates the level at which this characteristic is available; g- gmina, d-
powiat, v-voivodship. The second letter of the subscript determines the grouping criterion of a given
territorial unit; a-territorial unit of residence, b-territorial unit of the workplace.

Source: author’s work based on data sets published by GUS.

Among the potential determinants of commuting distances to work, various
characteristics available at different levels of aggregation have been considered.
Therefore, it seems particularly justified to attempt an analysis of the determinants
of labour mobility using the modelling that takes into account the multilevel
structure of the labour market.

4, Research procedure

To explain how the number of commutes between pairs of gminas is determined, a
four-level cross model with two grouping criteria at the second level was
constructed. Units at the first level were defined as pairs of gminas, while units at the
second level were gminas from which commutes originated and the destination
ones, thereby defining two grouping criteria at the second level. Powiats and
voivodships were adopted as third- and fourth-level units taking into account both
grouping criteria (see Figure 1). Thus, we considered the incorporation of up to six
different grouping criteria defined by the gmina, powiat and voivodship of
residence, as well as the gmina, powiat and voivodship the workplace. Additionally, a
set of 53 potential explanatory variables defined at various levels (see Table),

5 Understood here as the ratio of the number of national economy entities from the public sector to the
number of working-age inhabitants; it is understood analogically elsewhere in Table.
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interactions among these variables, and variations in the influence of individual
explanatory variables on the number of commuters depending on their affiliation
with higher-level grouping units were considered.

As we can see, designing an optimal multilevel model involves considering
numerous potential model extensions for this research problem. Applying stepwise
regression to all these extensions simultaneously is impossible due to the extensive
computational time required.

This is a common problem in multilevel modelling, therefore the construction of
a multilevel model is usually carried out in stages, which makes it possible to shorten
the time of selecting extensions for the model (Bliese, 2022; Hox, 2010; Twisk, 2010).
The analysis of determinants of commuting to work was conducted in the stages
described below.

At first, expanding the fixed part of the model (i.e., without accounting for
random components arising from the multilevel data structure) was carried out in
five steps. In the following three stages, a random part of the model associated with
grouping effects was included. This aimed to initially account for effects that can be
measured (i.e. fixed effects). It appears that if the level of commuting varies across
certain territorial units, but these differences can be explained by measurable
explanatory variables, it should not be considered as a random factor, but it rather
should be explained using these variables. Another advantage of this sequential
model expansion is that after incorporating random components, the estimation
time for the subsequent models with considered extensions significantly increases.
Therefore, adding them in the final stages allows a substantial reduction in the total
computation time.

The construction of the multilevel model was preceded by verifying the
hypothesis of the multilevel structure of the estimated variable, conducted using an
analysis-of-variance test (Krzysko, 1996).

STAGE 1

In the first step, explanatory variables were introduced independently of the
aggregation level for which they were defined. A total of 53 explanatory variables
were analysed.

STAGE 2

In the second step, we introduced the interactions between the distance between
the gminas of residence and of the workplace and the remaining potential
explanatory variables defined for territorial units specified by both the place of
residence and the workplace. This was done regardless of whether they were
included or not in step 1. If the influence of a particular explanatory variable on
commuting propensity varies depending on the commuting distance, including their
interactions should improve the model fit. In such cases, we can conclude that the
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distance moderates the impact of an explanatory variable on the number of people
commuting to work. A total of 52 interactions were analysed in this stage.
STAGE 3
In stage 3, the interaction between the characteristics of the gmina of residence
and the gmina of work was taken into consideration. This enabled us to indicate in
what ways the characteristics of the gmina of residence moderate the impact of the
characteristics of the gmina of work on attracting commuters to it. Interactions
between each pair of explanatory variables were considered, i.e. 20 x 20 = 400
potential extensions.
STAGE 4
Then, we were considering the inclusion of interactions between the
characteristics of the same gmina (residence or work). This enabled us to indicate
how certain characteristics of the gmina of residence affect the impact of other
characteristics of the same gmina on the intensity of departures from this gmina, and
how some characteristics of the gmina of the workplace affect the impact of other
characteristics of the same gmina on the intensity of arrivals to this gmina.
Interactions between each pair of explanatory variables were analysed, both for the
gminas of residence and of the workplace, i.e. 2 x 20 x 19 / 2 = 380 potential
extensions.
STAGE 5
Then we were considering taking into account the interactions between the
characteristics of territorial units from different levels but according to the same
grouping criterion (i.e. for territorial units of residence or of the workplace). This
enabled us to determine in what ways the characteristics of higher-level residence
units affect the impact of the characteristics of lower-level residence units on the
intensity of trips to work, and how the characteristics of higher-level work units
affects the impact of the characteristics of lower-level work units on the intensity of
trips to work. Therefore, interactions between each pair of explanatory variables
were analysed, both for territorial units of residence and of the workplace, i.e. 2 x (3
x 20 + 3x 20 + 3 x 3) = 258 potential extensions.
STAGE 6
Then the construction of the random part of the model began. In stage 6, the
impact of each grouping factor on the level of commuting to work, i.e. six potential
random effects, were examined.
STAGE 7
In this stage, the differences in the impact of the commuting distance on the
number of people commuting to work across the territorial units of residence and of
the workplace of commuters were taken into account. Therefore, we were
considering the introduction of six further random effects.
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STAGE 8

In the last stage, we were contemplating taking into account the differences in the
impact of other explanatory variables on the number of people commuting to work
across higher-level territorial units created due to the same grouping criteria as the
examined explanatory variable. Therefore, we were considering the introduction of
another 2 x (2 x 20 + 3) = 86 random effects.

Within the individual stages, extensions were introduced according to forward
stepwise regression procedure, with the result of the likelihood ratio test as the
improvement criterion. In most of the stages (except stages 2, 3, 4 and 5), the
improvement was considered statistically significant if the p-value did not exceed
0.05. The above-mentioned exceptions occurred because during including
interactions between variables in the model, special caution was recommended, so
for these stages the significance level was 0.01.

After having completed each stage, we checked whether any of the previously
added (in this stage or any previous one) extensions still improves the quality of the
model fit (measured using the likelihood ratio test, p-value = 0.05) in a statistically
significant way. If any of the previously-added model extensions did not meet this
condition, they were removed from the model in steps. Among other developmants,
this approach allows, at least to some extent, the replacement of a model extension
introduced in an earlier stage by the extension from a later stage that better explains
a given part of the variability in commuting.

Before starting the calculations, all explanatory variables were centered, which is a
standard procedure in multilevel modelling. In addition, variables measured on very
different scales were rescaled to avoid convergence problems.

The calculations were performed in the R program using the Ime4 library (Bates,
2013; Bates et al., 2015; Bates, 2024), in which the parameters of multilevel models
are estimated using sparse matrices. The code of the described algorithm is available
in the appendix of this article.

5. Calculational problems and proposed solutions

Despite the construction of the model divided into eight stages, starting with the
construction of the less time-consuming constant part of the model and the use of
the effective Ime4 library of the R program, the number of extensions considered,
especially the interactions between the potential explanatory variables, resulted in
unacceptably long calculation times®. Therefore, we decided to use a simplified

6 The computation time has been estimated at many billions of years.
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forward stepwise regression procedure in selected stages (those concerning the
interactions between variables).

In order to shorten the calculation time, we tried to modify the forward stepwise
regression procedure used. Namely, we assumed that if a certain extension of the
model does not significantly improve the quality of the model fitting, then after
enriching the model with other elements, adding the same extension as before, will
not improve the quality of its fitting either.

The adopted simplification can also be written in a formal way. Let model B be an
extension of model A, and models A' and B' be extensions of models A and B,
respectively, with the same component. If the likelihood ratio test does not indicate a
significant improvement of model A' in relation to model A, then model B' is not
significantly better than model B according to this criterion (see Figure 2).

Figure 2. A diagram for the gradual expansion of multilevel models and the relationships
between them

% > B
el el
A > B

Source: author's work.

It should be noted that this simplification was adopted only in the stages in which
interactions between variables were considered (i.e. stages 2, 3, 4, 5, 7 and 8), while
in the remaining stages, the classic forward stepwise regression algorithm was used.
It seems that the risk of disregarding an interaction between variables that would
become significant only after taking into account another interaction at the same
stage is relatively small. Additionally, it has to be remembered that no stepwise
regression procedure can guarantee the selection of the optimal model; to be sure,
models with all possible subsets of the considered extensions should be considered.
Also, extending multilevel models within stages, although widely used (Bliese, 2022;
Hox, 2010; Twisk, 2010), involves the risk of disregarding extensions that could
become important at some point in the construction of the model.

It is worth remembering that thanks to the use of such a simplification, the
number of models estimated successively during the forward stepwise regression
procedure, e.g. in the third stage, decreased from 400! to less than a thousand, and in
stage 8 instead of 86! multilevel models’, it was enough to estimate just over 100

7 Estimation of one multilevel model with a complexity level corresponding to stage 8 takes about 10
minutes, so it can be calculated that the estimation 86! such models would take many trillions of years.
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such models, which allowed the calculations to be carried out in a finite time. In this
context, the adoption of the above-mentioned simplification seems to be totally
justified.

6. Conclusions

In conclusion, it can be said that the procedure of model construction that has been
carefully thought over and the use of the proposed simplification in the forward
stepwise regression procedure allowed the calculations to be carried out in an
acceptable time. A discussion of the results obtained regarding the determinants of
commuting between gminas will be discussed in detail in a separate article.
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