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Abstract. Exploiting daily high-low range has become increasingly popular among volatility models due 

to valuable information about volatility dynamics. It has been shown in the literature that range-based 

volatility estimators can improve volatility and covariance forecasts, and thus models that use high and 

low prices can outperform standard volatility models solely based on closing prices. This paper 

incorporates a range-based volatility estimator in an extreme value theory framework to provide better 

estimates of the tails of daily asset returns. We introduce the Peaks over Threshold model with a range-

based volatility estimator depicting the volatility of extreme returns that can contribute to more accurate 

tail risk estimation. We evaluate the proposed model based on the Monte Carlo simulation and long-

period sample of the empirical financial time series by forecasting the Value-at-Risk and Expected 

Shortfall. We provide evidence that the proposed model can lead to better risk measure forecasts, 

especially for high tail probabilities. 
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1. Introduction 

 

Volatility plays an important role in many areas of economics and finance, where there are 

countless models and methods of estimating volatility. This topic still attracts many researchers, 

who want to find new ways of describing volatility, to better understand its behaviour, and to 

be able to leverage that in practice. The GARCH model is the most popular time-varying 

volatility model introduced by Engle (1982) and Bollerslev (1986). The GARCH models are 
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formulated solely on closing prices, whereas more accurate estimates of variance can be 

constructed from daily low and high prices (Parkinson, 1980). The use of high and low prices 

and volatility estimators constructed on the basis of the range of a maximum and minimum 

prices provided more accurate volatility models (see, e.g., Asai, 2013; Brandt & Jones, 2006; 

Chou, 2005; Fiszeder & Perczak, 2016; Fiszeder et al., 2023a, 2023b; Molnár, 2016; Xie, 2019). 

Daily low and high prices are almost always commonly available with closing prices for 

financial time series, therefore their application in volatility models is important from a practical 

point of view, and in most cases is relatively easy to implement. The application of such prices 

has also economic consequences (see Chou & Liu, 2010; Wu & Liang, 2011). All in all, the 

literature showing that range-based volatility models outperform models based on closing 

prices has recently been gaining popularity and expanding (see the reviews in Chou et al.; 2015; 

Fałdziński et al., 2023; Petropoulos et al., 2022). 

Extreme quantile estimation has been one of the main focuses of risk management for 

researchers and financial institutions, especially in the aftermath of the 2008 financial crisis. 

Effective risk forecasting plays a role of immense importance, not only in meeting regulatory 

requirements, but also to providing optimal capital allocation and investment decisions. For this 

purpose, several risk measures have been introduced that require extreme quantiles estimation, 

specifically in the left tail of the return distribution. It turns out that Value-at-risk (VaR) and 

Expected Shortfall (ES) are two of the most widely used risk measures in quantitative risk 

management. Many different VaR and ES forecasting models and methods have been proposed 

in the literature. They can be divided into four main groups: parametric, non-parametric, semi-

parametric and hybrid (see overviews for VaR in Abad et al., 2014; Nieto & Ruiz, 2016). 

Standard parametric methods that use an entire dataset for the estimation of the returns 

distribution are not the best choice for high-quantile estimation. In such cases, a model is fitted 

to the data better where most of the data points reside, and not surprisingly, it is the mid-regions 

of the distribution. On the other hand, for risk measures, we focus specifically on the extreme 

quantiles where there are a few observations, so we need more specialised approaches. 

The extreme value theory (EVT) is a probabilistic theory with the principal role of describing 

extreme observations and providing models and methods built specifically for such 

extraordinary observations and their dynamics. This theory focuses on the tails of the 

distribution by taking advantage of the limiting laws of extremes. The EVT has been applied to 

many areas in finance (see an overview in Candia & Herrera, 2024; Echaust & Just, 2020a, 

2020b; Herrera & Clements, 2020; Herrera & Schipp, 2013; Rocco, 2014), but its prevailing 



 

 

purpose is extreme quantiles estimation, as it is well suited to estimating and predicting the tails 

of the distribution, thus being a natural candidate for VaR and ES estimation. 

Fisher and Tippett (1928) and Gnedenko (1943) proved that the distribution of the extreme 

values that are i.i.d.1 for an unknown cumulative distribution function 𝐹 converges to a 

Generalized Extreme Value (GEV) distribution that comprises three distributions. 

Interestingly, the type of asymptotic distribution of extreme values does not entirely depend 

on the exact cumulative distribution function 𝐹. This major advantage of the EVT enables us, 

in a way, to ‘neglect’ the exact form of 𝐹.  

Another reason why EVT-based models and methods can be more accurate in estimating tail-

risk measures is that each tail of the distribution is estimated independently, hence being more 

flexible and taking into account possible skewness of the data2. The main criticism of the EVT, 

however, stems from the fact that the underlying probabilistic theory holds for i.i.d. samples, 

whereas financial time series are time-dependent. A naive application of the EVT to the raw 

time series of returns tends to produce poor estimates of the VaR and ES (see, for instance, 

Chavez-Demoulin et al., 2014). Consequently, there are two main approaches to modelling the 

tails of the time-varying conditional return distribution in the literature. First, we focus on an 

EVT-based model for standardised residuals, where the conditional mean and the conditional 

volatility are described by some other model (mainly a volatility model) () – presented for 

instance in McNeil & Frey (2000). This approach assumes that a volatility model removes the 

time dependence of a time series rendering standardised residuals i.i.d. The second approach 

involves modelling the behavior of extreme values directly and taking into consideration the 

dependence structure of the data (see, for instance, Chavez-Demoulin et al.,  Bee et al., 2019; 

Bień-Barkowska, 2020; Bień-Barkowska, 2024; Chavez-Demoulin et al., 2005; Chavez-

Demoulin et al., 2014; Tomlinson et al., 2024). This approach is commonly defined as the 

duration between consecutive extreme events, and it considers the magnitude of large losses 

occurring over a high threshold. Bień-Barkowska (2024) proposed a discrete-duration version 

of the autoregressive conditional duration peaks-over-threshold model, where duration between 

the extremes is treated as discrete. On the other hand, these approaches in most cases do not 

consider the possibility of time-varying parameters to capture short-term shocks during 

changing market conditions (see Fuentes et al., 2023). Attempts were made to overcome this 

                                                           
1 independent and identically distributed. 
2 Skewness in financial time series is one of the properties that are exhibited in such data (see Hansen, 
1994; Harvey & Siddique, 1999). 



 

 

limitation by using a class of score-driven models introduced by Creal et al. (2013), which have 

become increasingly popular in recent years.  

Researchers also tried to apply a score-driven model to extreme-events modelling. Massacci 

(2016) proposed a score-driven Generalized Pareto framework to model the magnitude of 

extremes using a one-factor model. Zhang and Schwaab (2016) criticized one-factor model as 

not justified empirically, and they introduced a score-driven framework based on two stages. 

Similarly, Bee et al. (2019) proposed a Peaks over Threshold approach based on realized 

measures obtained from intraday returns, including autoregressive terms using a score-driven 

framework. D’Innocenzo et al. (2024) also introduced a score-driven model with time-varying 

tail parameters, but with no pre-filtering for volatility. Lately, Fuentes et al. (2023) proposed a 

Marked Point Process model for extreme events with time-varying parameters, whose dynamics 

are functions of the observations through the score function of the predictive density and 

possibility to incorporate realized volatility measures. The use of realized volatility measures 

in the modelling framework has been gaining popularity in the literature recently (see, for 

instance; Bauwens & Xu, 2023; Bee et al., 2019; Yao et al., 2019). Empirical application of 

such approaches is limited, as it requires availability of intraday data, which is not common, 

and these type of data have other drawbacks (see for instance Fantazzini, 2011). 

This paper introduces an extension of the first approach by incorporating information from 

volatility of extreme returns into the EVT-based model. The motivation behind such an 

approach is that time-varying volatility of returns is an intrinsic property of financial time series, 

hence also extreme observations exhibit time-varying volatility. Therefore, extreme 

observations are not heterogeneous from a time point of view, and taking into account extreme 

time-varying volatility in an EVT-based model should be beneficial for tail-risk measures. We 

propose a model that uses a standard GARCH model to describe the conditional mean and 

variance and the Generalized Pareto Distribution (GPD) with the Parkinson estimates of the 

magnitudes of threshold exceedances to describe the dynamics of extreme values (referred to 

as the GARCH-GPD-P further in the text). 

We carry out the Monte Carlo simulation based on the stochastic volatility (SV) model and 

analyse how efficient the proposed model is for VaR and ES estimation compared to three 

benchmarks, i.e., the GARCH models with the normal (Gaussian) and t-distributed errors and 

the model proposed by McNeil and Frey (2000), i.e. the combination of the GARCH model and 

EVT-based Peaks over Threshold method with the GPD. Additionally, we perform an empirical 

analysis for a relatively large sample of stock indices, currencies and cryptocurrencies to study 

their usefulness in empirical cases. 



 

 

The paper further consists of: Section 2, describing the applied models (i.e. GARCH-GPD 

and the newly-proposed GARCH-GPD-P), Section 3, which provides information on Value-at-

Risk and the Expected Shortfall and their backtesting procedure, Section 4 that compares the 

GARCH-GPD-P model against three benchmarks by carrying out a Monte Carlo simulation to 

analyse the effects of their specifications on the Value-at-Risk and Expected Shortfall 

forecasting, and Section 5, comparing performance of the models to empirical financial time 

series, i.e. stock indices. The article’s conclusions and summary are provided in Section 6. 

 

2. Theoretical background 

 

2.1. GARCH models 

 

The GARCH model of Bollerslev (1986) is the most popular univariate volatility model, and it 

is based solely on closing prices. We apply this model in the paper as a benchmark for 

comparison reasons. The GARCH model describes the dynamics of the conditional variance of 

returns. 

Let us assume that the 𝜀𝑡 is the univariate innovation process for the conditional mean (or, in 

a particular case, the return process) and can be written as: 

 

𝜀𝑡|𝜓𝑡−1~𝑁(0, ℎ𝑡), (1) 

where 𝜓𝑡−1 is the set of all information available at time 𝑡 − 1, 𝑁 is the conditional normal 

distribution, and ℎ𝑡 is the conditional variance. The GARCH(1,1) model is the one most 

frequently used in empirical studies. It may be presented as: 

 

ℎ𝑡 = 𝛼0 + 𝛼1𝜀𝑡−1
2 + 𝛽1ℎ𝑡−1, (2) 

where 𝛼0 > 0, 𝛼1 ≥ 0, 𝛽1 ≥ 0. 

 

The parameters of the GARCH model can be estimated by the quasi-maximum likelihood 

(QML) method. The log-likelihood function can be written as: 

 

𝐿(𝜽) = −
𝑛

2
ln(2𝜋) −

1

2
∑ (lnℎ𝑡 +

𝜀𝑡
2

ℎ𝑡
) ,𝑛

𝑡=1     (3) 



 

 

where 𝜽 is a vector containing unknown parameters of the model, and 𝑛 is the number of daily 

observations used in the estimation. The estimates obtained by the QML method are consistent 

and asymptotically normal (see Bollersle & Wooldridge, 1992; Straumann, 2005; Weiss, 1986). 

 

Instead of the conditional normal distribution, the Student’s t-distribution can be applied to 

better describe fatter tails and leptokurtosis of unconditional distributions of many empirical 

financial time series (Bollerslev, 1987). The log-likelihood function (Bollerslev, 1987) can be 

written as: 

 

𝐿(𝜽) = ∑ (ln [Γ (
𝜐+1

2
)] − ln [Γ (

𝜐

2
)] −

1

2
ln[𝜋(𝜐 − 2)] −

1

2
ln(ℎ𝑡)𝑛

𝑡=1 −
𝜐+1

2
ln [1 +

𝜀𝑡
2

(𝜐−2)ℎ𝑡
]),(4) 

where Γ(∙) is the Gamma function and 𝜐 are the degrees of freedom parameter. To ensure that 

the second-order moment exists, the constraint 𝜐 > 2 is imposed. 

 

2.2. Peaks over Threshold (POT) Approach 

 

A natural choice for modelling extreme values is to focus on values that are in the tail of the 

distribution, i.e. the observations above some high threshold. In the Peaks over Threshold 

(POT) approach, we are interested in the exceedances over threshold 𝑢, conditional on the fact 

that 𝑢 is exceeded. Let 𝑋1, 𝑋2 … be a sequence of i.i.d. random variables, having a marginal 

distribution function 𝐹𝑢. As shown by Balkema and de Haan (1974) and Pickands (1975), the 

excess distribution over threshold 𝑢 corresponding to a random variable 𝑋 is 

 

𝐹𝑢(𝑥) = 𝑃(𝑋 − 𝑢|𝑋 > 𝑢) =
𝐹(𝑥+𝑢)−𝐹(𝑢)

1−𝐹(𝑢)
,    0 ≤ 𝑥 < 𝑥𝑠𝑢𝑝 − 𝑢,  (5) 

where 𝑥𝑠𝑢𝑝 = sup {𝑥 ∈ ℝ: 𝐹(𝑥) < 1}. The asymptotic distribution of 𝐹𝑢 is the GPD with shape 

parameter 𝛾 and scale parameter 𝜎: 

 

𝐺𝑃𝐷𝛾,𝜎 = {
1 − (1 + 𝛾

𝑥

𝜎
)

−
1

𝛾
, 𝛾 ≠ 0

1 − exp (−
𝑥

𝜎
) , 𝛾 = 0 

     (6) 

where 𝑥 ≥ 0 if 𝛾 ≥ 0 and 0 ≤ 𝑥 ≤ −𝜎/𝛾 if 𝛾 < 0 and 𝜎 > 0. When 𝛾 > 0, 𝐹𝑢 has a Pareto-

type upper tail with a tail index 1/ 𝛾. The assumption of i.i.d. is rather restrictive, but 



 

 

fortunately, Leadbetter et al. (1983) proved it for stationary random variables. An estimate of 

the tail probability can be obtained in the following way (McNeil & Frey, 2000): 

 

𝐻�̂�,�̂� = (1 + 𝛾
𝑥

�̂�
)

−
1

�̂�
    (7) 

where 𝛾 and �̂� are the estimates of the GPD parameters. 

 

This parametric approach consists of two steps: 

1. given a sample of 𝑋1, … , 𝑋𝑛, choose a threshold 𝑢 and set 𝑌𝑖 = 𝑋𝑖 − 𝑢, where 𝑖 = 1, … , 𝑁𝑢 

and 𝑁𝑢 denotes the number of extreme values above the threshold 𝑢, 

2. fit the GPD to the sequence 𝑌1, … , 𝑌𝑁𝑢
of exceedances to obtain estimates 𝛾, �̂� of the 

parameters 𝛾, 𝜎. 

 

The parameters of GPD can be estimated by a maximum likelihood (Hosking & Wallis, 1987; 

Smith, 1985) with the log-likelihood function: 

 

𝐿(𝛾, 𝜎) = −𝑁𝑢𝑙𝑛𝜎 − (1 + 1/𝛾) ∑ 𝑙𝑛(1 + 𝛾𝑦𝑖/𝜎)𝑁𝑢
𝑖=1    (8) 

provided (1 + 𝜎−1𝛾𝑦𝑖) > 0 for 𝑖 = 1, … 𝑁𝑢. Other estimation methods may be used, like 

probability-weighted moments (PWM) (Hosking et al., 1985). One drawback of the POT 

method is that the estimates of GPD are sensitive to the choice of threshold 𝑢. The choice of 

threshold 𝑢 involves a trade-off between bias and variance for the estimates. There are different 

methods of choosing the threshold – for instance, on the basis of the mean excess plot, by 

minimising the mean squared error of the estimator (see Beirlant et al., 1996; Jansen & de Vries, 

1991; Koedijk et al., 1990), or a widely-used approach that boils down to 10%–15% of the data 

points that fall in the tail of the distribution (see Smith, 1987). Chavez-Demoulin and Embrechts 

(2004) show that small variations in the value of the threshold typically have little impact on 

the estimation. 

 

2.3. GARCH-POT Approach 

 

The POT approach is sometimes called the unconditional Peaks over Threshold method, as we 

fit GPD directly to observations that are above threshold 𝑢, disregarding the potentially time-

varying mean and variance nature of the observations. The time-dependent structure of 

observations is assumed to be i.i.d., which in many cases is not true for financial time series. To 



 

 

circumvent this problem, McNeil and Frey (2000) proposed to filter the data by using the 

ARMA-GARCH model, and then to apply the POT approach to the standardised residuals that 

should be i.i.d. The main idea behind this method is the assumption that we are dealing with 

strictly stationary time series of the form 𝑟𝑡 = 𝜇𝑡 + ℎ𝑡
1/2

𝜀𝑡, with 𝜇𝑡 and ℎ𝑡 being the conditional 

mean, and variance and 𝜀𝑡 a strict white noise process of unknown distribution. This method 

will be further referred to in the text as GARCH-GPD, and involves two steps: 

1. estimate the ARMA-GARCH(1,1) model with normally distributed errors to model the 

conditional mean and variance and obtain the standardised residuals 𝜀�̃� = (𝑟𝑡 − 𝜇𝑡)/ℎ𝑡
1/2

; 

2. from the standardised residuals 𝜀�̃�, where 𝑡 = 1, … , 𝑛, obtain extremes residuals that are 

above a high threshold 𝑢, for which the exceedances are {𝜀�̃�: 𝜀�̃� > 𝑢}, and define threshold 

excesses as 𝜀�̌� = 𝜀�̃� − 𝑢, where 𝑖 = 1, … 𝑁𝑢; 

3. fit GPD distribution to the extreme standardised residuals, i.e. 𝜀�̌�~𝐺𝑃𝐷(𝛾, 𝜎) to obtain 

estimates �̂�0, �̂�1 and 𝛾. 

Importantly, Jalal and Rockinger (2008) show that even when the ARMA-GARCH model is 

misspecified, the GARCH-GPD approach provides good results, which indicates this method 

is relatively robust. The GARCH-GPD method has been present in the literature, and in most 

cases, has generated more accurate estimates of tails than other methods (see, Bali, 2007; Chan 

& Gray, 2006; Kuester et al., 2006). 

The use of volatility model is not limited to the standard GARCH(1,1) model, as other 

specifications may be used, for instance the asymmetric GARCH models, i.e. GJR (Glosten et 

al., 1993; Pagan & Schwert, 1990), EGARCH (Nelson, 1991) or RGARCH (Molnár, 2016), 

where lagged squared residuals are replaced with the range-based volatility estimator, or even 

a CARR model (Chou, 2005), a popular univariate volatility model based on a price range. 

 

2.4. GARCH-POT approach with GDP has a time-varying scale parameter 

 

The unconditional POT approach assumes that the extremes are stationary, so the parameters 

𝛾, 𝜎 are constant over time. This is likely not the case for financial time series, as the extreme 

values used for the POT method come from different groups that are above a given threshold 

𝑢. From an empirical point of view, volatility clustering is a major phenomenon behind financial 

time series, observing the grouping of high and low volatility across time. It means that clusters 

with high volatility will have more observations falling in the tail of the distribution, thus being 

more likely above threshold 𝑢 than other clusters. We could expect that extreme observations 



 

 

above threshold 𝑢 should be a part of high-volatility groups formed across the time frame and 

most likely distant in time from other groups. In EVT, this behavior is well known as the ability 

of extremes to create clusters. There are methods, like the extremal index (see, for instance, 

Embrechts et al., pp. 124–135, 2003; Ferro & Segers, 2003), to estimate how extreme 

observations form series. Figure 1 presents S&P returns with identified extreme values based 

on the 10th quantile of return distribution as a threshold. Not surprisingly, there are more 

extreme observations identified for the subperiods like 2008-2009 (financial crisis), 2011 

(sovereign crisis), or 2020 (COVID-19 outbreak), and less extreme observations for subperiods 

2006, 2014 or 2016–2017. In the literature, there are works employing a time-varying 

Generalized Pareto distribution with different covariates to model extremes (Bee et al., 2019; 

Chavez-Demoulin et al., 2005; Chavez-Demoulin et al., 2014; Massacci, 2016; Zhang & 

Schwaab, 2016), but these models describe extreme values and the dependence in the original 

data in a single framework. Modelling volatility itself has often proven to be a challenge; hence, 

it seems that modelling the conditional mean and the conditional variance together but 

separately from modelling extremes is a more appropriate approach. In this paper, we propose 

an extension of the GARCH-GPD model of McNeil and Frey, by extending GPD to include 

time-varying parameters to account for the dynamics of extreme observations. 

 

Figure 1. S&P daily returns with extreme values from 3rd January 2006 to 31st May 2023. Red dots 
indicate days for which a threshold set at the 10th quantile of distribution is not exceeded 

 
Source: author’s work based on the data from www.finance.yahoo.com site. 
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Following Coles (2001), the GPD with time-varying parameters 𝜎𝑖 and 𝛾𝑖 for a series of 

extremes 𝑥, where 𝑖 = 1, … , 𝑁𝑢 (the number of extremes) can be written as3: 

 

𝐺𝑃𝐷𝛾𝑖,𝜎𝑖
= {

1 − (1 + 𝛾𝑖
𝑥𝑖

𝜎𝑖
)

−
1

𝛾𝑖 , 𝛾𝑖 ≠ 0

1 − exp (−
𝑥𝑖

𝜎𝑖
) , 𝛾𝑖 = 0 

 ,   (9) 

where 𝑥𝑖 ≥ 0 if 𝛾𝑖 ≥ 0 and 0 ≤ 𝑥𝑖 ≤ −𝜎𝑖/𝛾𝑖 if 𝛾𝑖 < 0 and 𝜎𝑖 > 0. The time-varying shape 

parameter 𝛾𝑖 is some function 𝑓𝛾𝑖
 with a constant and covariates: 

 

𝛾𝑖 = 𝑓𝛾𝑖
(𝑿𝛾𝑖

′ 𝜸),     (10) 

where 𝑿𝛾𝑖

′ = [1, 𝑿𝛾𝑖,1
′ , … , 𝑿𝛾𝑖,𝑙

′ ] is a vector of covariates and 𝜸 = [𝛾0, 𝛾1, … , 𝛾𝑙] is a vector of 𝑙 

parameters to be estimated. 

 

Time-varying scale parameter 𝜎𝑖 is some function 𝑓𝜎𝑖
 with a constant and covariates: 

 

𝜎𝑖 = 𝑓(𝑿𝜎𝑖

′ 𝝈),   (11) 

where 𝑿𝜎𝑖

′ = [1, 𝑿𝜎𝑖,1
′ , … , 𝑿𝜎𝑖,𝑘

′ ] is a vector of covariates, and 𝝈 = [𝜎0, 𝜎1, … , 𝜎𝑘] is a vector of 

𝑘 parameters to be estimated. The parameters of time-varying GPD can be estimated by a 

maximum-likelihood method with the following log-likelihood function (see, Coles, 2001): 

 

𝐿(𝛾𝑖, 𝜎𝑖) = −𝑁𝑢𝑙𝑛𝜎𝑖 − (1 + 1/𝛾𝑖) ∑ 𝑙𝑛(1 + 𝛾𝑖𝑦𝑖/𝜎𝑖)𝑁𝑢
𝑖=1 ,   (12) 

provided (1 + 𝜎𝑖
−1𝛾𝑖𝑦𝑖) > 0 for 𝑖 = 1, … 𝑁𝑢. 

 

The simplest case of 𝐺𝑃𝐷𝛾𝑖,𝜎𝑖
 is when there is only a constant for both shape and scale 

parameters, thus it reduces to the classical GPD given in (6). The question arises as to what 

covariates and functions 𝑓𝛾𝑖
, 𝑓𝜎𝑖

 should be specified to model time-varying parameters. It is 

usually difficult to estimate time-varying shape parameter 𝛾, so, advisably, it should be kept 

constant to stabilise the results (see Chavez-Demoulin et al., 2005). It means that we are going 

to consider the idea of the time-varying scale parameter 𝜎𝑖 only. A natural choice for 𝑓𝜎𝑖
 can be 

a linear additive or logarithmic function, where the latter ensures that 𝜎𝑖 is always positive. 

                                                           
3 It is worth emphasizing that 𝑖 here denotes time for the extremes and not the time for all observations 
of the underlying process. 



 

 

A more important decision to be made is with covariates, as these should, in theory, describe 

the dynamic behaviour of extreme observations. We propose to use a range-based estimator that 

can describe return volatility relatively accurately due to the use of high and low prices. A range-

based estimator can show the correct volatility, especially on turbulent days with drops and 

recoveries in the markets, while the traditional close-to-close volatility indicates a low level. It 

should be even more pronounced for extreme observations, as these occur when market 

volatility is particularly high. We propose to use the Parkinson volatility estimator (Parkinson, 

1980) in the form of  

 

𝜎𝑃,𝑖
2 = [𝑙𝑛(𝐻𝑖/𝐿𝑖)]2/(4ln2),    (13) 

where 𝐻𝑖 and 𝐿𝑖 are the high and low prices at a given day 𝑖. In the literature, there is growing 

evidence that the use of range-based volatility estimators can lead to more accurate conditional 

volatility and covariance estimates and forecasts, in both univariate (Asai, 2013; Brandt & 

Jones, 2006; Chou, 2005; Fałdziński et al., 2024; Fiszeder & Perczak, 2016; Molnár, 2012, 

2016) and multivariate frameworks (Asai, 2013; Chou & Cai, 2009; Chou et al., 2009; Fiszeder 

et al., 2019; Fiszeder et al., 2023a, 2023b; Su & Wu, 2014). Moreover, there are range-based 

volatility models (based on range instead of returns) that outperform classical models based on 

closing prices (see the reviews in Chou et al., 2015; Petropoulos et al., 2022). Different 

estimators based on daily low, high, or additionally open and closing prices can be employed 

(Garman & Klass, 1980; Rogers & Satchell, 1991; Yang & Zhang, 2000). The Garman-Klass 

estimator is sensitive to microstructure effects associated with low liquidity during the start of 

quotations, and Molnár (2016) showed that the Garman-Klass estimator does not improve 

results compared to the Parkinson estimator. On the other hand, the Rogers-Satchell estimator 

can take a zero value despite the high volatility during the day. It happens when the opening 

price is equal to the low price and the closing price is equal to the high price or vice versa, i.e., 

the opening price is equal to the high price and the closing price is equal to the low price. The 

Yang-Zhang estimator requires estimating an additional parameter and assumes constant 

variance over time, which is untrue. Moreover, the Yang-Zhang estimator cannot be estimated 

for a single day. For these reasons, we focus here on the Parkinson estimator. 

 

Figure 2. S&P 500 extreme observations and Parkinson volatility estimates that are ordered 
consecutively 



 

 

 
Source: author’s work based on the data from www.finance.yahoo.com site. 
 

To justify the use of the range-based estimator, Figure 2 presents the Parkinson daily volatility 

estimates associated with extreme observations found for the S&P 500 index from the time 

range presented in Figure 1, where extremes are ordered as they occurred in time (in total there 

are 438 extreme observations). The red solid line illustrates extreme returns, and the blue solid 

line Parkinson's volatility estimates. High and low Parkinson volatility estimates are concurrent 

with high and low extreme daily returns identified and it seems to provide a good approximation 

of daily extreme-returns volatility. Therefore, we propose the following time-varying scale 

equation 𝜎𝑖 for GPD: 

 

𝜎𝑖 = 𝜎0 + 𝜎1𝜎𝑃,𝑖
2  where 𝑖 = 1, … , 𝑁𝑢    (14) 

where 𝜎0 > 0 and 𝜎1 ≥ 0 to ensure that 𝜎𝑖 is positive. It is worth noting that the Parkinson's 

volatility estimates 𝜎𝑃,𝑖
2  are contemporaneous with extreme residuals. It is possible to consider 

the past Parkison volatility estimates, but concurrent values to extreme returns should be 

preferred as the contemporaneous values are available at a given time 𝑖 and should provide a 

better fit than the past ones. In this regard, it is worth noting that extremes are a sub-sample of 

available observations. 

 

The proposed method will be referred to further in the text as GARCH-GPD-P, and consists 

of the following steps: 
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1. estimate the ARMA-GARCH(1,1) model to obtain both the conditional mean 𝜇𝑡 and 

conditional variance ℎ𝑡; 

2. obtain the standardised residuals 𝜀�̃� = (𝑟𝑡 − 𝜇𝑡)/ℎ𝑡
1/2

; 

3. from the standardised residuals 𝜀�̃�, where 𝑡 = 1, … , 𝑛 obtain extremes residuals that are above 

a high threshold 𝑢, for which the exceedances are {𝜀�̃�: 𝜀�̃� > 𝑢}, and define threshold excesses 

as 𝜀�̌� = 𝜀�̃� − 𝑢, where 𝑖 = 1, … 𝑁𝑢; 

4. fit GPD distribution to the extreme standardized residuals, i.e. 𝜀�̌�~𝐺𝑃𝐷(𝛾, 𝜎𝑖) where 𝜎𝑖 =

𝜎0 + 𝜎1𝜎𝑃,𝑖
2  and 𝜎𝑃,𝑖

2  is the Parkinson estimator at observation 𝑖 (noting that 𝑖 ≤ 𝑛) to obtain 

estimates �̂�0, �̂�1 and 𝛾. 

The GPD and GPD-P method rely on extremes as a sub-sample of all observations above a 

threshold 𝑢. Given two samples that imperfectly overlap with each other, the sub-samples of 

extremes above threshold may have a perfect overlap, some overlap or, in edge case, no overlap 

in extremes. Consequently, the GPD-P estimates are based on the sub-sample of observations 

that is deemed as extreme at a particular time. 

The proposed framework GARCH-GPD-P can be concisely formulated as: 

 

𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡, 𝜀𝑡|𝜓𝑡−1~𝑁(0, ℎ𝑡), 𝑡 = 1, … , 𝑛   (15) 

 

  ℎ𝑡 = 𝛼0 + 𝛼1𝜀𝑡−1
2 + 𝛽1ℎ𝑡−1, (16) 

 

𝜀�̃� = (𝑟𝑡 − 𝜇𝑡)/ℎ𝑡
1/2

      (17) 

 

𝜀�̌� = 𝜀�̃� − 𝑢, for 𝑖 = 1, … 𝑁𝑢 where {𝜀�̃�: 𝜀�̃� > 𝑢}   (18) 

 

𝜀�̌�~𝐺𝐷𝑃(𝛾, 𝜎𝑖), where 𝜎𝑖 = 𝜎0 + 𝜎1𝜎𝑃,𝑖
2  .   (19) 

 

3. Value-at-Risk and Expected Shortfall 

 

3.1. Value-at-Risk and Expected Shortfall estimation 

 

Tail-based risk measures such as the Value-at-Risk (VaR) and the Expected Shortfall (ES) are 

mostly used in quantitative risk management, from the perspective of the regulatory and 

financial institution. The Basel Accords explicitly use VaR and ES as risk measures and oblige 



 

 

financial institutions to implement and report them to monitor risk and determine the amount 

of capital that is subject to regulatory supervision. 

Let 𝛼 ∈ [0,1] denote the coverage level (or probability level). The 𝛼 level VaR is defined as 

𝑉𝑎𝑅𝑡(𝛼) = 𝑃(𝑟𝑡 ≤ −𝑉𝑎𝑅𝑡) = 𝛼, so the 𝑉𝑎𝑅𝑡(𝛼) is the 𝛼 quantile of the 𝑟𝑡 returns distribution 

that is negative. The VaR has been criticised for not being able to show the average potential 

loss but only whether losses are larger than the VaR. This was one of the reasons why the ES 

has been proposed to measure the size and the likelihood of losses, unlike VaR. ES is defined 

as the expected loss given that the loss is greater than VaR, and it may be written as 𝐸𝑆𝑡(𝛼) =

−𝐸[−𝑟𝑡 > 𝑉𝑎𝑅𝑡(𝛼)]. A more useful representation of 𝐸𝑆𝑡(𝛼) is as follows: 

 

𝐸𝑆𝑡(𝛼) =
1

𝛼
∫ 𝑉𝑎𝑅𝑡(𝑢)

𝛼

0
𝑑𝑢.     (20) 

 

𝐸𝑆𝑡(𝛼) comprises information from the left tail of the returns distribution, by integrating VaR 

from 0 to 𝛼. In practice, risk managers specify parametric conditional versions of VaR and ES. 

For the GARCH model, VaR and ES are given by: 

 

𝑉𝑎𝑅𝑡,𝑐𝑜𝑛𝑑(𝛼) = −𝜇𝑡 − √ℎ𝑡𝐹−1(𝛼),    (21) 

 

𝐸𝑆𝑡,𝑐𝑜𝑛𝑑(𝛼) = −𝜇𝑡 − √ℎ𝑡𝑚(𝛼), 𝑚(𝛼) = 𝐸[𝜀𝑡|𝜀𝑡 ≤ 𝐹−1(𝛼)],   (22) 

where 𝐹−1(𝛼) is the 𝛼-quantile of the inverse cumulative distribution function. In this paper, 

we are using the normal distribution and Student’s t-distribution function with 𝜐 degrees of 

freedom. The driving force behind the VaR and ES estimates variability is the conditional 

variance (see So & Yu, 2006), as the conditional mean is, in most cases, close to zero (or 

omitted) and 𝛼-quantile of the inverse cumulative distribution function used as a constant value 

(for instance for the normal distribution it is -1.64 at a 5% probability level). Thus, to obtain 

better estimates of VaR and ES, we can only achieve it by improving variance estimates, as a 

quantile from the normal or Student’s t-distribution is constant at a given probability. 

 

To obtain the VaR and ES with the GPD approach, we need an inverse of the cumulative GPD 

function given by equation (7) and the 𝛾 and �̂� estimates. Then, the unconditional VaR and ES 

with GPD (following McNeil & Frey, 2000) are given as: 

 



 

 

𝑉𝑎𝑅𝑢𝑛𝑐(𝛼) = �̂� +
�̂�

�̂�
[(

𝑛

𝑁𝑢
𝛼)

−�̂�

− 1],    (23) 

 

𝐸𝑆𝑢𝑛𝑐(𝛼) =
𝑉𝑎𝑅𝑢𝑛𝑐(𝛼)

1−�̂�
+

�̂�−�̂�𝑢

1−�̂�
 ,    (24) 

where �̂� is the threshold estimate, 𝑛 is the number of observations and 𝑁𝑢 is the number of 

extremes. 

 

Consequently, the unconditional VaR and ES with time-varying 𝐺𝑃𝐷𝛾𝑖,𝜎𝑖
 can be written as: 

 

𝑉𝑎𝑅𝑢𝑛𝑐(𝛼) = �̂� +
�̂�𝑖

�̂�𝑖
[(

𝑛

𝑁𝑢
𝛼)

−�̂�𝑖

− 1],    (25) 

 

𝐸𝑆𝑢𝑛𝑐(𝛼) =
𝑉𝑎𝑅𝑢𝑛𝑐(𝛼)

1−�̂�𝑖
+

�̂�𝑖−�̂�𝑖𝑢

1−�̂�𝑖
,    (26) 

where �̂�𝑖 and 𝛾𝑖 are estimates of 𝜎𝑖 and 𝛾𝑖 for 𝑖 = 1, … 𝑁𝑢. In the proposed framework, we are 

using the latest available extreme for the unconditional VaR and ES calculation, i.e. for 𝑖 = 𝑁𝑢. 

For VaR and ES calculation when a new extreme observation is available, VaR and ES estimates 

are impacted not only by the change in the conditional mean and the conditional variance, but 

also by the change in scale parameter �̂�𝑖 through the change in the GPD-P quantile. 

 

The conditional one-day-ahead VaR and ES with the GARCH-GPD and GARCH-GPD-P 

approaches are given by: 

 

𝑉𝑎𝑅𝑡+1,𝑐𝑜𝑛𝑑(𝛼) = −𝜇𝑡+1 − √ℎ𝑡+1𝑉𝑎𝑅𝑢𝑛𝑐(𝛼),    (27) 

 

𝐸𝑆𝑡+1,𝑐𝑜𝑛𝑑(𝛼) = −𝜇𝑡+1 − √ℎ𝑡+1𝐸𝑆𝑢𝑛𝑐(𝛼),     (28) 

where 𝜇𝑡+1 and ℎ𝑡+1 are the one-day-ahead forecasts of the conditional mean and the 

conditional variance of returns, respectively. 

 

The advantage of GPD and time-varying GPD-P stems from the fact that the unconditional 

VaR and ES are tail-based estimates depending on parameter estimates for GPD and GDP-P, 

respectively. The difference between GPD and time-varying GPD-P is that the latter takes into 

account the magnitudes of threshold exceedances measured by the Parkinson estimator, thus 

we can expect more accurate estimates of the unconditional VaR and ES, as the variability of 



 

 

extremes should be described more accurately by the time-varying scale 𝜎𝑖 parameter. In other 

words, to obtain better VaR and ES estimates for the GARCH-GPD or GARCH-GPD-P, we can 

improve either or both the conditional variance and tail-based estimates from the GPD or GPD-

P. 

 

3.2. Value-at-Risk and Expected Shortfall backtesting 

 

There is already a wide spectrum of methods and models to estimate tail-based risk measures, 

like VaR and ES. The evaluation of forecasting accuracy is of great importance when it comes 

to risk measures, for practitioners and regulatory institutions, to ensure that financial institutions 

have adequate capital to deal with large unexpected losses. The literature provides information 

on many various ways to assess the accuracy of VaR estimates by developing statistical tests, 

methods and measures known as backtesting. We can divide backtesting methods into three 

categories: a) statistical tests verifying the validity of VaR assumptions, b) measures to assess 

VaR accuracy, and c) statistical tests to determine which of the competing models are superior 

to others. 

The hit variable (or violation variable) associated with the ex-post observation of a 𝑉𝑎𝑅𝑡(𝛼) 

at time 𝑡, denoted 𝐼𝑡(𝛼) is defined as: 

 

𝐼𝑡(𝛼) = 𝟏(𝑟𝑡 ≤ −𝑉𝑎𝑅𝑡(𝛼))     (29) 

where 𝟏(∙) is the indicator function. Kupiec (1995) shows that to assess VaR validity it is 

possible to test whether the hit sequence 𝐼𝑡(𝛼) follows two conditions: a) unconditional 

coverage (UC) 𝑃[𝐼𝑡(𝛼) = 1] = 𝐸[𝐼𝑡(𝛼)] = 𝛼, and b) independence property (IND) that the 

variable 𝐼𝑡(𝛼) has to be independent of the variable 𝐼𝑡−𝑘(𝛼), ∀𝑘 ≠ 0. These two conditions are 

necessary but not sufficient of the VaR definition. The most popular backtesting test 

`s are: the unconditional coverage 𝐿𝑅𝑈𝐶  proposed by Kupiec (1995) and the independence 

𝐿𝑅𝑖𝑛𝑑 and conditional coverage 𝐿𝑅𝐶𝐶 tests by Christoffersen (1998). It has been documented 

that these tests exhibit law power (see de la Pena et al., 2007; Pérignon & Smith, 2008; Pritsker, 

2006). Alternatively, Candelon et al. (2011) proposed the unconditional, independence and 

conditional coverage tests (denoted here as 𝐽𝑈𝐶 , 𝐽𝐼𝑁𝐷 and 𝐽𝐶𝐶 , respectively) based on the duration 

of the hit sequence and showed that their GMM-based tests are of greater statistical power than 

classically used ones. Additionally, they encourage obtaining simulated p-values instead of 

asymptotic ones, by applying Dufour’s approach (Dufour, 2006) to ensure the correct test size. 



 

 

Besides testing the hit process, loss functions can be used to select a model that produces 

accurate Value-at-Risk estimates. Lopez (1998) suggested measuring the accuracy of VaR 

forecasts by the distance between observed returns and forecasted VaR. A model is penalized if 

a violation takes place and is preferred to another one because it gives a lower loss value. In the 

general form, Lopez proposes the following formula: 

 

𝐿𝐹𝑡 = {
𝑓(𝑟𝑡, 𝑉𝑎𝑅𝑡(𝛼)) if 𝑟𝑡 < −𝑉𝑎𝑅𝑡(𝛼)
𝑔(𝑟𝑡, 𝑉𝑎𝑅𝑡(𝛼)) if 𝑟𝑡 ≥ −𝑉𝑎𝑅𝑡(𝛼)

    (30) 

where 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are such that 𝑓(𝑥, 𝑦) ≥ 𝑔(𝑥, 𝑦). The best model is the one that 

minimizes 𝐿𝐹 = ∑ 𝐿𝐹𝑡
𝑇
𝑡=1 . Lopez in 1998 proposed the following loss measure: 

 

𝑅𝐿𝐹(𝐿) = {
1 + (𝑉𝑎𝑅𝑡 − 𝑟𝑡)2 if 𝑟𝑡 < −𝑉𝑎𝑅𝑡

0 if 𝑟𝑡 ≥ −𝑉𝑎𝑅𝑡
    (31) 

 

Sarma et al. (2003) and Caporin (2008) proposed loss functions from two perspectives: the 

regulator’s loss function (RLF) and the Firm’s Loss Function (FLF). 

 

𝑅𝐿𝐹(𝑆𝑇𝑆) = {
(𝑟𝑡 − 𝑉𝑎𝑅𝑡)2 if 𝑟𝑡 < −𝑉𝑎𝑅𝑡

0 if 𝑟𝑡 ≥ −𝑉𝑎𝑅𝑡
     (31) 

 

𝑅𝐿𝐹(𝐶1) = {
|1 − |

𝑟𝑡

𝑉𝑎𝑅𝑡
||  if 𝑟𝑡 < −𝑉𝑎𝑅𝑡

0 if 𝑟𝑡 ≥ −𝑉𝑎𝑅𝑡

    (32) 

 

𝑅𝐿𝐹(𝐶2) = {

(|𝑟𝑡|−|𝑉𝑎𝑅𝑡|)2

𝑉𝑎𝑅𝑡
 if 𝑟𝑡 < −𝑉𝑎𝑅𝑡

0 if 𝑟𝑡 ≥ −𝑉𝑎𝑅𝑡

    (33) 

 

𝑅𝐿𝐹(𝐶3) = {
|𝑟𝑡 − 𝑉𝑎𝑅𝑡| if 𝑟𝑡 < −𝑉𝑎𝑅𝑡

0 if 𝑟𝑡 ≥ −𝑉𝑎𝑅𝑡
    (34) 

 

𝐹𝐿𝐹(𝑆𝑇𝑆) = {
(𝑟𝑡 − 𝑉𝑎𝑅𝑡)2 if 𝑟𝑡 < −𝑉𝑎𝑅𝑡

−𝑜𝑐𝑜𝑐𝑉𝑎𝑅𝑡 if 𝑟𝑡 ≥ −𝑉𝑎𝑅𝑡
, ococ  is the opportunity cost of capital (35) 

 

𝐹𝐿𝐹(𝐶1) = |1 − |
𝑟𝑡

𝑉𝑎𝑅𝑡
||     (36) 



 

 

 

𝐹𝐿𝐹(𝐶2) =
(|𝑟𝑡|−|𝑉𝑎𝑅𝑡|)2

𝑉𝑎𝑅𝑡|
     (37) 

 

𝐹𝐿𝐹(𝐶3) = |𝑟𝑡 − 𝑉𝑎𝑅𝑡|     (38) 

 

Şener et al. (2012) propose a loss function that penalizes the magnitude of the errors, the 

autocorrelation between the errors, and excessive capital allocations. The penalization measure 

is of the form: 

 

𝑃𝑀(𝜑, 𝑉𝑎𝑅) =
1

𝑇∗
[(1 − 𝜑)𝑃𝑀𝑉𝑆 + 𝜑𝑃𝑀𝑆𝑆]     (39) 

where 𝑃𝑀𝑉𝑆 and 𝑃𝑀𝑆𝑆 is the penalization measure for the violation space and the safe space, 

respectively, 𝜑 is the weighting parameter and 𝑇∗ is the number of all negative returns. The 

weighting parameter 𝜑 is assumed to be set to the coverage level 𝛼, thus violations have more 

importance than non-violations which is expected from the regulator’s and financial institution 

perspectives. The penalization measure for the violation space 𝑃𝑀𝑉𝑆 can be written as: 

 

𝑃𝑀𝑉𝑆 = ∑ ∑
1

𝑑𝑖,𝑖+𝑗
(∏ (1 + 𝑙𝑓𝑘,𝑖)

𝑙𝑖
𝑘=1 ∏ (1 + 𝑙𝑓𝑘,𝑖+𝑗)

𝑙𝑖+𝑗

𝑘=1 − 1)
𝑛𝑐
𝑗=1

𝑛𝑐−1
𝑖=1    (40) 

where 𝑙𝑓𝑡 = (𝑉𝑎𝑅𝑡(𝛼) − 𝑟𝑡) given 𝑟𝑡 < −𝑉𝑎𝑅𝑡(𝛼), 𝑛𝑐 is the number of violation clusters, 

𝑑𝑖,𝑖+𝑗 is the time between 𝑖-th and 𝑗-th violations clusters and 𝑙𝑖 is the length of violation cluster 

𝑖. 

 

The penalization measure for the violation space 𝑃𝑀𝑉𝑆 focuses on the magnitude of 

unexpected losses and clusters of unexpected losses (autocorrelation) and is calculated only for 

violations. On the other hand, the penalization measure for the safe space 𝑃𝑀𝑆𝑆 may be given 

as: 

 

𝑃𝑀𝑆𝑆 = ∑ (𝑟𝑡 − 𝑉𝑎𝑅𝑡(𝛼))[𝟏(𝑟𝑡 > 𝑉𝑎𝑅𝑡(𝛼)|𝑟𝑡 < 0)]𝑇
𝑡=1     (41) 

where 𝟏 is the indicator function and 𝑇 is the number of all observations for which VaR forecasts 

have been obtained. This measure takes into account excessive capital allocation for returns that 

are not a violation and are negative. The idea behind the penalization measure is to have the 

flexibility to capture both the regulator’s and risk manager’s perspectives while being able to 

give different weights to each. 



 

 

 

Furthermore, to determine which of the competing models produces superior VaR estimates: 

Sarma et al. (2003) proposed to use the Diebold and Mariano test (Diebold & Mariano, 1995), 

and Şener et al. (2012) introduced a predictive ability test for the penalization measure 

𝑃𝑀(𝜑, 𝑉𝑎𝑅) that does not require a benchmark model, thus allowing for the simultaneous 

comparison of several models. The test is based on White’s framework (White, 2000) as an 

extension of Diebold and Mariano test. The null hypothesis states that the loss series generated 

by any chosen forecasting method is statistically no worse than the others. 

When it comes to backtesting of Expected Shortfall, the situation is quite different from 

Value-at-Risk, where the literature is scarce in this regard. More recently, Du and Escanciano 

(2016) introduced the unconditional 𝐷𝐸𝑈𝐶  and the conditional 𝐷𝐸𝐼𝑁𝐷 tests based on cumulative 

violations sequence. The cumulative violation process is defined as 

 

𝐻𝑡(𝛼) =
1

𝛼
∫ 𝐼𝑡(𝑢)𝑑𝑢

𝛼

0
    (42) 

where 𝐻𝑡(𝛼) has mean equal to 𝛼/2. Then, the unconditional backtest 𝑈𝐶𝐸𝑆 is a t-test for the 

hypothesis 𝐸[𝐻𝑡(𝛼)] = 𝛼/2. The test statistic is given by: 

 

𝐷𝐸𝑈𝐶 =
√𝑛𝑓(�̅�(𝛼)−𝛼/2)

√𝑉𝑎𝑟(𝐻𝑡(𝛼))
~𝑁(0,1)   (43) 

where �̅�(𝛼) denotes the sample mean of 𝐻𝑡(𝛼), 𝑛𝑓 is the number of ES estimates and 

𝑉𝑎𝑟(𝐻𝑡(𝛼)) is the variance of 𝐻𝑡(𝛼) with the standard normal asymptotic distribution 𝑁(0,1). 

The conditional backtest of independence 𝐷𝐸𝐼𝑁𝐷 is based on the lag-𝑗 autocovariance and 

autocorrelation of 𝐻𝑡(𝛼) for 𝑗 ≥ 0 that are defined as follows: 

 

𝑐𝑜𝑣𝑛𝑓,𝑗 =
1

𝑛𝑓−𝑗
∑ (𝐻𝑡(𝛼) − 𝛼/2)(𝐻𝑡−𝑗(𝛼) − 𝛼/2)

𝑛𝑓

𝑡=1+𝑗
 and 𝜌𝑛𝑓,𝑗 =

𝑐𝑜𝑣𝑛𝑓,𝑗

𝑐𝑜𝑣𝑛𝑓,0
  (44) 

 

The test statistic is given as: 

 

𝐷𝐸𝐼𝑁𝐷(𝑚) = 𝑛𝑓 ∑ �̂�𝑛𝑓,𝑗
𝑚
𝑗=1      (45) 

where �̂�𝑛𝑓,𝑗 is the sample estimate of 𝜌𝑛𝑓,𝑗 with the limiting chi-square distribution 𝜒𝑚
2  with 𝑚 

degrees of freedom. 

 



 

 

4. Monte Carlo simulation 

 

We conduct a Monte Carlo simulation to analyse the finite sample properties of the proposed 

model, i.e. the GARCH-GPD-P versus the competing models (the GARCH model with 

normally and Student’s t-distributed errors denoted as GARCH-n and GARCH-t, respectively, 

and McNeil and Frey’s GARCH-GPD). We choose the stochastic volatility (SV) model as the 

data-generating process due to its flexibility, and quite often this model is used for simulation 

purposes in the literature (see for instance Alizadeh et al., 2002; Buescu et al., 2013; Molnár, 

2016; Shu & Zhang, 2006). The main advantage of the SV model over the GARCH model is 

that it assumes two innovation processes (for the conditional mean and the conditional 

volatility). In the SV model, the volatility is a random variable, hence this model can be more 

flexible than the GARCH model. It is believed that the SV model is more effective in describing 

empirical properties of financial time series (see Danielsson, 1994; Kim et al., 1998). Assuming 

the SV model as the data generating process does not favour any of the competing models. 

Daily volatility is simulated by the stochastic volatility model that can be given as (see 

Melino & Turnball, 1990; Taylor, 1990): 

 

𝑙𝑛(𝑃𝑡/𝑃𝑡−1) = 𝜇𝑠𝑣,𝑡 + 𝜎𝑠𝑣,𝑡𝜀𝑡 ,   (46) 

 

𝑙𝑛(𝜎𝑠𝑣,𝑡
2 ) = 𝛼𝑠𝑣 + 𝜙𝑠𝑣𝑙𝑛𝜎𝑠𝑣,𝑡−1

2 + 𝜎𝜂𝜂𝑡,    (47) 

where 𝜀𝑡 and 𝜂𝑡 are mutually independent and i.i.d. following the normal distribution with zero 

mean and unit variance 𝑁(0,1). We assume the following set of values for the parameters: 

𝜇𝑠𝑣,𝑡 = 0.001, 𝛼𝑠𝑣 = 0.02, 𝜙𝑠𝑣 = 0.95 and 𝜎𝜂
2 = 0.065 that are consistent with the empirically 

observed values for the stochastic volatility model. As we need to obtain not only daily close 

prices but also low and high prices, we simulate intraday price paths following the geometric 

Brownian motion based on the simulated daily volatility and mean from the stochastic volatility 

model. 

 

We simulate 1,600 daily price paths with their volatilities following the SV model (Equations 

46 and 47) where for each day we generate 100,000 intraday prices based on the geometric 

Brownian motion. The first 100 observations are dropped to remove the impact of the starting 

values. Then, we use the next 500 observations (so from 101 to 600) to estimate the parameters 

of all four competing models (the GARCH-n, GARCH-t, GARCH-GPD and GARCH-GDP-



 

 

P). This step includes obtaining the Parkinson volatility estimates based on simulated high and 

low prices and estimating the conditional VaR and ES for the next day by Equations (21), (22), 

(27) and (28), where one-day-ahead forecasts of the conditional mean and the conditional 

volatility are used. For the GARCH-GPD and the GARCH-GPD-P models, we set the threshold 

as the 12% cut-off point of the most negative standardised residuals. The threshold was set 

based on the mean excess plot for the empirical times series used in section 3. We repeat this 

process for each next day by applying the rolling window approach, where one observation 

from the beginning of the sample is removed and one observation is added to the end of the 

sample, thus having a fixed size of 500 observations in the sample. This way, we obtain 1,000 

VaR and ES daily estimates for one iteration of the simulation. These 1,000 VaR and ES 

estimates are backtested using methods and measures described in subsection 3.2 for 5% and 

10% coverage levels. Lastly, we repeat the process above 1,000 times, which is the number of 

iterations in the Monte Carlo simulation. The final results presented in the paper are the 

averages for all 1,000 iterations. All in all, we obtain and evaluate 1,000,000 VaR and ES 

estimates as a basis for the backtesting procedures. 

 

4.1. Evaluation of models based on the Monte Carlo simulation 

 

For in-sample comparisons, we are going to focus on the results of two models, i.e. the 

GARCH-GPD and GARCH-GPD-P, as the GARCH-n and GARCH-t models are benchmarks 

for risk measure purposes. As described in Section 4, the parameters of all models are estimated 

1,000 times for each of the 1,000 repetitions of the Monte Carlo simulation based on the rolling 

window approach. For all repetitions, we compute the average and standard deviation of the 

estimated parameters and the robust standard errors which are presented in Table 1. Scale 

parameter 𝜎 for the GPD and 𝜎1 for the GPD-P are highly significant. Moreover, the constant 

scale parameter for the GPD-P model is considerably lower than the 𝜎 scale parameter for the 

GPD. We perform the likelihood ratio test for each estimated model for all repetitions and the 

average values are presented in Table 1. The null hypothesis is rejected even at a high 

significance level indicating that the GPD-P model is better fitted to the extreme observations 

than the GPD model. It means that the information comprised of high and low prices associated 

with extreme observations provides considerable insight into the dynamic behaviour of the 

extremes. 

The out-of-sample analysis involves the evaluation of the VaR and ES forecasts at 5% and 

10% probability levels. For each repetition in the simulation, we evaluate the 1,000 obtained 



 

 

VaR and ES forecasts and we backtest them by testing their statistical properties, calculating 

the loss measures and testing the superiority of the VaR forecasts against the others. We repeat 

this process for all 1,000 iterations and compute the average of the obtained results. 

 

Table 1. The results of the parameter estimates for the GPD and GPD-P for Monte Carlo simulation 

Statistics 
GPD GPD-P LM 

p-value 𝜎 𝛾 ln L 𝜎0 𝜎1 𝛾 ln L 

Mean 
0.6475* 
(0.1169) 

-0.0922 
(0.1139) 

-
27.361

6 

0.1171 
(0.0448) 

0.0590* 
(0.0175) 

-0.2181* 
(0.1091) 

-
4.6664 

0.000
0* 

St. dev. 
0.1169 

(0.0310) 
0.1139 

(0.0274) 
7.0
713 

0.2708 
(0.0658) 

0.0533 
(0.0591) 

0.1074 
(0.0872) 

6.9
171 

0.003
2 

Note. * indicates that the null hypothesis is rejected at a 5% significance level, the robust Huber-White 
standard errors are reported in parentheses, St. dev. - the standard deviation, ln L - logarithm of the 
likelihood function, LM p-value is the p-value from the likelihood ratio test based on the logarithm of the 
likelihood function for GPD vs GPD-P. 
Source: author’s work. 
 
Table 2. The results of backtesting tests for VaR(10%) and VaR(5%) based on the Monte Carlo 
simulation 

VaR 
coverage 

level 
Statistic 

GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

p-value p-value p-value p-value 

10% 

LRUC  0,3153 0,5606 0,6408 0,6623 

LRIND 0,5434 0,5716 0,5648 0,5576 

LRCC 0,3872 0,6062 0,6538 0,6591 

JUC 0,3334 0,5546 0,6258 0,6644 

JIND 0,3519 0,5557 0,5809 0,5931 

JCC 0,3413 0,5476 0,5744 0,5898 

5% 

LRUC  0,5845 0,5351 0,6268 0,6985 

LRIND 0,5015 0,5121 0,4897 0,5012 

LRCC 0,5796 0,5361 0,5952 0,6425 

JUC 0,5838 0,5091 0,6133 0,6913 

JIND 0,5733 0,5757 0,5740 0,5746 

JCC 0,5638 0,5758 0,5737 0,5814 
Note. * indicates that the null hypothesis is rejected at a 5% significance level. LRUC is the unconditional 
coverage test proposed by Kupiec (1995), LRIND, LRCC are the independence and conditional coverage 
tests, respectively, proposed by Christoffersen (1998). JUC, JIND, JCC are the unconditional coverage, 
independence and conditional coverage tests, respectively, proposed by Candelon et al. (2011). For JIND 
and JCC, the number of moments is fixed to 5, p-values for JUC, JIND, JCC are obtained through Dufour’s 
(2006) Monte Carlo procedure involving 10,000 repetitions. 
Source: author’s work. 
 

Table 2 shows the results of testing statistical properties of VaR at 10% and 5% coverage 

levels. At both levels, all the competing models seem to perform quite well as the null 

hypothesis is not rejected for all tests, although the p-values for the GARCH-GPD-P and 

GARCH-GPD are generally higher than for the GARCH-n and the GARCH-t models. Table 3 

presents the results of the loss functions used for VaR forecast evaluation. To that end, we utilise 

the following measures split into two groups i.e. regulator’s loss functions (RLF): 𝑅𝐿𝐹(𝐿) by 



 

 

Lopez (1998), 𝑅𝐿𝐹(𝑆𝑇𝑆) by Sarma et al. (2003), 𝑅𝐿𝐹(𝐶1), 𝑅𝐿𝐹(𝐶2) and 𝑅𝐿𝐹(𝐶3), all three 

proposed by Caporin (2008) and FLFs: 𝐹𝐿𝐹(𝑆𝑇𝑆) by Sarma et al. (2003), 𝐹𝐿𝐹(𝐶1), 𝐹𝐿𝐹(𝐶2) 

and 𝐹𝐿𝐹(𝐶3) all three proposed by Caporin (2008). At a 10% coverage level, the GARCH-n 

model leads to the smallest values of the regulator’s loss functions, but at the same time, the 

FLFs are the highest across the models. The GARCH-GPD-P and GARCH-GPD perform quite 

similarly for all loss functions, although the values of loss functions are lower for the GARCH-

GDP-P model. There are two cases (𝐹𝐿𝐹(𝐶2) and 𝐹𝐿𝐹(𝐶3)) where the GARCH-GPD-P model 

have the lowest values of all models. The poorer performance at lower coverage levels is not 

surprising as the EVT-based methods are designed to accurately model high tails, i.e. 5%, 1% 

or even 0.5%. At a 5% coverage level, we can observe that the GARCH-GPD-P model produces 

the best estimates of VaR according to all regulators’ loss functions. On the other hand, we can 

see that the proposed model may lead to some overestimation based on the firm’s loss functions. 

This is in line with an empirical observation from other studies where the POT approach is 

applied. 

 

Table 3. The average results of the loss measures for VaR(10%) and VaR(5%) based on the Monte 
Carlo simulation 

VaR 
coverage 

level 
Loss function GARCH-n GARCH-t GARCH-GPD 

GARCH-GPD-
P 

10% 

RLF(L) 111,0527 126,4374 127,7731 127,5317 
RLF(STS) 22,2427 25,3874 25,6931 25,3156 
RLF(C1) 43,0243 52,2956 53,2825 53,0290 
RLF(C2) 30,1174 36,6573 37,3801 37,2902 
RLF(C3) 31,3574 35,7206 36,1238 36,0265 
FLF(STS) 56,4412 57,0688 57,1631 57,0823 
FLF(C1) 572,6937 569,5876 569,7450 569,6610 
FLF(C2) 322,0481 306,4964 305,5258 303,8595 
FLF(C3) 809,4938 772,2083 769,1470 766,4545 
PM 0,0297 0,0313 0,0310 0,0303 
PM(VS) 5,9594 7,8347 7,0591 7,0421 
PM(SS) 184,0021 165,2148 163,6847 161,3238 

5% 

RLF(L) 62,3923 66,0560 63,7472 58,9353 
RLF(STS) 12,1923 12,9660 12,5772 11,0953 
RLF(C1) 18,5921 20,2220 19,4369 18,4008 
RLF(C2) 12,9681 14,1229 13,5645 12,5804 
RLF(C3) 17,3157 18,3933 17,8284 16,1446 
FLF(STS) 57,9073 57,5883 57,8911 61,5843 
FLF(C1) 607,8039 603,7517 606,3970 620,8263 
FLF(C2) 432,7660 420,4871 428,5252 509,8466 
FLF(C3) 993,6257 975,5646 986,9144 1 082,4124 
PM 0,0309 0,0304 0,0308 0,0294 
PM(VS) 1,7541 1,9833 1,8841 1,0103 
PM(SS) 276,3196 267,1751 272,9081 273,3008 

Note. The lowest values of loss functions are marked in bold. RLF(L) – the loss function proposed by 
Lopez (1998), RLF(STS), FLF(STS) –– the loss functions proposed by Sarma et al. (2003), RLF(C1), 
RLF(C2), RLF(C3), FLF(C1), FLF(C2) and FLF(C3) – loss functions proposed by Caporin (2008), PM, 
PMVS PMSS – penalisation measure, the penalisation measure for the violation space and the 
penalisation measure for the safe space proposed, respectively, by Şener et al. (2012). 



 

 

Source: author’s work. 
 

The best values of the firm’s loss functions are obtained for the GARCH-t model. It is worth 

noting that the GARCH-GPD-P model has the best value of the penalisation measure, mainly 

because in case of violations, the GARCH-GPD-P model is the least underestimated.  

Table 4 shows the results of the predictive ability test of Şener et al. (2012) for VaR(5%) and 

VaR(10%). At both levels, we do not reject the null hypothesis, but we may see that the 

GARCH-GPD-P and the GARCH-t have the highest p-values at a 5% and 10% probability, 

respectively. This means that it is difficult to find significant statistical differences in VaR 

forecasting among the tested models. 

 

Table 4. The average p-values of the predictive ability test (Şener et al., 2012) for VaR(5%) and 
VaR(10%) based on the penalisation measure–: the Monte Carlo simulation 

VaR 
coverage level 

GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

10% 0.6551 0.8687 0.7258 0.7938 

5% 0.3895 0.7878 0.6010 0.8529 

Source: author’s work. 
 

Table 5 presents the results of backtesting for the Expected Shortfall at 10% and 5% levels. 

At both levels, we do not reject the null hypothesis for the unconditional and independent tests, 

although we may observe that the p-values for the GARCH-GPD-P are the highest, thus 

indicating that this model may produce better properties of ES. The mean of cumulative 

violation process 𝐻𝑡 for the GARCH-GPD-P is closer to the desired level (i.e. 𝛼/2) than any 

other competing model. It suggests that the forecasts of the Expected Shortfall are most accurate 

from the GARCH-GPD-P model. 

 

Table 5. The results of backtesting for ES(10%) and ES(5%) based on Du and Escanciano (2016): the 
Monte Carlo simulation 

ES 
coverage 

level 

Statis
tic 

GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

p-value 
Mean 

𝐻𝑡 
p-value 

Mean 
𝐻𝑡 

p-value 
Mean 

𝐻𝑡 
p-value 

Mean 
𝐻𝑡 

10% 
DEUC 0.5758 0.0497 0.5583 0.0520 0.6524 0.0515 0.6989 0.0510 

DEIND 0.4870 - 0.4680 - 0.4702 - 0.5240 - 

5% 
DEUC 0.3746 0.0290 0.5043 0.0273 0.6033 0.0263 0.6551 0.0245 

DEIND 0.5587 - 0.5505 - 0.6755 - 0.7904 - 

Note. For independence test DEIND, we calculate the statistics up to 5 lags. DEUC, DEIND – unconditional 
coverage and independence test, respectively, proposed by Du and Escanciano (2016), 𝐻𝑡 – cumulative 
violation process. 
Source: author’s work. 
 

All in all, it is impossible to select the best model for VaR and Expected Shortfall forecasting. 

This is also a prevailing conclusion from other studies that compare risk measures from 



 

 

different perspectives (see for instance Abad et al., 2014; Nieto & Ruiz, 2016). The performance 

of the GARCH-GPD-P model in the Monte Carlo simulation boils down to the advantage at a 

higher probability level (5%) where the results indicate more accurate VaR and ES forecasts 

than the ones obtained from other competing models. 

 

5. Analysis of stock indices, currencies and cryptocurrencies 

 

5.1. Data 

 

We apply the analysed models to real financial data, i.e. five stock indices, three currencies and 

four cryptocurrencies. The set of data consists of three classes of assets: five selected U.S. 

stocks: Amazon, Apple, Google, Microsoft and NVIDIA, three currencies: EUR-USD, GBP-

USD, USD-JPY and four cryptocurrencies: BTC-USD, ETH-USD, LTC-USD and XRP-USD. 

The dataset comprises daily data spanning over sixteen and a half years, i.e. from 3rd January 

2006 to 31st May 2023 (4,382 observations) for stocks, from 3rd January 2006 to 31st May 

2023 (4,512 observations) for currencies, from 3rd January 2015 to 31st May 2023 (3,073 

observations) for BTC-USD, 3rd January 2016 to 31st May 312023 (2,708 observations) for 

LTC-USD and 3rd January 32018 to 31st May 2023 (1,977 observations) for ETH-USD and 

XRP-USD. These long periods consist of high-volatility events (like the financial crisis, the 

European sovereign debt crisis and COVID-19), but also low-volatility periods, where the latter 

is more prominent over time. Table 6 presents the descriptive statistics for the logarithmic 

returns calculated as 𝑟𝑡 = 100ln(𝑐𝑡/𝑐𝑡−1), where 𝑐𝑡 is a closing price at time 𝑡. All return series 

appear to have heavy tails and they do not follow normal distribution. The time series exhibit 

non-zero skewness and kurtosis greater than three. In the majority of the cases, stocks and 

cryptocurrencies time series are autocorrelated, whereas currencies do not seem to be 

autocorrelated. The three groups of time series share similarities, but also differences, such as 

higher volatility for cryptocurrencies and lower volatility for currencies compared with the 

stocks volatility. These three asset classes give the opportunity to show the performance of the 

proposed model across somewhat different groups of time series. 

 

Table 6. Summary statistics of the daily returns  

Time 
series 

Mean 
Standard 
deviation 

Minimum Maximum Skewness 
Excess 
kurtosis 

Ljung-Box 

Amazon 0.0896 2.4206 23.8621 -24.6182 0.4308* 15.5456* 8.2049 

Apple 0.0958 2.0509 13.0194 -19.7470 -0.2751* 9.0581* 21.5800* 



 

 

Google 0.0553 1.8849 18.2251 -12.3685 0.2457* 11.2674* 18.4530* 

Microsoft 0.0572 1.7748 17.0626 -15.9453 -0.0420 12.1607* 68.4090* 

NVIDIA 0.1090 3.1091 26.0876 -36.7109 -0.3207* 12.3159* 7.4354 

EURSUD -0.0022 0.5741 3.41572 -2.94799 0.0635 5.4851* 2.1372 

GBP/USD -0.0072 0.6133 3.130041 -9.50501 -1.0561* 18.3437* 11.6850 

USD/JPY 0.0037 0.6255 5.23658 -4.13554 -0.2202* 8.3409* 8.6468 

BTC/USD 0.1452 3.8282 22.5119 -46.473 -0.7935* 14.1622* 9.1718 

ETH/USD 0.0448 4.9436 23.06952 -55.0732 -1.0068* 13.4112* 20.6500* 

LTC/USD 0.1201 5.4522 51.14174 -44.9062 0.2625* 14.3996* 22.3370* 

XRP/USD -0.0775 5.7847 44.47556 -55.0503 -0.0698 16.3753* 6.0308 
Note. The sample period is 3rd January 2006 to 31st May 2023, * indicates that the null hypothesis is 
rejected at a 5% significance level, Ljung-Box – the Ljung-Box statistic for 5 lags. 
Source: author’s work based on the data from www.finance.yahoo.com site. 
 

5.2. In sample evaluation based on empirical data 

 

Firstly, we evaluate the proposed model, i.e. the GARCH-GPD-P against GARCH-GPD for the 

whole range of data. The estimation results of the GPD-P and the GPD are presented in Table 

7. Parameter 𝜎1, responsible for the dynamics of extremes based on the Parkinson volatility 

estimates is highly significant and positive for all time series. This means that the dynamic 

behaviour of extreme values is observed and takes part in explaining the tail of the distribution. 

The 𝜎0 estimates in the GPD-P are considerably lower (in many cases 2-3 times lower) than 

those obtained for the GPD. We compare the likelihood functions of the competing models and 

for all the considered time series, the likelihood ratio test indicates that GPD-P is significantly 

better fitted to the data (extreme observations) than the GPD. 

 

Table 7. The results of the parameter estimates for the GPD and GPD-P for stock indices 

Time 
series 

GPD GPD-P LM p-
value 𝜎 𝛾 ln L 𝜎0 𝜎1 𝛾 ln L 

Amazon 
0.5994* 
(0.0359) 

0.0166 
(0.0493) 

-221.1060 
0.2320* 
(0.0484) 

0.0704* 
(0.0080) 

-0.2350* 
(0.0303) 

-151.3465 0.0000 

Apple 
0.6480* 
(0.0369) 

-0.0583 
(0.0391) 

-222.4223 
0.2484* 
(0.0373) 

0.0838* 
(0.0111) 

-0.2255* 
(0.0289) 

-172.1086 0.0000 

Google 
0.5659* 
(0.0432) 

0.1332* 
(0.0547) 

-246.9619 
0.1102* 
(0.0349) 

0.1373* 
(0.0137) 

-0.1838* 
(0.0368) 

-166.4483 0.0000 

Microsoft 
0.6010* 
(0.0408) 

0.0339 
(0.0434) 

-229.8312 
0.1581* 
(0.0350) 

0.1480* 
(0.0132) 

-0.2454* 
(0.0312) 

-145.2000 0.0000 

NVIDIA 
0.5789* 
(0.0402) 

0.0186 
(0.0444) 

-206.6774 
0.2151* 
(0.0399) 

0.0361* 
(0.0045) 

-0.1859* 
(0.0343) 

-146.0543 0.0000 

EURSUD 
0.5222* 
(0.0308) 

0.0313 
(0.0463) 

-172.1332 
0.1897* 
(0.0337) 

0.6258* 
(0.0736) 

-0.1426* 
(0.0308) 

-114.2083 0.0000 

GBP/USD 
0.5895* 
(0.0338) 

0.0519 
(0.0585) 

-236.0500 
0.2599* 
(0.0507) 

0.7039* 
(0.0778) 

-0.3022* 
(0.0292) 

-157.9306 0.0000 

USD/JPY 
0.5611* 
(0.0353) 

0.1114* 
(0.0435) 

-240.6455 
0.1887* 
(0.0447) 

0.5820* 
(0.0740) 

-0.1669* 
(0.0339) 

-158.1730 0.0000 

BTC/USD 
0.6908* 
(0.0639) 

0.1837* 
(0.0748) 

-249.8602 
0.2351* 
(0.0582) 

0.0220* 
(0.0027) 

-0.2401* 
(0.0435) 

-181.7658 0.0000 



 

 

ETH/USD 
0.7550* 
(0.0774) 

0.1130 
(0.0814) 

-164.7198 
0.1974* 
(0.0679) 

0.0171* 
(0.0015) 

-0.4946* 
(0.0566) 

-99.9482 0.0000 

LTC/USD 
0.6707* 
(0.0593) 

0.1149 
(0.0660) 

-193.9026 
0.0556 

(0.0380) 
0.0156* 
(0.0018) 

-0.3292* 
(0.0346) 

-121.0097 0.0000 

XRP/USD 
0.6322* 
(0.0730) 

0.2089* 
(0.0808) 

-148.5824 
0.2201* 
(0.0661) 

0.0125* 
(0.0023) 

-0.2655* 
(0.0586) 

-110.2027 0.0000 

Note. Robust Huber-White standard errors are reported in parentheses, * indicates that the null 
hypothesis is rejected at a 5% significance level, ln L - the logarithm of the likelihood function, LM p-
value is the p-value from the likelihood ratio test based on the logarithm of the likelihood function for 
GPD vs GPD-P. 
Source: author’s work. 
 

5.3. Forecasting Value-at-Risk 

 

In this subsection, we compare the proposed model (the GARCH-GPD-P) against the GARCH-

GPD and two benchmarks, namely the GARCH-n and the GARCH-t, for VaR forecasting. We 

formulate out-of-sample one-day-ahead forecasts of the conditional VaR (5% and 10% 

coverage level) based on the GARCH-n, GARCH-t, GARCH-GPD, and GARCH-GDP-P 

models, where parameters are estimated separately each day based on a rolling sample of a 

fixed size of 500 (approximately two years) and 1,000 separately. Then, the first observation 

from the sample is dropped and one is added to the end of the sample (the rolling window 

approach) to obtain the VaR forecasts. This process is repeated iteratively until all observations 

are exhausted, i.e. till 31st May 2023. Table A1 in the Appendix summarises the forecasting 

start and end dates as the number of forecasts used in the empirical study. We present the results 

only for the first group (500 observations used for the parameters estimation), as the results for 

the second group are similar and do not change the conclusions. 

For backtesting purposes, we evaluate the VaR forecasts by testing their statistical properties, 

calculating loss measures and testing the superiority of VaR forecasts over the others. The 

statistical adequacy of VaR forecasts is verified by: unconditional coverage 𝐿𝑅𝑈𝐶  proposed by 

Kupiec (1995), independence 𝐿𝑅𝑖𝑛𝑑 and conditional coverage 𝐿𝑅𝐶𝐶 tests designed by 

Christoffersen (1998), unconditional coverage 𝐽𝑢𝑐, independence 𝐽𝑖𝑛𝑑 and conditional coverage 

𝐽𝑐𝑐 tests devised by Candelon et al. (2011). Under Basel Accords (Basel Committee on Banking 

Supervision, 2011, 2019), financial institutions that report too many violations during the last 

year, need to apply additional capital charges directly linked to the number of these violations. 

It means that the unconditional coverage property is of paramount importance from the 

regulators' and financial institutions’ point of view. In other words, rejecting the null hypothesis 

of the unconditional coverage test would result in too many violations and additional capital 

charges. A model leading to such outcome is by far undesirable for the market participants, 

regulators and financial institutions. 



 

 

Firstly, Table A2, Table A3 and Table A4 (Appendix) present the results of the statistical 

properties of VaR for 10% and Table A5, Table A6 and Table A7 (Appendix) for 5%. Generally 

speaking, VaR forecasts from the GARCH-GPD-P, GARCH-GPD and GARCH-t models have 

better statistical properties than the ones obtained from the GARCH-n. Only VaR forecasts from 

the GARCH-GDP-P model meet both criteria i.e. unconditional coverage and independence 

properties at a 5% significance level for both coverage levels. In many cases VaR forecasts from 

the GARCH-n model have a significantly different number of violations and are not 

independent across time. 

Secondly, we evaluate methods for VaR forecasting based on the same set of loss functions 

that are used in the simulation. Moreover, we calculate penalisation measure 𝑃𝑀 and its 

components, i.e. the penalisation measure for violation space 𝑃𝑀(𝑉𝑆) and safe space 𝑃𝑀(𝑆𝑆) 

proposed by Şener et al. (2012). The results for VaR(10%) are given in Tables 8–10 and for 

VaR(5%) in Tables 11–13. At a 10% coverage level, in many cases (mainly stocks and 

currencies), the GARCH-GPD-P model generates VaR forecasts that lead to the smallest loss 

functions from the regulator’s perspective (RLF measures). The second most accurate model in 

terms of the regulator’s loss functions is the GARCH-n model, especially for cryptocurrencies. 

For the firm’s loss functions (FLFs) it is difficult to indicate a single best model, but the 

GARCH-t model seems to be the most prominent. The lowest values of penalisation measure 

PM are obtained for the proposed GARCH-GPD-P model (in the case of stocks and currencies) 

and for the GARCH-n model (in the case of cryptocurrencies). It is not surprising that for such 

a low coverage level as 10%, the standard GARCH model can produce more accurate VaR 

forecasts, as EVT-based methods are believed to be better at describing extreme quantiles such 

as 5%, 1%, 0.5% or even higher. 

For a 5% coverage level, the situation is quite different, as the GARCH-GPD-P generates the 

most accurate VaR forecasts based on many of the regulator’s loss functions for all three asset 

classes. When it comes to the FLFs, VaR forecasts from the GARCH-t model have the lowest 

values in most cases. For all the selected time series, penalisation measure PM is also the 

smallest for the GARCH-GPD-P model. The second most accurate model for the PM is either 

the GARCH-GPD or the GARCH-n model. It seems like the proposed model tends to 

overestimate the VaR because for most FLFs other models produce more accurate results. At a 

5% coverage level, the results show that the GARCH-GPD-P is generally better than the 

competing models. The probable reason is that the use of high and low prices in the form of the 

Parkinson estimator for extreme observations generates a quick reaction to what is happening 

in the markets. If there is a jump in volatility, it will have an immediate reaction on the time-



 

 

varying scale parameter in the GPD, thus producing higher VaR estimates. In turbulent times 

this mechanism is going to provide more accurate VaR estimates and result in a smaller number 

of violations (as reported in the unconditional coverage tests). On the other hand, in periods of 

low volatility, it could lead to VaR overestimation. 

 

Table 8. The results of the loss measures for VaR(10%): stocks 



 

 

Time series Loss function GARCH-n GARCH-t GARCH-GPD GARCH-GPD-
P 

Amazon 

RLF(L)∙ 10−3 1.1673 1.2924 1.3647 1.1618 
RLF(STS) ∙
10−3 

0.8163 0.9174 0.9657 0.7798 
RLF(C1) ∙
10−3 

0.1795 0.2090 0.2187 0.1973 
RLF(C2) ∙
10−3 

0.3658 0.4299 0.4515 0.3891 
RLF(C3) ∙
10−3 

0.3730 0.4092 0.4296 0.3757 
FLF(STS) ∙
10−3 

1.2030 1.2905 1.3210 1.1609 
FLF(C1) ∙
10−3 

2.1919 2.1958 2.1856 2.1835 
FLF(C2) ∙
10−3 

3.5947 3.5611 3.4529 3.6330 
FLF(C3) ∙
10−3 

9.3595 9.1635 8.8889 9.2737 
PM 0.2811 0.3544 0.3809 0.2226 
PMVS ∙ 10−3 0.4681 0.6243 0.6851 0.3496 
PMSS∙ 10−3 2.0649 1.9534 1.8303 2.0350 

Apple 

RLF(L) ∙ 10−3 1.0551 1.1739 1.0762 0.9370 
RLF(STS) ∙
10−3 

0.6661 0.7519 0.6822 0.5700 
RLF(C1) ∙
10−3 

0.2029 0.2406 0.2101 0.1886 
RLF(C2) ∙
10−3 

0.3341 0.3974 0.3468 0.2999 
RLF(C3) ∙
10−3 

0.3535 0.3956 0.3602 0.3186 
FLF(STS) ∙
10−3 

0.9882 1.0542 1.0026 0.9133 
FLF(C1) ∙
10−3 

2.1956 2.2009 2.2012 2.2084 
FLF(C2) ∙
10−3 

2.9798 2.8910 2.9837 3.1468 
FLF(C3) ∙
10−3 

7.9454 7.6484 7.9225 8.2488 
PM 0.2115 0.2631 0.2235 0.1598 
PMVS ∙ 10−3 0.3289 0.4370 0.3529 0.2200 
PMSS∙ 10−3 1.5980 1.4580 1.5882 1.7500 

Google 

RLF(L) ∙ 10−3 0.9718 1.0987 1.0865 0.9658 
RLF(STS) ∙
10−3 

0.6158 0.6957 0.6865 0.5968 
RLF(C1) ∙
10−3 

0.1955 0.2421 0.2322 0.2104 
RLF(C2) ∙
10−3 

0.3624 0.4444 0.4325 0.3802 
RLF(C3) ∙
10−3 

0.3176 0.3621 0.3516 0.3176 
FLF(STS) ∙
10−3 

0.9213 0.9759 0.9727 0.9118 
FLF(C1) ∙
10−3 

2.2319 2.2209 2.2231 2.2441 
FLF(C2) ∙
10−3 

2.8904 2.7375 2.7851 3.0595 
FLF(C3) ∙
10−3 

7.3364 6.9504 7.0520 7.5121 
PM 0.1650 0.2005 0.1931 0.1581 
PMVS ∙ 10−3 0.2464 0.3286 0.3110 0.2272 
PMSS∙ 10−3 1.6669 1.4705 1.5216 1.7676 

Microsoft 

RLF(L) ∙ 10−3 0.8631 1.0015 0.9621 0.8597 
RLF(STS) ∙
10−3 

0.5061 0.5885 0.5591 0.4797 
RLF(C1) ∙
10−3 

0.1958 0.2477 0.2333 0.2128 
RLF(C2) ∙
10−3 

0.3208 0.4028 0.3785 0.3345 
RLF(C3) ∙
10−3 

0.2977 0.3435 0.3299 0.2951 
FLF(STS) ∙
10−3 

0.7930 0.8514 0.8283 0.7691 
FLF(C1) ∙
10−3 

2.2076 2.2072 2.2033 2.2148 
FLF(C2) ∙
10−3 

2.7333 2.6242 2.6446 2.8044 
FLF(C3) ∙
10−3 

7.0240 6.6725 6.7629 7.0730 
PM 0.1489 0.1790 0.1682 0.1344 
PMVS ∙ 10−3 0.2148 0.2824 0.2592 0.1845 
PMSS∙ 10−3 1.4652 1.2994 1.3404 1.4999 

NVIDIA 

RLF(L) ∙ 10−3 1.9801 2.2310 2.1285 1.8861 
RLF(STS) ∙
10−3 

1.6191 1.8300 1.7335 1.5191 
RLF(C1) ∙
10−3 

0.1858 0.2202 0.2136 0.1941 
RLF(C2) ∙
10−3 

0.5282 0.6300 0.5992 0.5263 
RLF(C3) ∙
10−3 

0.5082 0.5726 0.5511 0.5006 
FLF(STS) ∙
10−3 

2.1426 2.3193 2.2342 2.0558 
FLF(C1) ∙
10−3 

2.2109 2.2057 2.2092 2.2115 
FLF(C2) ∙
10−3 

4.8917 4.7013 4.7701 5.0555 
FLF(C3) ∙
10−3 

12.6114 12.1108 12.2747 12.8274 
PM 0.4731 0.6044 0.5293 0.3832 
PMVS ∙ 10−3 0.8069 1.0835 0.9285 0.6206 
PMSS∙ 10−3 2.7036 2.4547 2.5349 2.8170 

Note. The lowest values of loss functions are marked in bold. RLF(L) is the loss function proposed by 
Lopez (1998), RLF(STS), FLF(STS) are the loss functions proposed by Sarma et al. (2003), RLF(C1), 
RLF(C2), RLF(C3), FLF(C1), FLF(C2) and FLF(C3) are the loss functions proposed by Caporin (2008), 



 

 

PM, PMVS PMSS are the penalisation measure, the penalisation measure for the violation space and the 
penalisation measure for the safe space, respectively, proposed by Şener et al. (2012). 
Source: author’s work. 
 
Table 9. The results of the loss measures for VaR(10%): currencies 

Time series Loss function GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

EUR/USD 

RLF(L)∙ 10−3 0.4436 0.4858 0.4693 0.4365 
RLF(STS) ∙
10−3 

0.0686 0.0728 0.0703 0.0625 
RLF(C1) ∙
10−3 

0.1699 0.1874 0.1814 0.1640 
RLF(C2) ∙
10−3 

0.1005 0.1089 0.1055 0.0939 
RLF(C3) ∙
10−3 

0.1105 0.1188 0.1150 0.1038 
FLF(STS) ∙
10−3 

0.2030 0.2020 0.2014 0.2017 
FLF(C1) ∙
10−3 

2.2485 2.2368 2.2382 2.2568 
FLF(C2) ∙
10−3 

1.2112 1.1740 1.1836 1.2616 
FLF(C3) ∙
10−3 

3.1510 3.0790 3.0995 3.2246 
PM 0.0304 0.0313 0.0304 0.0283 
PMVS ∙ 10−3 0.0271 0.0308 0.0284 0.0207 
PMSS∙ 10−3 0.6984 0.6619 0.6714 0.7321 

GBP/USD 

RLF(L) ∙ 10−3 0.5191 0.5710 0.5731 0.5307 
RLF(STS) ∙
10−3 

0.1651 0.1800 0.1721 0.1567 
RLF(C1) ∙
10−3 

0.1867 0.2268 0.2142 0.1948 
RLF(C2) ∙
10−3 

0.2045 0.2516 0.2266 0.2073 
RLF(C3) ∙
10−3 

0.1334 0.1480 0.1446 0.1310 
FLF(STS) ∙
10−3 

0.3045 0.3104 0.3031 0.3080 
FLF(C1) ∙
10−3 

2.2694 2.2597 2.2530 2.2617 
FLF(C2) ∙
10−3 

1.3585 1.3087 1.3058 1.5933 
FLF(C3) ∙
10−3 

3.2785 3.1399 3.1500 3.5113 
PM 0.0390 0.0456 0.0407 0.0367 
PMVS ∙ 10−3 0.0433 0.0614 0.0504 0.0318 
PMSS∙ 10−3 0.7517 0.6763 0.6862 0.8779 

USD/JPY 

RLF(L) ∙ 10−3 0.4808 0.5446 0.5400 0.4915 
RLF(STS) ∙
10−3 

0.1268 0.1496 0.1410 0.1225 
RLF(C1) ∙
10−3 

0.1774 0.2454 0.2216 0.1991 
RLF(C2) ∙
10−3 

0.1550 0.2339 0.1880 0.1637 
RLF(C3) ∙
10−3 

0.1305 0.1541 0.1496 0.1330 
FLF(STS) ∙
10−3 

0.2651 0.2762 0.2682 0.2692 
FLF(C1) ∙
10−3 

2.3518 2.3696 2.3459 2.3673 
FLF(C2) ∙
10−3 

1.4067 1.3781 1.3441 1.5687 
FLF(C3) ∙
10−3 

3.3052 3.1276 3.1338 3.4714 
PM 0.0369 0.0448 0.0401 0.0368 
PMVS ∙ 10−3 0.0376 0.0587 0.0487 0.0344 
PMSS∙ 10−3 0.7497 0.6608 0.6657 0.8057 

Note. As in Table 8. 
Source: author’s work. 
 
Table 10. The results of the loss measures for VaR(10%)–: cryptocurrencies 



 

 

Time series Loss function GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

BTC/USD 

RLF(L)∙ 10−3 4.9515 6.3602 6.3294 5.9225 
RLF(STS) ∙
10−3 

4.7695 6.0912 6.0794 5.6985 
RLF(C1) ∙
10−3 

0.1526 0.2963 0.2445 0.2315 
RLF(C2) ∙
10−3 

1.2292 2.0489 1.8486 1.6898 
RLF(C3) ∙
10−3 

0.5781 0.7856 0.7752 0.7212 
FLF(STS) ∙
10−3 

5.3468 6.5286 6.5325 6.2507 
FLF(C1) ∙
10−3 

1.7127 1.8737 1.7573 1.7743 
FLF(C2) ∙
10−3 

7.0829 6.9557 6.7321 6.5502 
FLF(C3) ∙
10−3 

13.9326 11.6914 11.9423 11.7111 
PM 1.4267 3.5851 3.8839 2.6811 
PMVS ∙ 10−3 1.6313 4.4137 4.7848 3.2228 
PMSS∙ 10−3 3.2737 2.2540 2.3797 3.1668 

ETH/USD 

RLF(L) ∙ 10−3 5.2748 6.3902 6.3386 5.2233 
RLF(STS) ∙
10−3 

5.1718 6.2482 6.1946 5.1053 
RLF(C1) ∙
10−3 

0.0701 0.1124 0.1105 0.0851 
RLF(C2) ∙
10−3 

0.8087 1.1761 1.2140 0.8351 
RLF(C3) ∙
10−3 

0.4167 0.5482 0.5357 0.4409 
FLF(STS) ∙
10−3 

5.5904 6.5766 6.5308 5.5920 
FLF(C1) ∙
10−3 

0.9177 0.9107 0.9187 0.9516 
FLF(C2) ∙
10−3 

4.6726 4.1980 4.3716 4.3941 
FLF(C3) ∙
10−3 

10.0032 8.5455 8.6827 9.4151 
PM 1.8349 4.9249 4.5914 1.9632 
PMVS ∙ 10−3 1.2472 3.5957 3.3420 1.3051 
PMSS∙ 10−3 2.3948 1.7145 1.7918 2.4200 

LTC/USD 

RLF(L) ∙ 10−3 7.4716 9.3778 10.3435 7.6661 
RLF(STS) ∙
10−3 

7.3226 9.1648 10.1135 7.5031 
RLF(C1) ∙
10−3 

0.0947 0.1589 0.1760 0.1107 
RLF(C2) ∙
10−3 

1.0165 1.5178 1.8399 1.1282 
RLF(C3) ∙
10−3 

0.6411 0.8814 0.9372 0.6621 
FLF(STS) ∙
10−3 

8.0707 9.7507 10.6799 8.4103 
FLF(C1) ∙
10−3 

1.4017 1.3917 1.4153 1.3962 
FLF(C2) ∙
10−3 

8.3638 7.4050 7.8857 7.7415 
FLF(C3) ∙
10−3 

17.3272 14.7533 14.5387 14.5567 
PM 1.6890 3.8954 4.9088 1.8033 
PMVS ∙ 10−3 1.7267 4.3624 5.5461 1.7733 
PMSS∙ 10−3 4.5184 3.2019 3.1100 5.1608 

 RLF(L) ∙ 10−3 5.7677 7.8465 7.4876 6.1725 
 RLF(STS) ∙

10−3 

5.6807 7.7065 7.3516 6.0565 
 RLF(C1) ∙

10−3 

0.0566 0.1129 0.1093 0.0865 
 RLF(C2) ∙

10−3 

0.7561 1.3285 1.2855 0.9463 
 RLF(C3) ∙

10−3 

0.3675 0.5594 0.5405 0.4531 
XRP/USD FLF(STS) ∙

10−3 

6.2024 8.0598 7.7326 6.6928 
 FLF(C1) ∙

10−3 

0.9725 0.9530 0.9623 0.9934 
 FLF(C2) ∙

10−3 

6.4486 5.4519 5.6352 5.6517 
 FLF(C3) ∙

10−3 

11.7213 8.8927 9.3912 10.2841 
 PM 1.8440 9.2295 8.6622 5.2533 
 PMVS ∙ 10−3 1.2419 6.9741 6.5271 3.7641 
 PMSS∙ 10−3 3.2520 1.8737 2.1079 3.9691 

Note. As in Table 8. 
Source: author’s work. 
 
Table 11. The results of the loss measures for VaR(5%): stocks 



 

 

Time series Loss function GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

Amazon 

RLF(L) ∙ 10−3 0.6325 0.6477 0.6669 0.5874 
RLF(STS) ∙
10−3 

0.4245 0.4377 0.4569 0.3834 
RLF(C1) ∙
10−3 

0.0772 0.0820 0.0801 0.0865 
RLF(C2) ∙
10−3 

0.1573 0.1647 0.1638 0.1588 
RLF(C3) ∙
10−3 

0.2003 0.2086 0.2118 0.1939 
FLF(STS) ∙
10−3 

0.9444 0.9628 0.9686 0.9768 
FLF(C1) ∙
10−3 

2.3212 2.3297 2.3190 2.3463 
FLF(C2) ∙
10−3 

4.8079 4.9064 4.7376 6.0414 
FLF(C3) ∙
10−3 

11.4991 11.6156 11.3582 12.8568 
PM 0.1342 0.1446 0.1493 0.1323 
PMVS ∙ 10−3 0.1100 0.1292 0.1448 0.0681 
PMSS∙ 10−3 3.1390 3.1812 3.0669 3.2644 

Apple 

RLF(L) ∙ 10−3 0.5681 0.5972 0.5112 0.4457 
RLF(STS) ∙
10−3 

0.3471 0.3632 0.3062 0.2487 
RLF(C1) ∙
10−3 

0.0882 0.0941 0.0750 0.0767 
RLF(C2) ∙
10−3 

0.1376 0.1463 0.1161 0.1135 
RLF(C3) ∙
10−3 

0.1932 0.2034 0.1708 0.1518 
FLF(STS) ∙
10−3 

0.7835 0.7898 0.7666 0.7736 
FLF(C1) ∙
10−3 

2.3089 2.2974 2.3450 2.3933 
FLF(C2) ∙
10−3 

3.9964 3.9017 4.2822 5.3016 
FLF(C3) ∙
10−3 

9.7129 9.5570 10.1199 11.3066 
PM 0.1131 0.1171 0.1084 0.1050 
PMVS ∙ 10−3 0.0924 0.1043 0.0730 0.0428 
PMSS∙ 10−3 2.4387 2.3648 2.6329 2.6291 

Google 

RLF(L) ∙ 10−3 0.5593 0.5958 0.5433 0.4846 
RLF(STS) ∙
10−3 

0.3583 0.3758 0.3473 0.2926 
RLF(C1) ∙
10−3 

0.0926 0.1015 0.0882 0.0931 
RLF(C2) ∙
10−3 

0.1725 0.1888 0.1650 0.1646 
RLF(C3) ∙
10−3 

0.1877 0.1981 0.1816 0.1570 
FLF(STS) ∙
10−3 

0.7687 0.7725 0.7654 0.8018 
FLF(C1) ∙
10−3 

2.3650 2.3413 2.3773 2.4475 
FLF(C2) ∙
10−3 

3.8830 3.7322 3.9813 5.5264 
FLF(C3) ∙
10−3 

8.9989 8.7753 9.1343 10.8414 
PM 0.1034 0.1043 0.1032 0.1009 
PMVS ∙ 10−3 0.0779 0.0860 0.0743 0.0416 
PMSS∙ 10−3 2.4986 2.3821 2.5583 2.5763 

Microsoft 

RLF(L) ∙ 10−3 0.4737 0.5225 0.4683 0.4385 
RLF(STS) ∙
10−3 

0.2767 0.2975 0.2753 0.2385 
RLF(C1) ∙
10−3 

0.0877 0.0990 0.0868 0.0917 
RLF(C2) ∙
10−3 

0.1443 0.1589 0.1434 0.1392 
RLF(C3) ∙
10−3 

0.1662 0.1805 0.1617 0.1513 
FLF(STS) ∙
10−3 

0.6650 0.6741 0.6666 0.6929 
FLF(C1) ∙
10−3 

2.3389 2.3233 2.3427 2.3870 
FLF(C2) ∙
10−3 

3.6320 3.5223 3.6758 4.7211 
FLF(C3) ∙
10−3 

8.6167 8.4472 8.6615 9.8578 
PM 0.0933 0.0966 0.0929 0.0894 
PMVS ∙ 10−3 0.0654 0.0760 0.0637 0.0394 
PMSS∙ 10−3 2.2326 2.1549 2.2510 2.1770 

NVIDIA 

RLF(L) ∙ 10−3 1.1063 1.1609 1.0660 0.9396 
RLF(STS) ∙
10−3 

0.9133 0.9609 0.8700 0.7356 
RLF(C1) ∙
10−3 

0.0822 0.0863 0.0796 0.0834 
RLF(C2) ∙
10−3 

0.2360 0.2495 0.2248 0.2139 
RLF(C3) ∙
10−3 

0.2849 0.2983 0.2749 0.2517 
FLF(STS) ∙
10−3 

1.6190 1.6527 1.5851 1.5472 
FLF(C1) ∙
10−3 

2.3288 2.3164 2.3338 2.3716 
FLF(C2) ∙
10−3 

6.5116 6.3493 6.6322 8.2795 
FLF(C3) ∙
10−3 

15.4668 15.2363 15.6374 17.4874 
PM 0.2165 0.2293 0.2033 0.1877 
PMVS ∙ 10−3 0.2181 0.2499 0.1877 0.1259 
PMSS∙ 10−3 4.1113 3.9930 4.1836 4.1431 

Note. As in Table 8. 
Source: author’s work. 
 



 

 

Table 12. The results of the loss measures for VaR(5%): currencies 

Time series Loss function GARCH-n GARCH-t GARCH-
GPD 

GARCH-GPD-P 

EUR/USD 

RLF(L) ∙ 10−3 0.2222 0.2214 0.2236 0.2160 
RLF(STS) ∙
10−3 

0.0352 0.0354 0.0346 0.0300 
RLF(C1) ∙
10−3 

0.0707 0.0721 0.0712 0.0703 
RLF(C2) ∙
10−3 

0.0429 0.0429 0.0428 0.0410 
RLF(C3) ∙
10−3 

0.0560 0.0569 0.0555 0.0498 
FLF(STS) ∙
10−3 

0.2169 0.2158 0.2157 0.2354 
FLF(C1) ∙
10−3 

2.4041 2.3947 2.3936 2.4555 
FLF(C2) ∙
10−3 

1.6682 1.6502 1.6591 1.8337 
FLF(C3) ∙
10−3 

3.8794 3.8549 3.8669 3.9032 
PM 0.0299 0.0297 0.0295 0.0280 
PMVS ∙ 10−3 0.0069 0.0071 0.0064 0.0041 
PMSS∙ 10−3 1.0597 1.0470 1.0522 1.0436 

GBP/USD 

RLF(L) ∙ 10−3 0.3286 0.3450 0.3162 0.3098 
RLF(STS) ∙
10−3 

0.1176 0.1260 0.1152 0.1038 
RLF(C1) ∙
10−3 

0.0839 0.0983 0.0804 0.0792 
RLF(C2) ∙
10−3 

0.1152 0.1370 0.1121 0.1097 
RLF(C3) ∙
10−3 

0.0762 0.0821 0.0728 0.0634 
FLF(STS) ∙
10−3 

0.3030 0.3061 0.3024 0.3646 
FLF(C1) ∙
10−3 

2.4199 2.4085 2.4235 2.4602 
FLF(C2) ∙
10−3 

1.8040 1.7435 1.8210 1.9052 
FLF(C3) ∙
10−3 

4.0239 3.9294 4.0424 4.0484 
PM 0.0343 0.0351 0.0342 0.0328 
PMVS ∙ 10−3 0.0137 0.0183 0.0130 0.0060 
PMSS∙ 10−3 1.1262 1.0713 1.1336 1.1398 

USD/JPY 

RLF(L) ∙ 10−3 0.2648 0.2975 0.2818 0.2672 
RLF(STS) ∙
10−3 

0.0788 0.0875 0.0808 0.0662 
RLF(C1) ∙
10−3 

0.0786 0.0974 0.0860 0.0856 
RLF(C2) ∙
10−3 

0.0755 0.1035 0.0801 0.0719 
RLF(C3) ∙
10−3 

0.0743 0.0804 0.0781 0.0699 
FLF(STS) ∙
10−3 

0.2646 0.2682 0.2623 0.2677 
FLF(C1) ∙
10−3 

2.4877 2.4875 2.4722 2.4275 
FLF(C2) ∙
10−3 

1.8474 1.8174 1.8035 1.9426 
FLF(C3) ∙
10−3 

4.0593 3.9858 3.9910 4.0351 
PM 0.0338 0.0355 0.0334 0.0308 
PMVS ∙ 10−3 0.0116 0.0170 0.0124 0.0085 
PMSS∙ 10−3 1.1205 1.0833 1.0872 1.1430 

Note. As in Table 8. 
Source: author’s work. 
 
Table 13. The results of the loss measures for VaR(5%)–: cryptocurrencies 



 

 

Time series Loss function GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

BTC/USD 

RLF(L)∙ 10−3 3.5872 4.1160 3.8117 3.4967 
RLF(STS) ∙
10−3 

3.4682 3.9650 3.6807 3.3617 
RLF(C1) ∙
10−3 

0.0849 0.1307 0.0952 0.0711 
RLF(C2) ∙
10−3 

0.7562 0.9925 0.8195 0.7209 
RLF(C3) ∙
10−3 

0.3717 0.4469 0.4038 0.3143 
FLF(STS) ∙
10−3 

4.2347 4.6415 4.4130 4.6220 
FLF(C1) ∙
10−3 

1.7660 1.8090 1.7594 1.8124 
FLF(C2) ∙
10−3 

8.9334 8.1458 8.5988 8.9265 
FLF(C3) ∙
10−3 

17.1626 15.5972 16.5849 17.0877 
PM 0.5468 0.8304 0.6360 0.5281 
PMVS ∙ 10−3 0.4400 0.8360 0.5659 0.4015 
PMSS∙ 10−3 4.7747 4.0613 4.5249 4.4202 

ETH/USD 

RLF(L) ∙ 10−3 4.0074 4.4719 4.1703 3.1127 
RLF(STS) ∙
10−3 

3.9374 4.3889 4.0963 3.0517 
RLF(C1) ∙
10−3 

0.0353 0.0470 0.0399 0.0354 
RLF(C2) ∙
10−3 

0.4727 0.5584 0.4973 0.3214 
RLF(C3) ∙
10−3 

0.2754 0.3308 0.2982 0.2444 
FLF(STS) ∙
10−3 

4.4912 4.8781 4.6284 4.0703 
FLF(C1) ∙
10−3 

0.9677 0.9407 0.9620 1.0239 
FLF(C2) ∙
10−3 

6.0753 5.2895 5.8584 5.8557 
FLF(C3) ∙
10−3 

12.3425 11.1961 11.9597 11.4522 
PM 0.8659 1.1373 0.9703 0.8122 
PMVS ∙ 10−3 0.4635 0.6946 0.5494 0.2641 
PMSS∙ 10−3 3.5066 2.9737 3.3584 3.9539 

LTC/USD 

RLF(L) ∙ 10−3 5.3013 5.8459 6.4325 3.9071 
RLF(STS) ∙
10−3 

5.2053 5.7269 6.3185 3.8301 
RLF(C1) ∙
10−3 

0.0468 0.0613 0.0639 0.0423 
RLF(C2) ∙
10−3 

0.5601 0.6532 0.7493 0.3916 
RLF(C3) ∙
10−3 

0.4089 0.4843 0.5103 0.3270 
FLF(STS) ∙
10−3 

6.1904 6.6076 7.2043 5.7100 
FLF(C1) ∙
10−3 

1.4763 1.4332 1.4513 1.6000 
FLF(C2) ∙
10−3 

10.8787 9.5686 9.8804 10.2211 
FLF(C3) ∙
10−3 

21.4234 19.5871 19.7093 18.9232 
PM 0.7684 0.9737 1.0589 0.7526 
PMVS ∙ 10−3 0.5474 0.8363 0.9315 0.2353 
PMSS∙ 10−3 6.5813 5.6306 5.7035 5.4774 

 RLF(L) ∙ 10−3 4.4567 5.5485 5.1969 3.0706 
 RLF(STS) ∙

10−3 

4.4077 5.4825 5.1319 3.0116 
 RLF(C1) ∙

10−3 

0.0309 0.0462 0.0422 0.0356 
 RLF(C2) ∙

10−3 

0.4579 0.6333 0.5935 0.3698 
 RLF(C3) ∙

10−3 

0.2601 0.3353 0.3136 0.2392 
XRP/USD FLF(STS) ∙

10−3 

5.0882 6.0244 5.7262 4.6218 
 FLF(C1) ∙

10−3 

1.0286 0.9887 1.0041 1.0570 
 FLF(C2) ∙

10−3 

8.2378 6.4892 7.1847 6.7012 
 FLF(C3) ∙

10−3 

14.5282 11.9674 12.9762 13.1000 
 PM 0.9431 1.5521 1.3568 0.8611 
 PMVS ∙ 10−3 0.4785 1.0102 0.8356 0.2856 
 PMSS∙ 10−3 4.6401 3.4052 3.8779 4.8478 

Note. As in Table 8. 
Source:  author’s work.



 

 

Table 14. The results of the loss measures for VaR(10%): a model with the lowest loss measure 
 Amazon Apple Google Microsoft NVIDIA EURSUD GBPUSD USDJPY BTCUSD ETHUSD LTCUSD XRPUSD 

RLF(L) 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH
-GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-n GARCH-n GARCH-n 
GARCH-
GPD-P 

GARCH-n GARCH-n 

RLF(STS) 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH
-GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-n 
GARCH-
GPD-P 

GARCH-n 
GARCH-
GPD-P 

GARCH-n GARCH-n 

RLF(C1) 
GARCH-
n 

GARCH-
GPD-P 

GARCH
-n 

GARCH-n GARCH-n 
GARCH-
GPD-P 

GARCH-n GARCH-n GARCH-n GARCH-n GARCH-n GARCH-n 

RLF(C2) 
GARCH-
n 

GARCH-
GPD-P 

GARCH
-n 

GARCH-n 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-n GARCH-n GARCH-n GARCH-n GARCH-n GARCH-n 

RLF(C3) 
GARCH-
n 

GARCH-
GPD-P 

GARCH
-
n/GARC
H-GPD-
P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-n GARCH-n GARCH-n GARCH-n GARCH-n 

FLF(STS) 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH
-GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD 

GARCH-n GARCH-n GARCH-n GARCH-n GARCH-n 

FLF(C1) 
GARCH-
GPD-P 

GARCH-t 
GARCH
-t 

GARCH-
GPD 

GARCH-t GARCH-t 
GARCH-
GPD 

GARCH-
GPD 

GARCH-n GARCH-t GARCH-t GARCH-t 

FLF(C2) 
GARCH-
GPD 

GARCH-t 
GARCH
-t 

GARCH-t GARCH-t GARCH-t 
GARCH-
GPD 

GARCH-
GPD 

GARCH-
GPD 

GARCH-t GARCH-t GARCH-t 

FLF(C3) 
GARCH-
GPD 

GARCH-t 
GARCH
-t 

GARCH-t GARCH-t GARCH-t 
GARCH-
GPD 

GARCH-t GARCH-t GARCH-t 
GARCH-
GPD 

GARCH-t 

PM 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH
-GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-n GARCH-n GARCH-n GARCH-n 

PMVS 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH
-GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-n GARCH-n GARCH-n GARCH-n 

PMSS 
GARCH-
GPD 

GARCH-t 
GARCH
-t 

GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t 
GARCH-
GPD 

GARCH-t 

Note. As in Table 8. 
Source: author’s work. 
 
Table 15. The results of the loss measures for VaR(5%): a model with the lowest loss measure 



 

 

 Amazon Apple Google Microsoft NVIDIA EURSUD GBPUSD USDJPY BTCUSD ETHUSD LTCUSD 
XRPUS
D 

RLF(L) 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-n 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

RLF(STS) 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

RLF(C1) 
GARCH-
n 

GARCH-
GPD 

GARCH-
GPD 

GARCH-
GPD 

GARCH-
GPD 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-n 
GARCH-
GPD-P 

GARCH-n 
GARCH-
GPD-P 

GARCH-
n 

RLF(C2) 
GARCH-
n 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

RLF(C3) 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

FLF(STS) 
GARCH-
n 

GARCH-
GPD 

GARCH-
GPD 

GARCH-n 
GARCH-
GPD-P 

GARCH-
GPD 

GARCH-
GPD 

GARCH-
GPD 

GARCH-n 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

FLF(C1) 
GARCH-
GPD 

GARCH-t GARCH-t GARCH-t GARCH-t 
GARCH-
GPD 

GARCH-t 
GARCH-
GPD 

GARCH-
GPD 

GARCH-t GARCH-t 
GARCH-
t 

FLF(C2) 
GARCH-
GPD 

GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t 
GARCH-
GPD 

GARCH-t GARCH-t GARCH-t 
GARCH-
t 

FLF(C3) 
GARCH-
GPD 

GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t 
GARCH-
t 

PM 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

PMVS 
GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

GARCH-
GPD-P 

PMSS 
GARCH-
GPD 

GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t GARCH-t 
GARCH-
t 

Source: author’s work. 
 



 

 

Tables 14 and 15 provide a summary of the models with the lowest loss measure for all times 

series used in the empirical analysis, for VaR at a 10% and 5% coverage level, respectively. At 

a 10% probability level, the GARCH-GPD-P and GARCH-n models resulted in 49 cases (out 

of 144) with the lowest values of the loss measures. At a 5% probability level, the GARCH-

GPD-P model resulted in 78 cases with the lowest values of the loss measures. 

Thirdly, we apply a predictive ability test for penalisation measure 𝑃𝑀(𝜑, 𝑉𝑎𝑅) proposed by 

Şener et al. (2012) to verify the obtained results statistically. Rejecting the null hypothesis 

means that a given model is worse in terms of VaR forecasting measured by the penalisation 

measure than any other competing model. Tables 16 and 17 present the results of the predictive 

ability test for VaR(10%) and VaR(5%). At a 10% coverage level, we do not reject the null 

hypothesis for the GARCH-GPD-P and the GARCH-n models (in almost all cases). This means 

that the differences in VaR forecasts from GARCH-n and GARCH-GPD-P across all four 

competing models are statistically significant. At a 5% coverage level, we can see that the 

GARCH-GPD-P and GARCH-t models are significantly more accurate than other models. 

These results are in line with the ones obtained for the loss functions. 

 

Table 16. The p-values of the predictive ability test (Şener et al., 2012) for VaR(10%) based on the 
penalisation measure 

Assets GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

Amazon 0.6180 0.0000* 0.0000* 1.0000 

Apple 0.0335* 0.0000* 0.0000* 1.0000 

Google 1.0000 0.0000* 0.0000* 1.0000 

Microsoft 1.0000 0.0000* 0.0000* 1.0000 

NVIDIA 0.8460 0.0000* 0.0000* 1.0000 

EUR/USD 0.0000* 0.0000* 0.0000* 1.0000 

GBP/USD 1.0000 0.0000* 0.0000* 0.5023 

USD/JPY 1.0000 0.0000* 0.0000* 0.6388 

BTC/USD 1.0000 0.0000* 0.0000* 0.0000* 

ETH/USD 1.0000 0.0000* 0.0000* 1.0000 

LTC/USD 1.0000 0.0000* 0.0000* 1.0000 

XRP/USD 1.0000 0.0000* 0.0000* 0.0000* 
Note. * indicates that the null hypothesis is rejected at a 5% significance level. 
Source: author’s work. 
 
Table 17. The p-values of the predictive ability test (Şener et al., 2012) for VaR(5%) based on the 
penalisation measure 



 

 

Assets GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

Amazon 0.0000* 0.0000* 0.0000* 1.0000 

Apple 0.0000* 0.3537 0.0000* 1.0000 

Google 0.0000* 1.0000 0.0000* 0.8814 

Microsoft 0.0000* 1.0000 0.0000* 1.0000 

NVIDIA 0.0000* 1.0000 0.0001* 1.0000 

EUR/USD 0.0000* 1.0000 0.0000* 1.0000 

GBP/USD 0.0000* 1.0000 0.0001* 1.0000 

USD/JPY 0.2369 0.0000* 0.0000* 1.0000 

BTC/USD 0.0000* 0.0000* 0.0000* 1.0000 

ETH/USD 0.0000* 0.0148* 0.0000* 1.0000 

LTC/USD 0.0000* 0.1938 0.0000* 1.0000 

XRP/USD 0.0000* 0.0000* 0.0000* 1.0000 
Note. * indicates that the null hypothesis is rejected at a 5% significance level. 
Source: author’s work. 
 

5.4. Forecasting an expected shortfall 

 

In this subsection, we compare the proposed model (the GARCH-GPD-P) against the GARCH-

GPD and two benchmarks, the GARCH-n and the GARCH-t, for the Expected Shortfall 

forecasting. The forecasting procedure is similar to the one for VaR in subsection 0. 

Tables 18 19 present the results of the ES statistical properties for a 10% and 5% coverage 

level, respectively. At a 10% and 5% probability level only ES forecasts from the GARCH-

GPD-P model result in the not-rejection of the null hypothesis. On the other hand, the GARCH-

n model leads to the failing of the unconditional coverage property in 5 cases and the 

independence property in 3 cases, the GARCH-t model leads to the failing of the independence 

property in 3 cases and the GARCH-GPD model leads to the failing of the independence 

property in 2 cases, at a 10% probability level. At a 5% probability, the GARCH-n model leads 

to the failing of the unconditional coverage property in 6 cases and the independence property 

in 2 cases, the GARCH-t model leads to the failing of the unconditional property in 4 cases and 

the independence property in 3 cases and the GARCH-GPD model leads to the failing of the 

unconditional property and the independence property in 1 case. The results indicate that the 

Expected Shortfall forecasts obtained from the GARCH-GPD-P model are better than thos of 

the other competing models. This is somewhat confirmed by the mean of cumulative violations 

𝐻𝑡 that should be in theory equal to 𝛼/2. The mean of cumulative violation process 𝐻𝑡 for the 

GARCH-GPD-P is closer to the desired level than any other competing model. 

 

Table 18. The results of backtesting for ES(10%) based on Du and Escanciano (2016) tests 



 

 

Time 
series 

Statis
tic 

GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

p-value 
Mean 

𝐻𝑡 
p-value 

Mean 
𝐻𝑡 

p-value 
Mean 

𝐻𝑡 
p-value 

Mean 
𝐻𝑡 

Amazon 
DEUC 0.7284 0.0510 0.5887 0.0515 0.4208 0.0523 0.1586 0.0460 

DEIND 0.0010
* 

- 0.0003
* 

- 0.0012
* 

- 0.5472 - 

Apple 
DEUC 0.0126

* 
0.0570 0.0004

* 
0.0600 0.5367 0.0517 0.1700 0.0459 

DEIND 0.4125 - 0.2759 - 0.3879 - 0.9371 - 

Google 
DEUC 0.6399 0.0513 0.0670 0.0552 0.7052 0.0508 0.8382 0.0506 

DEIND 0.0445
* 

- 0.0206
* 

- 0.0449
* 

- 0.3718 - 

Microsoft 
DEUC 0.5150 0.0518 0.0504 0.0555 0.4172 0.0523 0.2488 0.0468 

DEIND 0.1564 - 0.0764 - 0.2140 - 0.3858 - 

Nvidia 
DEUC 0.6284 0.0514 0.1995 0.0536 0.1572 0.0545 0.6640 0.0512 

DEIND 0.0205
* 

- 0.0207
* 

- 0.0661 - 0.5348 - 

EUR/USD 
DEUC 0.5672 0.0517 0.2451 0.0534 0.2319 0.0535 0.2739 0.0532 

DEIND 0.7575 - 0.2791 - 0.8661 - 0.4593 - 

GBP/USD 
DEUC 0.4309 0.0477 0.7011 0.0511 0.5965 0.0484 0.8642 0.0495 

DEIND 0.5643 - 0.4843 - 0.2327 - 0.7765 - 

USD/JPY 
DEUC 0.0245

* 
0.0433 0.3083 0.0470 0.3649 0.0473 0.3156 0.0470 

DEIND 0.3724 - 0.0529 - 0.1788 - 0.4759 - 

BTC/USD 
DEUC 0.0390

* 
0.0420 0.0527 0.0527 0.5175 0.0475 0.9848 0.0499 

DEIND 0.5416 - 0.4537 - 0.5555 - 0.6605 - 

ETH/USD 
DEUC 0.0447

* 
0.0447 0.6197 0.0528 0.4724 0.0460 0.7224 0.0520 

DEIND 0.3114 - 0.2075 - 0.9701 - 0.1606 - 

LTC/USD 
DEUC 0.1379 0.0437 0.7778 0.0512 0.6524 0.0519 0.6753 0.0518 

DEIND 0.4783 - 0.4317 - 0.4118 - 0.4350 - 

XRP/USD 
DEUC 0.0277

* 
0.0376 0.9871 0.0499 0.6980 0.0522 0.7553 0.0482 

DEIND 0.8502 - 0.8329 - 0.8027 - 0.9801 - 

Note. * indicates that the null hypothesis is rejected at a 5% significance level. For the independence 
test DEIND, we calculate statistics up to 5 lags. DEUC, DEIND are the unconditional coverage and 
independence tests, respectively, proposed by Du and Escanciano (2016). 𝐻𝑡 is the cumulative violation 
process. 
Source: author’s work. 
 
Table 19. The results of backtesting for ES(5%) based on Du and Escanciano (2016) tests 



 

 

Time 
series 

Statis
tic 

GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

p-value 
Mean 

𝐻𝑡(5%) 
p-value 

Mean 
𝐻𝑡(5%) 

p-value 
Mean 

𝐻𝑡(5%) 
p-value 

Mean 
𝐻𝑡(5%) 

Amazon 
DEUC 0.0157

* 
0.0299 0.2135 0.0275 0.0464

* 
0.0290 0.4256 0.0246 

DEIND 0.0039
* 

- 0.0276
* 

- 0.0673 - 0.8085 - 

Apple 
DEUC 0.0000

* 
0.0347 0.0001

* 
0.0329 0.2871 0.0272 0.5590 0.0262 

DEIND 0.8345 - 0.7643 - 0.9919 - 0.2187 - 

Google 
DEUC 0.0003

* 
0.0323 0.0075

* 
0.0304 0.5245 0.0263 0.7205 0.0257 

DEIND 0.3295 - 0.5126 - 0.2664 - 0.6382 - 

Microsoft 
DEUC 0.0052

* 
0.0307 0.0176

* 
0.0298 0.1282 0.0283 0.2330 0.0274 

DEIND 0.3715 - 0.3548 - 0.6375 - 0.2524 - 

Nvidia 
DEUC 0.0070

* 
0.0305 0.1460 0.0280 0.3193 0.0270 0.5386 0.0263 

DEIND 0.0005
* 

- 0.0003
* 

- 0.0227
* 

- 0.7602 - 

EUR/USD 
DEUC 0.3532 0.0269 0.7455 0.0256 0.8299 0.0254 0.7884 0.0245 

DEIND 0.3936 - 0.5435 - 0.6237 - 0.2494 - 

GBP/USD 
DEUC 0.0055

* 
0.0306 0.0179

* 
0.0297 0.8459 0.0254 0.9584 0.0249 

DEIND 0.0719 - 0.0037
* 

- 0.0669 - 0.5972 - 

USD/JPY 
DEUC 0.4784 0.0264 0.7762 0.0244 0.8108 0.0245 0.9918 0.0250 

DEIND 0.8998 - 0.2625 - 0.6726 - 0.1678 - 

BTC/USD 
DEUC 0.0897 0.0292 0.1403 0.0287 0.1071 0.0290 0.8934 0.0247 

DEIND 0.2789 - 0.0257
* 

- 0.6941 - 0.1793 - 

ETH/USD 
DEUC 0.4789 0.0273 0.3073 0.0284 0.2041 0.0208 0.6237 0.0234 

DEIND 0.1311 - 0.1568 - 0.7552 - 0.1719 - 

LTC/USD 
DEUC 0.7242 0.0260 0.6869 0.0261 0.5138 0.0270 0.9312 0.0252 

DEIND 0.3733 - 0.5664 - 0.6328 - 0.3182 - 

XRP/USD 
DEUC 0.4526 0.0225 0.5390 0.0230 0.2253 0.0210 0.3609 0.0220 

DEIND 0.3556 - 0.1299 - 0.9194 - 0.3142 - 

Note. As in Table 18. 
Source: author’s work. 
 

6. Conclusions 

 

The high and low prices and their range are believed to provide additional and useful 

information regarding the volatility of returns. Therefore, incorporating such prices in volatility 

models can lead to better estimates and forecasts of the conditional variance and covariance, 

but they may also be used to obtain more accurate estimates of risk measures. There is a growing 

body of literature showing that range-based models or models that use range-based estimators 

may outperform standard volatility models (see, see e.g. Asai, 2013; Brandt & Jones, 2006; 

Chou, 2005; Fałdziński et al., 2024; Fiszeder & Fałdziński, 2019; Fiszeder & Perczak, 2016; 

Fiszeder et al., 2019; Molnár, 2016; Xie, 2019). However, high and low prices are rarely used 

to describe the volatility of extreme observations. It seems natural that high and low prices 

provide additional insight into the dynamic behaviour of the returns that are at the tails of their 

distribution. In this paper, we propose an extension of the GARCH-GPD approach of McNeil 



 

 

and Frey (2000) by incorporating the range-based estimator to describe the magnitudes of 

threshold exceedances. We thus extend the Generalised Pareto Distribution by adding a 

meaningful covariate. The proposed model, the GARCH-GPD-P, is compared to the GARCH-

GPD and two standard benchmarks i.e. the GARCH model with the normal and t-distributed 

errors. 

We evaluate the competing models based on the Monte Carlo simulation and empirical time 

series. For the simulated time series, the GARCH-GPD-P is able to produce more accurate VaR 

and Expected Shortfall forecasts, especially at higher coverage levels (like 5%). At lower 

coverage levels, the differences in risk measures forecasting are not significant and it is difficult 

to determine which model is the best. As regards empirical time-series, there is even stronger 

evidence that the proposed GARCH-GPD-P model is able to perform more efficiently for high 

probabilities than the other competing models. For the Expected Shortfall forecasting, it seems 

to be of particular use as we obtained the most accurate estimates for the GARCH-GPD-P 

model. 

This study can be extended in the future to better describe returns that are not deemed extreme 

observations but are forecasted by the GARCH-GPD-P model. One potential way to achieve 

this goal that is considered in the literature is to combine several VaR forecasting procedures 

(see Jeon & Taylor, 2013; McAleer et al., 2010, 2013). 

The author would like to thank the anonymous reviewers for helpful and constructive 

comments. 
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Time 
series 

First forecast 
date (1,000 obs. 

estimation) 

First forecast 
date (500 obs. 

estimation) 

Forecast end 
date 

Number of 
forecasts (1,000 
obs. estimation) 

Number of 
forecasts (500 

obs. estimation) 

Amazon Jan 2nd, 2010 Jan 2nd, 2008 May 31st, 2023 3,382 3,882 

Apple Jan 2nd, 2010 Jan 2nd, 2008 May 31st, 2023 3,382 3,882 

Google Jan 2nd, 2010 Jan 2nd, 2008 May 31st, 2023 3,382 3,882 

Microsoft Jan 2nd, 2010 Jan 2nd, 2008 May 31st, 2023 3,382 3,882 

NVIDIA Jan 2nd, 2010 Jan 2nd, 2008 May 31st, 2023 3,382 3,882 

EURSUD Nov 9th, 2009 Dec 5th, 2007 May 31st, 2023 3,512 4,012 

GBP/USD Nov 9th, 2009 Dec 5th, 2007 May 31st, 2023 3,512 4,012 

USD/JPY Nov 9th, 2009 Dec 5th, 2007 May 31st, 2023 3,512 4,012 

BTC/USD Sep 27th, 2017 May 15th, 2016 May 31st, 2023 2,073 2,573 

ETH/USD Sep 27th, 2020 May 16th, 2019 May 31st, 2023 977 1,477 

LTC/USD Sep 27th, 2018 May 15th, 2017 May 31st, 2023 1,708 2,208 

XRP/USD Sep 27th, 2020 May 16th, 2019 May 31st, 2023 977 1,477 

Source: author’s work. 
 
Table A2. The results of backtesting tests for VaR(10%): stocks 



 

 

Time series 
Stat
istic 

GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

Value p-value Value p-value Value p-value Value p-value 

AMAZON 

LRU

C  
4.0791 0.0434 0.5038 0.4778 0.3311 0.5650 0.1105 0.7395 

LRI

ND 

2.4336 0.1188 9.5546 0.0020
* 

7.0744 0.0078
* 

13.224
7 

0.0003
* LRC

C 

6.5127 0.0385 10.058
4 

0.0065
* 

7.4056 0.0247
* 

13.335
2 

0.0013
* JUC 4.1365 0.0392

* 
0.4398 0.5072 0.3868 0.5213 0.0784 0.7839 

JIND 11.842
8 

0.0199
* 

25.228
1 

0.0075
* 

16.527
6 

0.0134
* 

17.415
7 

0.0122
* JCC 19.007

0 
0.0019

* 
26.697

6 
0.0096

* 
16.788

9 
0.0176

* 
17.650

4 
0.0166

* 

APPLE 

LRU

C  
0.0018 0.9659 3.1891 0.0741 0.0959 0.7569 1.3078 0.2528 

LRI

ND 
0.0000 0.9986 0.0987 0.7535 0.1254 0.7232 0.8083 0.3686 

LRC

C 
0.0018 0.9991 3.2877 0.1932 0.2213 0.8953 2.1161 0.3471 

JUC 0.0092 0.9235 3.1811 0.0745 0.1301 0.7184 1.2320 0.2670 

JIND 6.1819 0.0925 6.6702 0.0484
* 

6.4365 0.0806 2.5328 0.3655 

JCC 6.1249 0.2943 9.4953 0.0909 6.0720 0.1646 4.6959 0.4541 

GOOGLE 

LRU

C  
5.5084 0.0189

* 
0.6183 0.4317 0.0257 0.8726 1.3650 0.2427 

LRI

ND 
3.9694 0.0463

* 
1.7509 0.1858 1.9726 0.1602 3.1286 0.0769 

LRC

C 
9.4778 0.0087

* 
2.3692 0.3059 1.9983 0.3682 4.4937 0.1057 

JUC 5.7103 0.0159
* 

0.6895 0.4167 0.0469 0.8290 1.2840 0.2575 

JIND 12.732
6 

0.0201
* 

4.7349 0.1478 19.336
1 

0.0100
* 

2.4504 0.3812 

JCC 37.322
4 

0.0057
* 

5.3820 0.2064 18.469
4 

0.0147
* 

4.2231 0.3127 

MICROSO
FT 

LRU

C  
5.2328 0.0222

* 
0.8091 0.3684 0.1100 0.7402 0.1270 0.7216 

LRI

ND 
0.9430 0.3315 1.2956 0.2550 1.3378 0.2474 1.7420 0.1869 

LRC

C 
6.1758 0.0456

* 
2.1047 0.3491 1.4478 0.4849 1.8690 0.3928 

JUC 5.4046 0.0199
* 

0.8834 0.3520 0.1489 0.6999 0.0902 0.7711 

JIND 7.2537 0.0632 5.1827 0.1177 7.4774 0.0575 0.9888 0.7242 

JCC 21.074
1 

0.0123
* 

5.4394 0.1979 6.5939 0.1199 1.1588 0.8418 

NVIDIA 

LRU

C  
3.5074 0.0611 0.4528 0.5010 0.0257 0.8726 1.1061 0.2929 

LRI

ND 
0.0068 0.9341 0.0442 0.8335 0.1928 0.6606 0.4240 0.5150 

LRC

C 
3.5142 0.1725 0.4970 0.7800 0.2185 0.8965 1.5300 0.4653 

JUC 3.7415 0.0570 0.4496 0.4907 0.0274 0.8659 1.1375 0.2896 

JIND 7.2300 0.0629 20.503
8 

0.0081
* 

15.013
0 

0.0148
* 

1.1509 0.6834 

JCC 18.453
3 

0.0164
* 

16.590
7 

0.0147
* 

14.102
7 

0.0260
* 

2.7342 0.5162 

Note. * indicates that the null hypothesis is rejected at a 5% significance level. LRUC is the unconditional 
coverage test proposed by Kupiec (1995), LRIND, LRCC are the independence and conditional coverage 
tests, respectively, proposed by Christoffersen (1998). JUC, JIND, JCC are the unconditional coverage, 
independence and conditional coverage tests, respectively, proposed by Candelon et al. (2011). For JIND 
and JCC, the number of moments is fixed to 5, p-values for JUC, JIND, JCC are obtained by Dufour’s (2006) 
Monte Carlo procedure based on 10,000 repetitions. 
Source: author’s work. 
 
Table A3. The results of backtesting tests for VaR(10%) – currencies 



 

 

Time series 
Stat
istic 

GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

Value P-value Value P-value Value P-value Value P-value 

EUR/USD 

LRU

C  
1.9391 0.1638 0.3823 0.5364 0.0134 0.9078 2.0916 0.0932 

LRI

ND 

1.2127 0.2708 0.0097 0.9214 0.3539 0.5519 0.1695 0.6806 

LRC

C 

3.1518 0.2068 0.3920 0.8220 0.3673 0.8322 2.2611 0.3229 

JUC 2.0339 0.1561 0.3746 0.5408 0.0135 0.9080 2.1980 0.1330 

JIND 2.4774 0.3704 1.6541 0.5510 4.1887 0.1751 2.7031 0.3405 

JCC 5.5107 0.1979 1.8269 0.6987 4.2697 0.2952 6.0168 0.1628 

GBP/USD 

LRU

C  
6.2695 0.0123

* 
0.2628 0.6082 0.0003 0.9874 2.0172 0.1555 

LRI

ND 
1.0918 0.2961 1.2412 0.2652 0.8109 0.3678 1.2425 0.2650 

LRC

C 
7.3613 0.0252

* 
1.5040 0.4714 0.8112 0.6666 3.2597 0.1960 

JUC 6.8452 0.0088
* 

0.2674 0.6050 0.0002 0.9893 2.1179 0.1397 

JIND 4.2050 0.1815 2.4302 0.3894 0.6305 0.8594 0.7408 0.8218
7 JCC 14.308

6 
0.0240

* 
3.0071 0.4712 0.6293 0.9513 2.9588 0.4771 

USD/JPY 

LRU

C  
6.3998 0.0114

* 
0.1070 0.7436 0.0134 0.9078 2.9427 0.0863 

LRI

ND 
3.3961 0.0654 5.0150 0.0251

* 
3.7122 0.0540 1.6874 0.1939 

LRC

C 
9.7949 0.0075

* 
5.1219 0.0772 3.7256 0.1552 4.6301 0.0988 

JUC 6.6806 0.0085
* 

0.0759 0.0784 0.0040 0.9417 2.9232 0.0833 

JIND 1.8227 0.5077 7.2026 0.0599 6.0349 0.0906 5.5492 0.1085 

JCC 9.3026 0.0613 7.3839 0.1065 6.0673 0.1701 9.2916 0.0618 

Note. As in table A2. 
Source: author’s work. 
 
Table A4. The results of backtesting tests for VaR(10%): cryptocurrencies 



 

 

Time 
series 

Statisti
c 

GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

Value p-value Value p-value Value p-value Value 
p-

value 

BTC/USD 

LRUC  26.992
5 

0.0000
* 

0.5834 0.4450 0.232
1 

0.6300 0.344
9 

0.557
0 LRIND 6.3575 0.0117

* 
4.7939 0.0286

* 
2.776

2 
0.0957 0.026

1 
0.871

6 LRCC 33.350
0 

0.0000
* 

5.3773 0.0680 3.008
3 

0.2222 0.371
0 

0.830
7 JUC 33.518

5 
0.0001

* 
0.6637 0.4079 0.175

7 
0.6737 0.285

8 
0.581

1 JIND 5.2001 0.1149 12.865
8 

0.0179
* 

9.356
2 

0.0331
* 

3.955
3 

0.196
2 JCC 64.762

1 
0.0037

* 
13.417

1 
0.0275

* 
9.576

0 
0.0528 4.821

1 
0.245

0 

ETH/USD 

LRUC  16.633
0 

0.0000
* 

0.2473 0.6190 0.103
8 

0.7474 2.876
2 

0.089
9 LRIND 0.1029 0.7484 0.1566 0.6923 0.000

2 
0.9885 0.465

2 
0.495

2 LRCC 16.735
8 

0.0002
* 

0.4039 0.8171 0.104
0 

0.9493 3.341
4 

0.188
1 JUC 20.402

7 
0.0001

* 
0.1716 0.6716 0.055

9 
0.8165 2.850

2 
0.094

0 JIND 4.3022 0.1410 1.2979 0.5918 1.578
3 

0.5162 1.881
5 

0.489
7 JCC 34.508

9 
0.0062

* 
1.5168 0.7297 1.689

3 
0.6895 6.078

1 
0.163

0 

LTC/USD 

LRUC  28.956
9 

0.0000
* 

0.3094 0.5780 0.420
8 

0.5166 0.027
6 

0.868
1 LRIND 2.5518 0.1102 1.1678 0.2799 3.192

3 
0.0740 0.928

2 
0.955

8 LRCC 31.508
6 

0.0000
* 

1.4772 0.4778 3.613
1 

0.1642 0.955
8 

0.620
1 JUC 38.443

3 
0.0001

* 
0.3174 0.5903 0.408

9 
0.5206 0.007

6 
0.912

7 JIND 1.0381 0.6958 1.8565 0.4593 4.404
9 

0.1498 2.992
3 

0.269
3 JCC 47.225

7 
0.0053

* 
2.3091 0.5715 4.580

3 
0.2515 3.029

8 
0.435

4 

XRP/US
D 

LRUC  32.036
6 

0.0000
* 

0.4531 0.5009 1.055
0 

0.3044 1.172
7 

0.278
8 LRIND 0.7016 0.4022 0.2634 0.6078 0.021

1 
0.8846 0.994

1 
0.318

7 LRCC 32.738
3 

0.0000
* 

0.7165 0.6989 1.076
1 

0.5839 2.166
8 

0.338
4 JUC 45.001

1 
0.0001

* 
0.3537 0.5651 0.928

5 
0.3272 1.270

1 
0.252

2 JIND 0.7966 0.7484 1.0683 0.6641 2.364
6 

0.3541 2.802
6 

0.292
7 JCC 61.381

5 
0.0029

* 
1.5788 0.7218 3.769

6 
0.3306 3.806

9 
0.330

3 Note. As in Table A2. 
Source: author’s work. 
 
Table A5. The results of backtesting tests for VaR(5%) – stocks 



 

 

Time series 
Stat
istic 

GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

Value p-value Value p-value Value p-value Value p-value 

AMAZON 

LRU

C  
0.0224 0.8810 0.5991 0.4389 0.2143 0.6434 0.2143 0.6434 

LRI

ND 

5.6770 0.0172
* 

4.2360 0.0396
* 

7.8459 0.0051
* 

2.6128 0.1060 

LRC

C 

5.6994 0.0579 4.8351 0.0891 8.0602 0.0178
* 

2.8272 0.2433 

JUC 0.0515 0.8233 0.6948 0.3938 0.2847 0.5960 0.2847 0.5935 

JIND 4.9644 0.1125 5.440 0.1166 7.4888 0.0474
* 

4.7132 0.1280 

JCC 4.9285 0.2174 4.9982 0.2178 6.7962 0.1182 4.2881 0.2814 

APPLE 

LRU

C  
1.3452 0.2461 4.9403 0.0262

* 
0.1055 0.7454 0.2343 0.6283 

LRI

ND 
0.1057 0.7452 0.0158 0.9001 0.0004 0.9845 0.5244 0.4690 

LRC

C 
1.4508 0.4841 4.9561 0.0839 0.1058 0.9485 0.7587 0.6843 

JUC 1.4385 0.2279 4.7290 0.0291
* 

0.0609 0.7908 0.1669 0.6873 

JIND 2.3000 0.3695 0.3083 0.9429 2.3675 0.3566 1.6148 0.5066 

JCC 3.4301 0.3773 5.2756 0.1901 2.7586 0.4780 1.7967 0.6730 

GOOGLE 

LRU

C  
0.1635 0.6860 0.5991 0.4389 0.6474 0.4211 0.3829 0.5361 

LRI

ND 
1.1627 0.2809 1.3238 0.2499 1.6162 0.2036 0.8293 0.3625 

LRC

C 
1.3262 0.5153 1.9230 0.3823 2.2635 0.3225 1.2122 0.5455 

JUC 0.1072 0.7456 0.6948 0.3875 0.5448 0.4677 0.4684 0.4959 

JIND 21.430
8 

0.0087
* 

40.497
6 

0.0031
* 

17.582
2 

0.0118
* 

0.8869 0.7313 

JCC 26.364
0 

0.0098
* 

27.592
9 

0.0082
* 

28.246
5 

0.0086
* 

1.1398 0.8248 

MICROSO
FT 

LRU

C  
0.0521 0.8195 1.0188 0.3145 0.1481 0.7003 0.5232 0.4695 

LRI

ND 
1.0671 0.3016 0.9807 0.3220 1.2124 0.2708 1.7593 0.1847 

LRC

C 
1.1192 0.5714 1.9925 0.3693 1.3606 0.5065 2.2825 0.3194 

JUC 0.0925 0.7792 1.1114 0.2941 0.2094 0.6445 0.2847 0.6009 

JIND 3.5941 0.2025 3.2414 0.2389 10.144
9 

0.0247
* 

4.0428 0.1580 

JCC 3.4580 0.3708 3.7736 0.3289 8.6268 0.0666
* 

3.9920 0.2986 

NVIDIA 

LRU

C  
0.4851 0.4861 1.5291 0.2163 0.0940 0.7592 0.5991 0.4389 

LRI

ND 
0.2172 0.6411 0.0940 0.7592 0.0832 0.7729 0.2803 0.5965 

LRC

C 
0.7023 0.7039 1.6231 0.4442 0.1772 0.9152 0.8795 0.6442 

JUC 0.4737 0.4807 1.4475 0.2207 0.0949 0.7589 0.5822 0.4320 

JIND 6.2601 0.0726 10.686
2 

0.0241
* 

5.1656 0.1013 0.6773 0.8045 

JCC 5.7040 0.1675 10.040
2 

0.0507 4.8906 0.2194 1.0570 0.8488 

Note. As in Table A2. 
Source: author’s work. 
 
Table A6. The results of backtesting tests for VaR(5%): currencies 



 

 

Time series 
Stat
istic 

GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

Value p-value Value p-value Value p-value Value p-value 

EUR/USD 

LRU

C  
0.9921 0.3192 1.1452 0.2846 0.7194 0.3963 1.1452 0.2846 

LRI

ND 

0.0135 0.9074 0.0439 0.8341 0.1560 0.6929 0.9439 0.3313 

LRC

C 

1.0056 0.6048 1.1891 0.5518 0.8754 0.6455 2.0891 0.3518 

JUC 1.0411 0.3045 1.2063 0.2737 0.7494 0.3954 0.0925 0.7655 

JIND 6.8731 0.0639 1.2510 0.6170 4.2890 0.1583 1.0700 0.6629 

JCC 10.662
0 

0.0465
* 

3.3908 0.3906 6.4944 0.1316 1.0976 0.8293 

GBP/USD 

LRU

C  
0.5862 0.4439 1.7761 0.1826 0.0022 0.9624 0.1662 0.6835 

LRI

ND 
0.0004 0.9846 0.1071 0.7434 0.8959 0.3439 0.2623 0.6085 

LRC

C 
0.5865 0.7458 1.8832 0.3900 0.8981 0.6382 0.4286 0.8071 

JUC 0.5658 0.0452
* 

1.6718 0.1932 0.0022 0.9566 0.1631 0.6738 

JIND 9.5343 0.0330
* 

9.1258 0.0318
* 

4.5468 0.1411 0.5752 0.8484 

JCC 8.7007 0.0690 9.6805 0.0561 4.5092 0.2585 0.6444 0.9337 

USD/JPY 

LRU

C  
1.1452 0.2846 0.4570 0.4990 0.0008 0.9769 0.0008 0.9769 

LRI

ND 
0.0177 0.8942 0.3870 0.5339 0.5052 0.4772 0.1308 0.7176 

LRC

C 
1.1629 0.5591 0.8439 0.6558 0.5060 0.7765 0.1317 0.9363 

JUC 1.0411 0.2995 0.5396 0.4640 0.0102 0.9230 0.0102 0.9349 

JIND 0.0303 0.9999 2.7671 0.3096 0.5864 0.8472 1.7285 0.4937 

JCC 1.1197 0.8346 3.2947 0.4106 0.5890 0.9472 1.7212 0.6941 

Note. As in Table A2. 
Source: author’s work. 
 
Table A7. The results of backtesting tests for VaR(10%): cryptocurrencies 



 

 

Time 
series 

Statisti
c 

GARCH-n GARCH-t GARCH-GPD GARCH-GPD-P 

Value p-value Value p-value Value p-value Value 
p-

value 

BTC/USD 

LRUC  26.992
5 

0.0000
* 

0.5834 0.4450 0.232
1 

0.6300 0.344
9 

0.557
0 LRIND 6.3575 0.0117

* 
4.7939 0.0286

* 
2.776

2 
0.0957 0.026

1 
0.871

6 LRCC 33.350
0 

0.0000
* 

5.3773 0.0680 3.008
3 

0.2222 0.371
0 

0.830
7 JUC 33.518

5 
0.0001

* 
0.6637 0.4079 0.175

7 
0.6737 0.285

8 
0.581

1 JIND 5.2001 0.1149 12.865
8 

0.0179
* 

9.356
2 

0.0331
* 

3.955
3 

0.196
2 JCC 64.762

1 
0.0037

* 
13.417

1 
0.0275

* 
9.576

0 
0.0528 4.821

1 
0.245

0 

ETH/USD 

LRUC  16.633
0 

0.0000
* 

0.2473 0.6190 0.103
8 

0.7474 2.876
2 

0.089
9 LRIND 0.1029 0.7484 0.1566 0.6923 0.000

2 
0.9885 0.465

2 
0.495

2 LRCC 16.735
8 

0.0002
* 

0.4039 0.8171 0.104
0 

0.9493 3.341
4 

0.188
1 JUC 20.402

7 
0.0001

* 
0.1716 0.6716 0.055

9 
0.8165 2.850

2 
0.094

0 JIND 4.3022 0.1410 1.2979 0.5918 1.578
3 

0.5162 1.881
5 

0.489
7 JCC 34.508

9 
0.0062

* 
1.5168 0.7297 1.689

3 
0.6895 6.078

1 
0.163

0 

LTC/USD 

LRUC  28.956
9 

0.0000
* 

0.3094 0.5780 0.420
8 

0.5166 0.027
6 

0.868
1 LRIND 2.5518 0.1102 1.1678 0.2799 3.192

3 
0.0740 0.928

2 
0.955

8 LRCC 31.508
6 

0.0000
* 

1.4772 0.4778 3.613
1 

0.1642 0.955
8 

0.620
1 JUC 38.443

3 
0.0001

* 
0.3174 0.5903 0.408

9 
0.5206 0.007

6 
0.912

7 JIND 1.0381 0.6958 1.8565 0.4593 4.404
9 

0.1498 2.992
3 

0.269
3 JCC 47.225

7 
0.0053

* 
2.3091 0.5715 4.580

3 
0.2515 3.029

8 
0.435

4 

XRP/US
D 

LRUC  32.036
6 

0.0000
* 

0.4531 0.5009 1.055
0 

0.3044 1.172
7 

0.278
8 LRIND 0.7016 0.4022 0.2634 0.6078 0.021

1 
0.8846 0.994

1 
0.318

7 LRCC 32.738
3 

0.0000
* 

0.7165 0.6989 1.076
1 

0.5839 2.166
8 

0.338
4 JUC 45.001

1 
0.0001

* 
0.3537 0.5651 0.928

5 
0.3272 1.270

1 
0.252

2 JIND 0.7966 0.7484 1.0683 0.6641 2.364
6 

0.3541 2.802
6 

0.292
7 JCC 61.381

5 
0.0029

* 
1.5788 0.7218 3.769

6 
0.3306 3.806

9 
0.330

3 Note. As in Table A2. 
Source: author’s work. 


