Barbara Dańska-Borsiak

(Polish) PDF


Econometric models based on panel data, in which the presence of unobservable, constant over time, group-specific effects is assumed are called panel data models. The constancy over time of the group effects causes some methodological complications in the case of dynamic models. In this paper the main ideas of the two methods, which are most often used for estimation of dynamic panel data models are presented. The methods are: first-differenced GMM and system GMM. The main goal of this paper is to present some examples of applications of dynamic panel data models in micro and macroeconomic analyses. Special interest is in showing the consequences of using different methods according to the type of data – macro or micro.


dynamic model, panel data, first differenced GMM, system GMM, estimation methods, the growth model, production model


[1] Ahn S.C., Schmidt P., [1995], Efficient estimation of models for dynamic panel data, „Journal of Econometrics”, 68, s. 5-28.

[2] Anderson, T.W., Hsiao C., [1981], Estimation of Dynamic models with Error Components, „Journal of the American Statistical Association”, 76, 598-606.

[3] Anderson T.W., Hsiao C., [1982], Formulation and estimation of dynamic models using panel data, „Journal of Econometrics”, 18, 47-82.

[4] Arellano M., Bover O., [1995], Another look at the instrumental variable estimation of error –components models, „Journal of Econometrics”, Vol. 68, s. 29-52.

[5] Arellano M., Bond S., [1991], Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations, „Review of Economic Studies”, Vol. 58, s. 277-297.

[6] Baltagi B., [2008], Econometric Analysis of Panel Data, 4th edn. Wiley, Chichester.

[7] Barro R.J., Sala-i-Martin X., [1992], Convergence, „Journal of Political Economy”, Vol. 100, s. 223-251.

[8] Blundell R., Bond S., [1998], Initial conditions and moment restrictions i dynamic panel data models, „Journal of Econometrics”, Vol. 87(1), s. 115-143.

[9] Blundell R., Bond S., [2000], GMM estimation with persistent panel data: an application to production functions, „Econometric Reviews”, Vol. 19, s. 321-340.

[10] Bond S., Hoeffler A., Temple J., [2001], GMM estimation of empirical growth models, CEPR discussion paper, 3048, Centre for Economic Policy Research, London, United Kingdom.

[11] Bond S., [2002], Dynamic panel data models: a guide to micro data methods and practice, Centre for microdata and practice (CEMMAP), working paper CWP09/02.

[12] Bond S., Windmeijer F. [2005], Reliable inference for GMM estimators? Finite sample properties of alternative test procedures in linear panel data models, „Econometric Reviews”, Vol. 24(1), s. 1-37.

[13] Caselli F., Esquivel G., Lefort F. [1996], Reopening the convergence debate: anew look at cross-country growth empirics, „Journal of Economic Growth”, Vol. 1, s. 363-389.

[14] Chamberlain G., [1982], Multivariate Regression Models for Panel Data, „Journal of Econometrics”, Vol. 18, s. 5-46.

[15] Dańska-Borsiak B., [2008], Wybrane zagadnienia stosowalności Uogólnionej Metody Momentów dla modeli klasycznych i panelowych, „Przegląd Statystyczny”, tom 55(3), s. 47-60.

[16] Hausman J.A., Taylor W.E., [1981], Panel data and unobservable individual effects, „Econometrica”, Vol. 49, 1377-1398.

[17] Hsiao C., [2003], Analysis of Panel Data, 2nd edn. Cambridge, Cambridge University Press.

[18] Islam N., [1995], Growth empirics: a panel data approach, „Quarterly Journal of Economics”, Vol. 110(4), s. 1127-1170.

[19] Mankiw N., Romer D., Weil D., [1992], A contribution to the empirics of economic growth, „Quarterly Journal of Economics”, Vol. 107(2), s. 407-437.

[20] Staiger D., Stock J., [1997], Instrumental variables regression with weak instruments, „Econometrica”, Vol. 65, 557-586.

[21] Windmeijer F., [2005], A finite sample correction for the variance of linear efficient two-step GMM estimators, „Journal of Econometrics”, Vol. 126, s. 25-51.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0