Ewa Wędrowska

(Polish) PDF


Everywhere where there is need for identification and measurement of indeterminacy of the distributions studied we can talk about entropy. The need to measure the degree of diversity occurs in studies on numerous systems, processes and phenomena, in particular in studies on socioeconomic phenomena. That is why in studies on those phenomena the measures or models defined on grounds of the information theory are used increasingly often. The paper presents categorization of notions and characteristics of the entropy of a discrete random variable. In addition to Shannon’s entropy, the Rényi’s and Tsallis entropies were applied for studies on the properties of distributions in case of probabilities of the random variables. The notion of entropy stemming from thermodynamics found application in many fields of sciences. Shannon’s entropy was defined on the grounds of the information theory, the Rényi’s entropy is the result of generalization of the Kolmogorov-Nagumo average while the Tsallis entropy is a certain function of Rényi’s entropy. The present paper unifies these approaches by presenting one general model of concentration measure that applies Rényi’s entropy.


Shannon’s entropy, Rényi’s entropy, Tsallis entropy, concentration measure


[1] Attaran M., [1985], Industrial diversity and economic performance in U.S. areas, The Annals of Regional Science 20, s. 44-54.

[2] Bajo O., Salas R., [2002], Inequality foundations of concentration measures: An application to the Hannah-Kay indices, Spanish Economic Review 4, s. 311-316.

[3] Campos D., Isaza J.F., [2009], A geometrical index for measuring species diversity, Ecological Indicators 9, s. 651-658.

[4] Chakrabarti C.G., Chakrabarty I., [2005], Shannon entropy: axiomatic characterization and application, International Journal of Mathematics and Mathematical Sciences, Vol. 17, s. 2847-2854.

[5] Czachor M., Naudts J., [2002], Thermostatistics based on Kolmogorov-Nagumo averages: unifying framework for extensive and nonextensive generalizations, Physics Letters A 298, s. 369-374.

[6] Garbaczewski P., [2006], Differential Entropy and Dynamics of Uncertainty, „Journal of Statistical Physics”, Vol. 123, No. 2, s. 315-355.

[7] Hackbart M.W., Anderson D.A., [1975], On measuring economic diversification, Land Economics 51, s. 374-378.

[8] Hibbard L.S., [2004], Region segmentation using information divergence measures, Medical Image Analysis 8, s. 233-244.

[9] Jacquemin A.P., Berry C.H., [1979], Entropy measure of diversification and corporate growth, „Journal of Industrial Economics” 27 (4), s. 359-369.

[10] Koen F., [2007], Entropy and information theory, [w:] Hanusch H., Pyka A. (red.), The Elgar Companion to Neo-Schumpeterian Economics.

[11] Kumar R., Kumar S., Kumar A., [2010], A New Measure of Probabilistic Entropy and its Properties, Applied Mathematical Sciences, Vol. 4, s. 1387-1394.

[12] Kuriata E., [2001], Teoria informacji i kodowania, Oficyna Wydawnicza Politechniki Zielonogórskiej.

[13] Lavenda B.H., [2004], Mean Entropies, Open Sys. Information Dyn. 12, s. 289-302.

[14] Lavenda B.H., [2006], Geometric Entropies of Mixing (EOM), Open Sys. Information Dyn. 13, s. 91-101.

[15] Masi M., [2005], A step beyond Tsallis and Rényi entropies, Physics Letters A 338, s. 217-224.

[16] Mayoral M.M., [1998], Renyi’s entropy as an index of diversity in simple-stage cluster sampling, „Journal of Information Sciences” 105, s. 101-114.

[17] McBratney A., Minasny B., [2007], On measuring pedodiversity, Geoderma 141, s. 149-154.

[18] Nanda A.K., Paul P., [2006], Some results on generalized residual entropy, Information Sciences 176 (1), s. 27-47.

[19] Principe J.C., Xu D., Fisher III J.W., [????], Information-theoretic learning, in: Haykin S. (ed.), Unsupervised Adaptive Filtering. Wiley, New York, s. 265-319.

[20] Przybyszewski R., Wędrowska E., [2005], Algorytmiczna teoria entropii, „Przegląd Statystyczny” nr 2, tom 52 Warszawa, s. 85-102.

[21] Roeske-Słomka I., [1994], Klasyczne a entropijne miary koncentracji i asymetrii w badaniu rozmieszczenia ludności, Zesz. Nauk. AE Pozn. Seria I, nr 219, s. 48-59.

[22] Sharma B.D., Taneja I.J., [1975], Entropy of type (a, b) and other generalized measures in information theory, Metrika 22, s. 205-215.

[23] Troutt M. D., Acar W., [2005], A Lorenz-Pareto measures of pure diversification, „European Journal of Operational Research” 167, s. 543-549.

[24] Wędrowska E., [2003], Datalogiczna miara ilości informacji strukturalnej jako instrument zarządzania zasobami informacji statystycznej, [w:] „Pozyskiwanie wiedzy i zarządzanie wiedzą”, Prace Naukowe Akademii Ekonomicznej we Wrocławiu, nr 975 Wrocław, s. 447-459.

[25] Woodward P.M., [1959], Wstęp do teorii informacji, PWN, Warszawa.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0