Emil Panek

(Polish) PDF


This article is part of a trend of few works of mathematical economics containing proofs of the so-called turnpike theorems in the non-stationary Neumann-Gale economies. Using the idea of the proof of theorem 5 in the article Panek (2013b) the intermediate version was proven, that stands between the “strong” and the “very strony” turnpike theorem in the non-stationary Gale economy. It states that if in the non-stationary Gale’s economy the optimal growth process in a certain period of time reaches the turnpike and the (von Neumann) prices do not change to abruptly, than irrespectively of the length of the horizon, such a process for all subsequent periods (except for perhaps the final time) can be found in the turnpike’s proximity.


non-stationary Gale economy, production set, technological and economic production efficiency, von Neumanna equilibrium, production turnpike


Czeremnych J. N., (1982), Analiz powiedienija trajektorii dynamiki narodnochoziajstwiennych modeliej, Nauka, Moskwa.

Gantz D., (1980), A Strong Turnpike Theorem for a Nonstationary von Neumann-Gale Production Model, Econometrica, 48 (7), 1977-90.

Joshi S., (1997), Turnpike Theorems in Nonconvex Nonstationary Envirenments, International Economic Review, 38 (1), 225-248.

Keeler E. B., (1972), A Twisted Turnpike, International Economic Review, 13 (1), 160-166.

Panek E., (2003), Ekonomia matematyczna, Wyd. AEP, Poznań.

Panek E., (2013a), Niestacjonarny model von Neumanna z graniczną technologią, Studia Oecnomica Posnaniensia, 1 (1), 49-68.

Panek E., (2013b), „Słaby” i ”bardzo silny” efekt magistrali w niestacjonarnej gospodarce Gale’a z graniczną technologią, Przegląd Statystyczny, 60 (3), 291-303.

Panek E., (2014), Niestacjonarna gospodarka Gale’a z rosnącą efektywnością produkcji na magistrali, Przegląd Statystyczny, 61 (1), 6-15.

Takayama A., (1985), Mathematical Economics, Cambrige Univ. Press, Cambridge.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0