Witold Orzeszko

(Polish) PDF


The BDS test is one of the most important and most commonly used tools for detection of nonlinearity in time series. In the paper, the size of the BDS test is assessed using Monte Carlo simulations. The simulation uses pseudo-random series of different length, generated from seven distributions with different properties. In the research, the approximation of the fi nite sample distribution of the BDS statistic was performed using three methods: the classical one – based on the asymptotic normal distribution and two resampling methods: the bootstrap and the permutation technique.


BDS test, resampling methods, size of a test, Monte Carlo simulations


Ashley R. A., Patterson D. M., (2001), Nonlinear Model Specifi cation/Diagnostics: Insights from a Battery of Nonlinearity Tests, working paper, Virginia Tech.

Brock W. A., Dechert W. D., Scheinkman J. A., (1987), A Test for Independence Based on the Correlation Dimension, working paper, University of Wisconsin, Madison.

Brock W. A., Hsieh D. A., LeBaron B., (1991), Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence, The MIT Press, Cambridge, Massachusetts, London, England.

Brock W. A., Scheinkman J. A., Dechert W. D., LeBaron B., (1996), A Test for Independence Based on the Correlation Dimension, Econometric Reviews, 15 (3), 197– 235.

Davidson R., (2012), The Bootstrap in Econometrics, McGill University, Quebec.

Davidson R., MacKinnon J. G., (1996), The Size Distortion of Bootstrap Tests, working paper, Queen’s University, Kingston.

Denker M., Keller G., (1983), On U-Statistics and von Mises’ Statistics for Weakly Dependent Processes, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 64, 505–522.

Diks C., (2003), Detecting Serial Dependence in Tail Events: a Test Dual to the BDS Test, Economics Letters, 79 (3), 319–324.

Diks C., Panchenko V., (2007), Nonparametric Tests for Serial Independence Based on Quadratic Forms, Statistica Sinica, 17, 81–98.

Doman M., Doman R., (2003), Nieliniowość w szeregach zwrotów akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie, Zeszyty Naukowe Akademii Ekonomicznej w Poznaniu, 27, 37–51.

Doman M., Doman R., (2004), Ekonometryczne modelowanie dynamiki polskiego rynku finansowego, Wydawnictwo Akademii Ekonomicznej w Poznaniu, Poznań.

Doman R., (2002), Nieliniowość w zwrotach kursów wymiany złotego, w: Tarczyński W., (red.), Rynek kapitałowy. Skuteczne inwestowanie, Szczecin, 385–396.

Fiszeder P., Orzeszko W., (2012), Nonparametric Verifi cation of GARCH-Class Models for Selected Polish Exchange Rates and Stock Indices, Finance a úvěr – Czech Journal of Economics and Finance, 62 (5), 430–449.

Gibbons J.D., Pratt J.W., (1975), P-Values: Interpretation and Methodology, The American Statistician, 29 (1), 20–25.

Graaff de T., Montfort van K., Nijkamp P., (2006), Spatial Effects and Non-Linearity in Spatial Regression Models: Simulation Results for Several Misspecifi cation Tests, w: Reggiani A., Nijkamp P., (red.), Spatial Dynamics, Networks and Modelling, Edward Elgar Publishing Limited, Bodmin, Cornwall, 91–117.

Gurgul H., Suder M., (2010), Nieliniowa dynamika indeksów giełdowych WIG20 i ATX: analiza porównawcza, Ekonomia Menedżerska, 7, 103–120.

Hall P., (1992), The Bootstrap and Edgeworth Expansion, Springer-Verlag, New York.

Härdle W, Horowitz J., Kreiss J.-P., (2003), Bootstrap Methods for Time Series, International Statistical Review, 71, 435–459.

Hoeffding W., (1948), A Class of Statistics with Asymptotically Normal Distribution, The Annals of Mathematical Statistics, 19, 293–325.

Horowitz J. L., (2000), The Bootstrap, Department of Economics, University of Iowa, Iowa City.

Hsieh D., (1991), Chaos and Nonlinear Dynamics Application to Financial Markets, The Journal of Finance, 46 (5), 1839–1877.

Kanzler L., (1999), Very Fast and Correctly Sized Estimation of the BDS Statistic, Department of Economics, Oxford University.

Kulinskaya E., (2008), On Two-sided P-values for Non-symmetric Distributions, working paper, Imperial College, London.

Liu T., Granger C. W. J., Heller W. P., (1993), Using the Correlation Exponent to Decide whether an Economic Series is Chaotic, w: Pesaran H. M., Potter S. M., (red.), Nonlinear Dynamics, Chaos and Econometrics, John Wiley & Sons, Chichester, 17–32.

MacKinnon J. G., (2009), Bootstrap Hypothesis Testing, w: Belsley D. A., Kontoghiorghes E. J., (red.), Handbook of Computational Econometrics, John Wiley & Sons, Ltd, Chichester, 183–214.

Mizrach B., (1994), Using U-statistics to Detect Business Cycle Nonlinearities, w: Semmler W., (red.), Business Cycles: Theory and Empirical Investigation, Kluwer Press, Boston, 107–129.

Mudholkar G. S., Chaubey Y. P., (2009), On Defi ning P-values, Statistics and Probability Letters, 79, 1963–1971.

Orzeszko W., (2005), Identyfi kacja i prognozowanie chaosu deterministycznego w ekonomicznych szeregach czasowych, seria: Nowe Trendy w Naukach Ekonomicznych, Fundacja Promocji i Akredytacji Kierunków Ekonomicznych, Polskie Towarzystwo Ekonomiczne, Warszawa.

Panchenko V., (2006), Nonparametric Methods in Economics and Finance: Dependence, Causality and Prediction, PhD Thesis, The University of Amsterdam.

Poshokwale S., Murinde V., (2001), Modelling the Volatility in East European Emerging Stock Markets: Evidence on Hungary and Poland, Applied Financial Economics, 11, 445–456.

Rayner J. C. W., Thas O., Best D. J., (2009), Smooth Tests of Goodness of Fit: Using R, 2nd Edition, John Wiley & Sons (Asia) Pte Ltd, 247.

Taylor S.J., (2007), Asset Price Dynamics, Volatility, and Prediction, Princeton University Press, Princeton, New Jersey.

Zeug-Żebro K., (2013), Badanie wpływu redukcji poziomu szumu losowego na identyfi kację chaosu deterministycznego w ekonomicznych szeregach czasowych, w: Mika J., Zeug-Żebro K., (red.), Zastosowanie metod matematycznych w ekonomii i zarządzaniu, Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach, Katowice, 124–135.

Back to top
Copyright © 2019 Statistics Poland