Kamil Wilak
ARTICLE

(Polish) PDF

ABSTRACT

Central Statistical Office in Poland publishes information on labour market derived from Labour Force Survey at high level of aggregation. Estimates for small demographic domains on voivodeship level are not published due to insuffi cient precision of direct estimates, caused by small sample size. One of possible approaches to the problem is to apply small area estimation. Taking into account that LFS is panel research of households structural time series models can be used in order to borrow strength in time. The aim of the article is to evaluate this method in the context of unemployment rate estimation on voivodeship level including sex and age domains. Monte Carlo simulation study will be applied in order to assess results of estimation and compare to direct estimation. Data obtained from the Labour Force Survey in Poland between 2000–2009 will be used. Results of the study indicates that temporal small area estimation have better quality of estimates compared to direct estimation.

KEYWORDS

Small Area Estimation, direct estimation, dynamic linear models, unemployment rate

REFERENCES

Brakel J., Krieg S., (2008), Estimation of the Monthly Unemployment Rate through Structural Time Series Modeling in a Rotating Panel Design, Statistics Netherlands, Hague.

Brakel J., Krieg S., (2009), Structural Time Series Modeling of the Monthly Unemployment Rate in a Rotating Panel, Statistics Netherlands, Hague.

Brakel J., Krieg S., (2010), Estimation of the Monthly Unemployment Rate for Six Domains through Structural Time Series Modeling with Cointegrated Trends, Statistics Netherlands, Hague.

Domański C., Pruska K., (2001), Metody statystyki małych obszarów, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.

Durbin J., Koopman S. J., (2001), Time Series Analysis by State Space Methods, Oxford University Press, Oxford.

GUS (2014a), Aktywność ekonomiczna ludności Polski, IV kwartał 2013, Główny Urząd Statystyczny, Warszawa.

GUS (2014b), Bezrobocie rejestrowane, I–IV kwartał 2013, Główny Urząd Statystyczny, Warszawa.

Gołata E., (2004), Estymacja pośrednia bezrobocia na lokalnym rynku pracy, Prace habilitacyjne, Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, Poznań.

Harvey A. C., (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press, Cambridge.

Kalman R. E., (1960), A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, 82 (Series D), 35–45.

Petris G., Petrone S., Campagnoli P., (2007), Dynamic Linear Models with R, Springer, New York.

Pfeffermann D., Tiller R., Brown S., (2005), Small Area Estimation with Stochastic Benchmark Constraints: Theory and Practical Application in US Labor Statistics, Statistical Office of the European Communities (Eurostat) – Working papers and studies, Luxemburg.

Pfeffermann D., Tiller R., (2006), Small Area Estimation with State Space Models Subject to Benchamrk Constraints, Journal of the American Statistical Association, 476 (101), 1387–1397.

Rao J. N. K., (2003), Small Area Estimation, John Wiley & Sons, Hoboken.

Wilak K., (2013), Wykorzystanie dynamicznych modeli liniowych w estymacji pośredniej, Ekonometria, 2 (40), 126–138.

Back to top
Copyright © 2019 Statistics Poland