Stanislaw Maciej Kot

(English) PDF


The paper presents the concept of the stochastic equivalence scale (SES), which is based on the stochastic indifference criterion. The SES is any function that transforms the expenditure distribution of a specific group of households in such a way that the resulting distribution is stochastically indifferent from the expenditure distribution of a reference group of households. The stochastic indifference criteria are also used in developing the method of the estimation of the SES. Non-parametric and parametric SESs are estimated using the Polish Household Budget Survey for the years 2005–2010.


equivalence scale, stochastic indifference, estimation, expenditure distribution


Atkinson A. B., (1987), On the Measurement of Poverty, Econometrica, 55, 749–764.

Atkinson A. B., Bourguignon F., (1987), Income Distribution and Differences in Needs, in: Feiwel G. R., (ed.), Arrow and the Foundations of the Theory of Economic Policy, Macmillan, London.

Blackorby C., Donaldson D., (1993), Adult-Equivalence Scales and the Economic Implementation of Interpersonal Comparisons of Well-Being, Choice and Welfare, 10, 335–361.

Blundell R. W., Duncan A., Pendakur K., (1998), Semiparametric Estimation of Consumer Demand, Journal of Applied Econometrics, 13, 435–461.

Blundell R. W., Lewbel A., (1991), The Information Content of Equivalence Scales, Journal of Econometrics, 150, 49–68.

Buhmann B., Rainwater L., Schmaus G., Smeeding T., (1988), Equivalence Scales, Well-Being, Inequality, and Poverty: Sensitivity Estimates Across Ten Countries Using the Luxembourg Income Study (LIS) Database, Review of Income and Wealth, 34, 115–142.

Capéau B., Ooghe E., (2007), On Comparing Heterogeneous Populations: Is There Really a Conflict Between Welfarism and a Concern for Greater Equality in Living Standards? Mathematical Social Sciences, 53, 1–28.

Coulter F. A. E., Cowell F. A., Jenkins S. P., (1992a), Differences in Needs and Assessment of Income Distributions, Bulletin of Economic Research, 44, 77–124.

Coulter F. A. E., Cowell F. A., Jenkins S. P., (1992b), Equivalence Scale Relativities and the Extent of Inequality and Poverty, Economic Journal, 102, 1067–1082.

Cutler A. E., Katz L. F., (1992), Rising Inequality? Changes in the Distribution of Income and Consumption in the 1980s, Economic Review, Papers and Proceedings 82, 546–551.

Davidson R., (2008), Stochastic Dominance, in: Durlauf S. N., Lawrence E. B., (eds.), The New Palgrave Dictionary of Economics, Second Edition, Palgrave Macmillan.

Davidson R., Duclos J., (2000), Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality, Econometrica, 68, 1435–1464.

Dickens R., Fry V., Pashardes P., (1993), Nonlinearities, Aggregation and Equivalence Scales, Economic Journal, 103, 359–368.

Donaldson D., Pendakur K., (2003), Equivalent-Expenditure Functions and Expenditure-Dependent Equivalence Scales, Journal of Public Economics, 88, 175–208.

Ebert U., Moyes P., (2003), Equivalence Scales Reconsidered, Econometrica, 71, 319–343.

Foster J. E., Shorrocks A. F., (1988), Poverty Orderings, Econometrica, 56, 173–177.

Gozalo P., (1997), Nonparametric Bootstrap Analysis with Implementation to Demographic Effects in Demand Functions, Journal of Econometrics, 81, 357–393.

Haagenaars A, de Vos K., Zaidi A., (1994), Poverty Statistics in the Late 1980s, Research Based on Microdata, Office for Official Publications of the European Communities, Luxembourg.

Jones A., O’Donnell O., (1995), Equivalence Scales and the Costs of Disability, Journal of Public Economics, 56, 273–289.

Jäntti M., Danziger S., (2000), Poverty in Advanced Countries, in: Atkinson A. B., Bourguignon F., (eds.), Handbook of Income Distribution, North-Holland, Amsterdam.

Jenkins S. P., Cowell F. A., (1994), Parametric Equivalence Scales and Scale Relativities, The Economic Journal, 104, 891–900.

Kolmogorov A. N., (1933), Sulla Determinazione Empirica di Una Legge di Distribuzione, Giornale delli Insitute Italiano degli Attuari, 4, 83–91.

Kot S. M. (2012), Towards the Stochastic Paradigm of Welfare Economics, (in Polish: Ku stochastycznemu paradygmatowi ekonomii dobrobytu), Impuls, Cracow.

Kruskal W. H., Wallis W. A., (1952), Use of Ranks in One-Criterion Variance Analysis, Journal of the American Statistical Association, 47, 583–621.

Lewbel A., (1997), Consumer Demand Systems and Household Equivalence Scales, in: Pesaran M. H., Schmidt P., (eds.), Handbook of Applied Econometrics, Volume II, Microeconomics, Blackwell Publishers Ltd, Oxford.

McFadden D., (1989), Testing for Stochastic Dominance, in: Fromby T. B., Seo T. K., (eds.), Studies in the Economics of Uncertainty, Springer-Verlag, New York.

OECD, (1982), The List of Social Indicators, Paris.

OECD, (2008), Growing Unequal? Income Distribution and Poverty in OECD Countries, Paris (

Pashardes P., (1995), Equivalence Scales in a Rank-3 Demand System, Journal of Public Economics, 58, 143–158.

Pendakur K., (1999), Estimates and Tests of Base-Independent Equivalence Scales, Journal of Econometrics, 88, 1–40.

Pollak R. A., Wales T. J., (1979), Welfare Comparisons and Equivalence Scales, American Economic Review, 69, 216–221.

Pollak R. A., Wales T. J., (1992), Demand System Specification and Estimation, Oxford University Press, London.

Shorrocks A. F., (1983), Ranking Income Distributions, Economica, 50, 3–17.

Shorrocks A. F., (1998), Deprivation Profiles and Deprivation Indices, Jenkins S. P., Kapteyn A., van Praag B. M. S., (eds.), Ch. 11 in The Distribution of Household Welfare and Household Production, Cambridge University Press.

Slesnick D., (1998), Empirical Approaches to the Measurement of Welfare, Journal of Economic Literature, 36, 2108–2165.

Smirnov N. W., (1939), Sur les Ecarts de la Courbe de Distribution Empirique, Comptes Rendus de l’Academie des Sciences Paris, 6, 3–26.

Back to top
Copyright © 2019 Statistics Poland