Paweł Dykas , Tomasz Misiak
ARTICLE

(Polish) PDF

ABSTRACT

The aim of the present study is an attempt to extend the neoclassical model of economic growth of Solow by repealing the assumption of fixed investment and introducing an investment function dependent sinusoidally on the time. The adoption of the sinusoidal function of investment is substantiated by the fact that investments (like manufacturing) are largely depended on the economic situation, which is subject to periodic fluctuations. The authors introduce the theoretical considerations on the notion of cyclical and smooth path of temporal capital-labour ratio and labour productivity. When using these tools the authors identified, by calculating the relative deviations of the mentioned path, the impact of investment function dependent sinusoidally on the time.
In the empirical analysis the authors conducted the calibration of parameters used by the research model. Based on panel data for the EU15 between the years 2000–2013 the ? parameter (production flexibility in relation to capital) was estimated first at 0,349. That value was adopted to further numerical analysis. In the second stage the simulations of numerical, calibrated deviations of temporal cyclical path of capital-labour ratio (labor productivity) from the smooth path of capital-labour ratio (labor productivity) was performed. When conducting numerical analysis the impact of different investment rates (15%, 20%, 25%) and periods of cyclical fluctuations (4 or 10 years) have been considered in relation to the formation of these deviations. Numerical analysis for the economies of the EU15 group was made for one hundred time series.

KEYWORDS

cyclical investments, Solow growth model, the path of product growth and the capital- -labour ratio

REFERENCES

Cobb C. W., Douglas P. H., (1928), A Theory of Production, American Economic Review, 18 (1), 139–165.

Dykas P., Sulima A., Tokarski T. (2008), Złote reguły akumulacji kapitału a N-kapitałowym modelu wzrostu gospodarczego, Gospodarka Narodowa, nr 11-12/2008, 47–75.

Dykas P., Edigarian A., Tokarski T., (2011), Uogólnienie N-kapitałowego modelu wzrostu gospodarczego Nonnemana-Vanhoudta, w: Panek E., (red.), Wzrost Gospodarczy Teoria. Rzeczywistość, Zeszyty Naukowe nr 176, Poznań, 161–177.

Madalla G. S., (2006), Ekonometria, Wydawnictwo Naukowe PWN, Warszawa.

Malaga K., (2015), Jednolita teoria wzrostu gospodarczego – stan obecny a wyzwania współczesności, w: Fiedor B., (red.), Ekonomia dla przyszłości. Stylizowane fakty a wyzwania współczesności, PTE, Warszawa, 150–169.

Malaga K., (2009), O niektórych dylematach teorii wzrostu gospodarczego i ekonomii, ZKP TE, Warszawa.

Mankiw N. G., Romer D., Weil N. D., (1992), A Contribution to the Empirics of Economic Growth, Quartely Journal of Economics, 107 (2), 407–437.

Maussner A., (1994), Koniunkturtheorie, Springer, Berlin.

McCombie J. S. L., (2000), The Solow Residual, Technical Change and Aggregate Production Functions, Journal of Post Keynesian Economics, 23 (2), 267–297.

McCombie J. S. L., (2001), What Does the Aggregate Production Function Tell Us? Second Thoughts on Solow’s, Second Thoughts on Growth Theory, Journal of Post Keynesioan Economics, 23 (4), 589–615.

Mroczek K., Tokarski T., Trojak M., (2014), Grawitacyjny model zróżnicowania rozwoju ekonomicznego województw, Gospodarka Narodowa, nr 3, 5–34.

Nonneman W., Vanhoudt P., (1996), A Futher Augmentation of the Solow Model and the Empirics of Ecomomics Growth for the OECD Countries, Quarterly Journal of Economics, 111 (3), 943–953.

Solow R. M., (1956), A Contribution to the Theory of Economic Growth, Quarterly Journal of Economics, 70 (1), 65–94.

Romer D., (2000), Makroekonomia dla zawansowanych, Wydawnictwo Naukowe PWN, Warszawa.

Tokarski T., (2005), Statystyczna analiza regionalnego zróżnicowania wydajności pracy, zatrudnienia i bezrobocia w Polsce, Wydawnictwo PTE, Warszawa.

Tokarski T., (2009), Matematyczne modele wzrostu gospodarczego (ujęcie neoklasyczne), Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków.

Tokarski T., (2011), Ekonomia matematyczna. Modele makroekonomiczne, Polskie Wydawnictwo Ekonomiczne, Warszawa.

Wicksell K., (1893), Über Wert, Kapital und Rente nach den Neueren Ntionalökonomischen Theorien, Jena.

Żółtowska E., (1997), Funkcja produkcji. Teoria, estymacja, zastosowania, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.

Back to top
Copyright © 2019 Statistics Poland