Jan Purczyński , Kamila Bednarz-Okrzyńska

(English) PDF


A new model for a dependent variable taking the value 0 or 1 (binary, dichotomous) was proposed. The name of the proposed model – the raybit model – stems from the fact that the probability corresponds to the Rayleigh cumulative distribution function. The assessment of the quality of selected models was conducted with the use of four definitions of error: MSE, MAE, WMSE, WMAE. Two computational examples were considered, which proved that the raybit model yields smaller values of error than the logit and probit models. Computer simulations were conducted using a random number generator with a binomial distribution. They proved that for the values of the theoretical probabilityfor the interval Pi ∈ [0; 0.8] the raybit model outperforms the other two models yielding a smaller value of error.


qualitative econometric models, logit model, probit model


Amemiya T., (1981), Qualitative Response Models: A Survey, Journal of Economic Literature, December, 1483–1536.

Budżety gospodarstw domowych w 2012 r., (2013), Household Budget Survey in 2012, GUS, Warsaw.

Celik A. N., (2003), A Statistical Analysis of Wind Power Density Based on the Weibull and Rayleigh Models at the Southern Region of Turkey, Elsevier, Renewable Energy, 29, 593–604.

Chow G. C., (1983), Econometrics, Mc-Graw-Hill Inc, New York.

Devroye L., (1986), Non-Uniform Random Variate Generation, Springer-Verlag, New York.

Finney D. J., (1983), Probit Analysis, Cambridge University Press.

Gruszczyński M., (2012), Empiryczne finanse przedsiębiorstw. Mikroekonometria finansowa, Difin, Warszawa.

Guzik B., Appenzeller D., Jurek W., (2005), Prognozowanie i symulacje. Wybrane zagadnienia, Wydawnictwo Akademii Ekonomicznej w Poznaniu, nr 168, Poznań.

Jajuga K., (1989), Modele z dyskretną zmienną objaśnianą, in: Bartosiewicz S. (ed.), Estymacja modeli ekonometrycznych, PWE, Warszawa.

Judge G. G., Griffiths W. E., Hill R. C., Lee T. C., (1980), Theory and Practice of Econometrics, Wiley, New York.

Koutsoyiannis D., (2003), On the Appropriateness of the Gumbel Distribution in Modelling Extreme Rainfall, Proceedings of the ESF LESC Exploratory Workshop held at Bologna, Italy, October 24–25, 303–319.

Maddala G. S., (1983), Limited-Dependent and Qualitative Variables in Econometrics, Cambridge University Press.

Maddala G. S., (1992), Introduction to Econometrics, Macmillan Publishing Company, New York.

McFadden D., (1984), Econometric Analysis of Qualitative Response Models, in: Gribliches Z., Intriligator M. D., (eds.), Handbook of Econometrics, Vol. II, Elsevier Science Publishers BV.

Nerlove M., Press S. J., (1973), Univariante and Multivariante Log-Linear and Logistic Models, R-1406-EDA/NIH, Dec., RAND Santa Monica, CA, 90406.

Polakow D. A., Dunne T. T., (1999), Modelling Fire-Return Interval T: Stochasticity and Censoringin the Two-Parameter Weibull Model, Elsevier, Ecological Modelling, 121, 79–102.

Purczyński J., Porada-Rochoń M., (2015), Ocena jakości modeli ze zmienną dychotomiczną, Logistyka, 3, 4064-4073.

Rinne H., (2009), The Weibull Distribution. A Handbook, CRC PressTaylor & Francis Group, LLC.

Train K., (2009), Discrete Choice Methods with Simulation, Cambridge University Press.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0