Piotr Sulewski https://orcid.org/0000-0002-0788-6567

© Piotr Sulewski. Article available under the CC BY-SA 4.0 licence


(English) PDF


The aim of this article is to test the ability of goodness-of-fit tests (GoFTs) to detect any deviations from normality. A very specific case is considered, namely the deviation from normality consisting in the coincidence of asymmetry and small γ1 skewness. The first step in achieving the aforementioned aim is to compile a set of normality-oriented GoFTs commonly recommended for use, as described in the recently published literature. The second step is to create a family of asymmetric distributions with a non-constant γ1, further referred to as alternatives. The formulas for calculating γ1 are provided for each alternative. To compare the alternatives with the normal distribution, a relevant similarity measure is applied. The third step involves running a Monte Carlo simulation. The study investigates 21 GoFTs and 13 alternatives. The obtained results show that the LFα, β and Hn GoFTs prove most effective in detecting asymmetric distributions that deviate from normality due to small skewness, equal to even 0.05.


normality, goodness-of-fit test, skewness


C1, C6


Afeez, B. M., Maxwell, O., Otekunrin, O. A., & Happiness, O.-I. (2018). Selection and Validation of Comparative Study of Normality Test. American Journal of Mathematics and Statistics, 8(6), 190–201. https://doi.org/10.5923/j.ajms.20180806.05.

Ahmad, F., & Khan, R. A. (2015). Power Comparison of Various Normality Tests. Pakistan Journal of Statistics and Operation Research, 11(3), 331–345. https://doi.org/10.18187/pjsor.v11i3.845.

Aliaga, A. M., Martinez-González, E., Cayón, L., Argüeso, F., Sanz, J. L., & Barreiro, R. B. (2003). Goodness-of-fit tests of Gaussianity: constraints on the cumulants of the MAXIMA data. New Astronomy Reviews, 47(8–10), 821–826. https://doi.org/10.1016/j.newar.2003.07.010.

Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain ‘goodness of fit’ criteria based on stochastic processes. The Annals of Mathematical Statistics, 23(2), 193–212.

Arnastauskaite, J., Ruzgas, T., & Braženas, M. (2021). An Exhaustive Power Comparison of Normality Tests. Mathematics, 9(7), 1–20.

Azzalini, A. (1985). A Class of Distributions which Includes the Normal Ones. Scandinanvian Journal of Statistics, 12(2), 171–178.

Bayoud, H. A. (2021). Tests of normality: new test and comparative study. Communications in Statistics – Simulation and Computation, 50(12), 4442–4463. https://doi.org/10.1080/03610918.2019.1643883.

Bonett, D. G., & Seier, E. (2002). A test of normality with high uniform power. Computational Statistics & Data Analysis, 40(3), 435–445. https://doi.org/10.1016/S0167-9473(02)00074-9.

Bontemps, C., & Meddahi, N. (2005). Testing normality: a GMM approach. Journal of Econometrics, 124(1), 149–186. https://doi.org/10.1016/j.jeconom.2004.02.014.

Brys, G., Hubert, M., & Struyf, A. (2008). Goodness-of-fit tests based on a robust measure of skewness. Computational Statistics, 23(3), 429–442. https://doi.org/10.1007/s00180-007-0083-7.

Cabana, A., & Cabana, E. M. (1994). Goodness-of-fit and comparison tests of the Kolmogorov- Smirnov type for bivariate populations. The Annals of Statistics, 22(3-4), 1447–1459. https://doi.org/10.1214/aos/1176325636.

Chen, L. & Shapiro, S. S. (1995). An alternative test for normality based on normalized spacings. Journal of Statistical Computation and Simulation, 53(3), 269–287. https://doi.org/10.1080/00949659508811711.

Coin, D. (2008). A goodness-of-fit test for normality based on polynomial regression. Computational Statistics & Data Analysis, 52(4), 2185–2198. https://doi.org/10.1016/j.csda .2007.07.012.

Cramér, H. (1928). On the composition of elementary errors. Scandinavian Actuarial Journal, (1), 13–74. https://doi.org/10.1080/03461238.1928.10416862.

D’Agostino, R. B. (1970). Transformation to normality of the null distribution of g1. Biometrika, 57(3), 679–681. https://doi.org/10.2307/2334794.

D'Agostino, R., & Pearson, E. S. (1973). Tests for departure from normality. Empirical results for the distributions of b2 and ?b1. Biometrika, 60(3), 613–622. https://doi.org/10.2307/2335012.

Desgagné, A., & Lafaye de Micheaux, P. (2018). A powerful and interpretable alternative to the Jarque-Bera test of normality based on 2nd-power Skewness and Kurtosis, using the Rao’s Score Test on the APD family. Journal of Applied Statistics, 45(13), 2307–2327. https://doi.org/10.1080/02664763.2017.1415311.

Desgagné, A., Lafaye de Micheaux, P., & Ouimet, F. (2023). Goodness-of-fit tests for Laplace, Gaussian and exponential power distributions based on ?-th power skewness and kurtosis. Statistics, 57(1), 94–122. https://doi.org/10.1080/02331888.2022.2144859.

Gel, Y. R., & Gastwirth, J. L. (2008). A robust modification of the Jarque-Bera test of normality. Economics Letters, 99(1), 30–32. https://doi.org/10.1016/j.econlet.2007.05.022.

Gel, Y. R., Miao, W., & Gastwirth, J. L. (2007). Robust Directed Tests of Normality against Heavytailed Alternatives. Computational Statistics & Data Analysis, 51(5), 2734–2746. https://doi.org/10.1016/j.csda.2006.08.022.

Hernandez, H. (2021). Testing for Normality: What is the Best Method?. ForsChem Research Reports, 6, 1–38. https://doi.org/10.13140/RG.2.2.13926.14406.

Hosking, J. R. M. (1990). L-moments: Analysis and Estimation of Distributions using Linear Combinations of Order Statistics. Journal of the Royal Statistical Society. Series B (Methodological), 52(1), 105–124. https://doi.org/10.1111/j.2517-6161.1990.tb01775.x.

Jarque, C. M., & Bera, A. K. (1987). A Test for Normality of Observations and Regression Residuals. International Statistical Review, 55(2), 163–172. https://doi.org/10.2307/1403192.

Johnson, N. L. (1949). System of frequency curves generated by methods of translation. Biometrika, 36(1/2), 149–176. https://doi.org/10.2307/2332539.

Kellner, J., & Celisse, A. (2019). A one-sample test for normality with kernel methods. Bernoulli, 25(3), 1816–1837. https://doi.org/10.3150/18-BEJ1037.

Khatun, N. (2021). Applications of Normality Test in Statistical Analysis. Open Journal of Statistics, 11(1), 113–122. https://doi.org/10.4236/ojs.2021.111006.

Kolmogorov, A. (1933). Sulla determinazione empirica di unalegge di distributione. Giornale Dell’Istituto Italiano Degli Attuari, 4, 83–91.

Komunjer, I. (2007). Asymmetric power distribution: Theory and applications to risk measurement. Journal of Applied Econometrics, 22(5), 891–921. https://doi.org/10.1002/jae.961.

Lafaye de Micheaux, P. L., & Tran, V. A. (2016). PoweR: A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R. Journal of Statistical Software, (69), 1–44. https://doi.org/10.18637/jss.v069.i03.

LaRiccia, V. N. (1986). Optimal goodness-of-fit tests for normality against skewness and kurtosis alternatives. Journal of Statistical Planning and Inference, 13, 67–79. https://doi.org/10.1016/0378-3758(86)90120-5.

Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62(318), 399–402. https://doi.org/10.2307/2283970.

Malachov, A. N. (1978). Kumuljantnyj analiz slucajnych negaussovych processov i ich preobrazovanij. Sovetskoe Radio.

Marange, C. S., & Qin, Y. (2019). An Empirical Likelihood Ratio Based Comparative Study on Tests for Normality of Residuals in Linear Models. Advances in Methodology and Statistics, 16(1), 1–16. https://doi.org/10.51936/ramh7128.

Mbah, A. K., & Paothong, A. (2015). Shapiro-Francia test compared to other normality test using expected p-value. Journal of Statistical Computation and Simulation, 85(15), 3002–3016. https://doi.org/10.1080/00949655.2014.947986.

Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive Statistics and Normality Tests for Statistical Data. Annals of Cardiac Anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA_157_18.

Nosakhare, U. H., & Bright, A. F. (2017). Evaluation of Techniques for Univariate Normality Test Using Monte Carlo Simulation. American Journal of Theoretical and Applied Statistics, 6(5-1), 51–61. https://doi.org/10.11648/j.ajtas.s.2017060501.18.

Noughabi, H. A., & Arghami, N. R. (2011). Monte Carlo comparison of seven normality tests. Journal of Statistical Computation and Simulation, 81(8), 965–972. https://doi.org/10.1080/00949650903580047.

Pearson, K. (1916). Mathematical Contributions to the Theory of Evolution – XIX. Second Supplement to a Memoir on Skew Variation. Philosophical Transactions of the Royal Society of London. Series A. Containing Papers of a Mathematical or Physical Character, 216, 429–457. https://doi.org/10.1098/rsta.1916.0009.

Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.

Romao, X., Delgado, R., & Costa, A. (2010). An empirical power comparison of univariate goodness-of-fit tests for normality. Journal of Statistical Computation and Simulation, 80(5), 545–591. https://doi.org/10.1080/00949650902740824.

Ryan, T. A., & Joiner, B. L. (1976). Normal probability plots and tests for normality. Journal of the Royal Statistical Society Series C (Applied Statistics), 31, 115–124.

Shapiro, S. S., & Francia, R. S. (1972). An Approximate Analysis of Variance Test for Normality. Journal of the American Statistical Association, 67(337), 215–216. https://doi.org/10.1080/01621459.1972.10481232.

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.2307/2333709.

Shapiro, S. S., Wilk, M. B. & Chen, H. J. (1968). A comparative study of various tests for normality. Journal of the American Statistical Association, 63(324), 1343–1372. https://doi.org/10.2307/2285889.

Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. The Annals of Mathematical Statistics, 19(2), 279–281. https://doi.org/10.1214/aoms/1177730256.

Sulewski, P. (2019). Modification of Anderson-Darling goodness-of-fit test for normality. Afinidad. Journal of Chemical Engineering Theoretical and Applied Chemistry, 76(588), 270–277. https://raco.cat/index.php/afinidad/article/view/361876.

Sulewski, P. (2021). Equal-bin-width histogram versus equal-bin-count histogram. Journal of Applied Statistics, 48(12), 2092–2111. https://doi.org/10.1080/02664763.2020.1784853.

Sulewski, P. (2022a). Easily Changeable Kurtosis Distribution. Austrian Journal of Statistics. Advanced online publication. https://doi.org/10.17713/ajs.v52i3.1434.

Sulewski, P. (2022b). Modified Lilliefors goodness-of-fit test for normality. Communications in Statistics – Simulation and Computation, 51(3), 1199–1219. https://doi.org/10.1080/03610918.2019.1664580.

Tavakoli, M., Arghami, N., & Abbasnejad, M. (2019). A Goodness of Fit Test For Normality Based on Balakrishnan-Sanghvi Information. Journal of The Iranian Statistical Society, 18(1), 177–190. http://doi.org/10.29252/jirss.18.1.177.

Torabi, H., Montazeri, N. H., & Grané, A. (2016). A test for normality based on the empirical distribution function. SORT – Statistics and Operations Research Transactions, 40(1), 55–88.

Uhm, T., & Yi, S. (2021). A comparison of normality testing methods by empirical power and distribution of P-values. Communications in Statistics – Simulation and Computation. Advanced online publication. https://doi.org/10.1080/03610918.2021.1963450.

Urzúa, C. M. (1996). On the correct use of omnibus tests for normality. Economics Letters, 53(3), 247–251. https://doi.org/10.1016/S0165-1765(96)00923-8.

Uyanto, S. S. (2022). An Extensive Comparisons of 50 Univariate Goodness-of-fit Tests for Normality. Austrian Journal of Statistics, 51(3), 45–97. https://doi.org/10.17713/ajs.v51i3.1279.

Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, 18(3), 293–297. https://doi.org/10.1115/1.4010337.

Wijekularathna, D. K., Manage, A. B. W., & Scariano, S. M. (2020). Power analysis of several normality tests: A Monte Carlo simulation study. Communications in Statistics – Simulation and Computation, 51(3), 757– 773. https://doi.org/10.1080/03610918.2019.1658780.

Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation, 81(12), 2141–2155. https://doi.org/10.1080/00949655.2010.520163.

Yazici, B., & Yolacan, S. A. (2007). A comparison of various tests of normality. Journal of Statistical Computation and Simulation, 77(2), 175–183. https://doi.org/10.1080/10629360600678310.

Zhang, J., & Wu, Y. (2005). Likelihood-ratio tests for normality. Computational Statistics & Data Analysis, 49(3), 709–721. https://doi.org/10.1016/j.csda.2004.05.034.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0