Baksalary, J., Markiewicz, A., & Rao, C. R. (1995). Admissible linear estimation in the general Gauss- Markov model with respect to an arbitrary quadratic risk function. Journal of Statistical Planning and Inference, 44(3), 341–347. https://doi.org/10.1016/0378-3758(94)00081-6.
Baksalary, J. K., Rao, C. R., & Markiewicz, A. (1992). A study of the influence of the ‘natural restrictions’ on estimation problems in the singular Gauss-Markov model. Journal of Statistical Planning and Inference, 31(3), 335–351. https://doi.org/10.1016/0378-3758(92)90141-E.
Caliński, T. (2007). On some results of C. Radhakrishna Rao applicable to the analysis of multienvironment variety trials. Journal of Statistical Theory and Practice, 1(3–4), 347–356. https://doi.org/10.1080/15598608.2007.10411845.
Caliński, T., Czajka, S., Kaczmarek, Z., Krajewski, P., Pilarczyk, W., Siatkowski, I., & Siatkowski, M. (2017). On a mixed model analysis of multi-environment variety trials: a reconsideration of the one-stage and two-stage models and analyses. Statistical Papers, 58(2), 433–465. https://doi.org/10.1007/s00362-015-0706-y.
Caliński, T., & Lejeune, M. (1998). Dimensionality in Manova Tested by a Closed Testing Procedure. Journal of Multivariate Analysis, 65(2), 181–194. https://doi.org/10.1006/jmva.1997.1722.
Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171–185. https://doi.org/10.2307/2289144.
Fonseca, M., Kozioł, A., & Zmyślony, R. (2018). Testing hypotheses of covariance structure in multivariate data. Electronic Journal of Linear Algebra, 33(1), 53–62. https://journals.uwyo.edu/index.php/ela/article/view/1823/1823.
Górecki, T., & Smaga, Ł. (2017). Multivariate analysis of variance for functional data. Journal of Applied Statistics, 44(12), 2172–2189. https://doi.org/10.1080/02664763.2016.1247791.
Górecki, T., & Smaga, Ł. (2019). fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data. Computational Statistics, 34(2), 571–597. https://doi.org/10.1007 /s00180-018-0842-7 .
Inglot, T. (2021). Wykłady z teorii testowania hipotez. Oficyna Wydawnicza GiS. https://www.gis.wroc.pl/pdf/tth_www.pdf.
Jędrzejczak, A., Pekasiewicz, D., & Zieliński, W. (2021). Confidence interval for quantile ratio of the Dagum distribution. REVSTAT. Statistical Journal, 19(1), 87–97. https://doi.org/10.57805/revstat.v19i1.333.
Klonecki, W. (1970). [unpublished manuscript]. Colloquium Metodologiczne z Agrobiometrii.
Newcombe, R. G. (1998). Interval estimation for the difference between independent proportions: Comparison of eleven methods. Statistics in Medicine, 17(8), 873–890. https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8%3C873::AID-SIM779%3E3.0.CO;2-I.
Neyman, J. (1923a). Próba uzasadnienia zastosowań rachunku prawdopodobieństwa do doświadczeń polowych. Roczniki Nauk Rolniczych i Leśnych, 10, 1–51.
Neyman, J. (1923b). Próba rozwiązania niektórych zagadnień doświadczalnictwa rolniczego za pomocą statystyki matematycznej. Miesięcznik Statystyczny, 6(9/12), 241–262.
Neyman, J. (1933). Zarys teorji i praktyki badania struktury ludności metodą reprezentacyjną. Instytut Spraw Społecznych.
Neyman, J. (1934). On the Two Different Aspects of the Representative Metod: the Metod of Stratified Sampling and the Metod of Purposive Selection. Journal of the Royal Statistical Society, 97(4), 558–606. https://doi.org/10.2307/2342192.
Neyman, J. (1935). On the problem of confidence intervals. Annals of Mathematical Statistics, 6(3), 111–116. https://doi.org/10.1214/aoms/1177732585.
Neyman, J. (1937a). Outline of a theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society A, 236, 333–380.
Neyman, J. (1937b). Smooth test for goodness of fit. Skandinavisk Aktuarietidskrift, 20, 149–199.
Neyman, J., Iwaszkiewicz, K., & Kołodziejczyk, S. (1935). Statistical problems in agricultural experimentation (with discussion). Supplement to the Journal of the Royal Statistical Society. Series B, 2(2), 107–180. https://doi.org/10.2307/2983637.
Neyman, J., & Pearson, E. S. (1928a). On the use and interpretation of certain test criteria for purpose of statistical inference. Part I. Biometrika, 20A(1/2), 175–240. https://doi.org/10.1093/biomet/20A.1-2.175.
Neyman, J., & Pearson, E. S. (1928b). On the use and interpretation of certain test criteria for purpose of statistical inference. Part II. Biometrika, 20A(3/4), 263–294. https://doi.org/10.1093/biomet/20A.3-4.263 .
Neyman, J., & Pearson, E. S. (1933). On the Problem of the most Efficient Tests of Statistical Hypotheses. Philosophical Transactions of the Royal Society A, 231, 289–337. https://doi.org/10.1098 /rsta.1933.0009 .
Pytkowski, W. (1932). Zależność dochodów w małych gospodarstwach od ich powierzchni, nakładów i kapitału zainwestowanego w krowy. Państwowy Instytut Naukowy Gospodarstwa Wiejskiego.
Splawa-Neyman, J. (1990). On the Application of Probability Theory to Agricultural Experiments. Essay on Principes. Section 9 (D. M. Dąbrowska & T. P. Speed, Trans.). Statistical Science, 5(4), 465–472.
Wald, A. (1950). Statistical Decision Functions. Wiley.
Wywiał, J. L. (2020). Estimating the population mean using a continuous sampling design dependent on an auxiliary variable. Statistics in Transition new series, 21(5), 1–16. https://doi.org/10.21307 /stattrans-2020-052 .
Wywiał, J. L. (2023). On the Maximum Likelihood Estimation of Population and Domain Means. Journal of Statistical Theory and Practice, 17(40), 1–19. https://doi.org/10.1007/s42519-023-00337-4.
Zieliński, R. (2009). Przedział ufności dla frakcji. Matematyka Stosowana, 37(10), 1–17. https://doi.org/10.14708/ma.v37i51/10.265.
Zieliński, R. (2011). Statystyka matematyczna stosowana. Elementy. Centrum Studiów Zaawansowanych Politechniki Warszawskiej.
Zieliński, W. (2017). The shortest Clopper-Pearson randomized confidence interval for binomial probability. REVSTAT. Statistical Journal, 15(1), 141–153. https://doi.org/10.57805/revstat.v15i1.207.
Zieliński, W. (2022). The shortest confidence interval for Poisson mean. Statistical Papers, 63(6), 2065–2072. https://doi.org/10.1007/s00362-022-01305-z.
Zmyślony, R., & Kozioł, A. (2021). Ratio F test for testing simultaneous hypotheses in models with blocked compound symmetric covariance structure. Statistical Papers, 62(5), 2109–2118. https://doi.org/10.1007/s00362-020-01182-4.